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ABSTRACT
The final outcome of neuroevolutionary processes commonly is
the best structure found during the search, and a good amount of
residual information from which valuable knowledge that can be
extracted is usually omitted. We propose an approach that extracts
this information from neuroevolutionary runs, and use it to build a
Bayesian network-based metamodel that could positively impact
future neural architecture searches. The metamodel is learned from
the best found solutions in previous GAN structural searches and
it is used to improve subsequent neuroevolutionary searches.
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1 INTRODUCTION
Deep neural networks (DNN) have been successfully applied to
many tasks, such as generative modeling, with, for example, genera-
tive adversarial networks (GAN) [4]. As the accessibility to augment-
ing computational resources has broadened, increasingly complex
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DNN structures have been proposed in the last few years, which
has caused a drop-off in the feasibility of designing these models
by hand. This has caused a considerable rise on the interest on
neural architecture search (NAS) methods, a research field that
encompasses methods aiming at automatizing structural design.

This work studies how to extract information about the character-
istics of the best GANs found during previous searches to improve
future searches. For that, we employ two use cases of evolved GANs.
MLP-based GANs for making Pareto set (PS) approximations [3],
and CNN-based GANs for generating images, COEGAN [2]. We
employ Bayesian networks (BN) [1] to model the characteristics of
the best GANs, as they are interpretable, easy to sample, and are
able to capture dependencies between GAN characteristics.

2 BACKGROUND
GANs are composed of two DNNs, a generator and a discriminator.
While the latter aims at being able to discern real data observations
from fake ones, the former pursues fooling the discriminator by
generating data samples as similar to the real ones as possible. The
final objective of the GAN is to learn a realistic generative model.

A generator, partially defined by its parameters 𝜃𝐺 , receives
random noise and produces samples in the space of the original
data x:𝐺 (N (𝜇, 𝜎), 𝜃𝑔) → x̂. The discriminator, using its parameters
𝜃𝑑 , receives either xor x̂ as input, and provides probability values
of the inputs emanating from x.

BNs are PGMs used to represent sets of variables and their
(in)dependencies, using directed acyclic graphs (DAG). Each node
of the DAG represents a variable, and the (non) existence of an arc
between two nodes represents the (in)dependency between them.

The BN-based metamodel has been designed in two levels in
order to simplify the modeling of dynamic DNN depths by the BNs.
The first level, the supermodel, fixes the number of layers of the
DNNs. In the second level, one BN is learned for each DNN depth.

In this work the ARACNE algorithm was used to learn the struc-
ture of the BN, as implemented in the bnlearn R library [8].

3 SEARCH INITIALIZATION
The NE runs in [3] consist of 30 runs (100 generations, 100 indi-
viduals/generation) for GAN structural search with the final goal
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Figure 1: Best MMD value (y axis) corresponding to the sam-
ples generated by GANs at different generations (x axis) dur-
ingNE. The solid lines represent themean of the 20𝑖𝑛𝑑𝑠/𝑔𝑒𝑛×
30𝑟𝑢𝑛𝑠 = 60 computedMMDs at each generation. The translu-
cent bands show the 95% confidence interval.

of generating PS approximations of the functions from the suite
defined in [6] (except for 𝐹6).

We define the Best set, which consists of the 5 best performing
GAN structures of each run. Over 75% of the GANs in the Best are
combinations of generators and discriminators of depth up to three
and four layers respectively. For reducing the complexity of the
metamodel, we limit the GANs to these 3 × 4 = 12 combinations. A
metamodel is learned using the Best set and sampled 100 times, to
conform the Sampled set.

We design a NE search for GANs (of 20 generations of 20 indi-
viduals each) for the 2D 8 and 25-Gaussian approximation problem
[7]. 30 runs of three versions of the NE algorithm are run, each of
them initialized using GANs randomly, or from the Best, or Sampled
sets. Figure 1 shows the per generation evolution of the best GAN
in terms of Maximum Mean Discrepancy (MMD) [5], the fitness
function used to evaluate the quality of a GAN (the second objective
of the bi-objective evolutionary process being the minimization of
the elapsed time during training and sampling the GANs).

As can be seen in the figure, the evolutionary runs with the non-
random initialization have a large advantage in the initial stages
of the evolution. The GANs found in the runs initialized with the
Sampled set clearly outperform the other two approaches.

4 SEARCH GUIDE
Firstly, COEGAN is run for the FashionMNIST [9] database 20 times.
Next, a Best set of GANs was created, and a metamodel was learned,
as in Section 3. 30 different runs of two variants of a hill climbing
(HC) algorithm are executed with 100 evaluations, looking for GAN
structures which can accurately reproduce images similar to the
digits available in the MNIST dataset. The first variant randomly
generates a neighbor of the current solution and evaluates it. The
second one randomly generates all the possible neighbors (in the
COEGAN search space), and only evaluates the one to which the
metamodel awards the larger probability (the one the metamodel
considers to be the most promising one).

Figure 2 shows, for each step in the HC procedure (x axis), the
best found FID value (y axis). The figure shows that, during the first
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Figure 2: Evolution of the FID (in the y axis) of the best CNN-
GAN structure found at each step (x axis).

40 steps of the search, both HC procedures show similar behaviours.
In the second part of the search, only the guided greedy algorithm
is capable of showing steady improvement.

5 CONCLUSIONS
The results reported in this work clearly show the advantages of
using the metamodel for initializing or guiding NE procedures. This
speaks for the versatility of the approach, as the same metamodel
was able to perform both tasks efficiently.

ACKNOWLEDGMENTS
This work has received support from the TIN2016-78365-R (Spanish
Ministry of Economy, Industry and Competitiveness), PID2019-
104966GB-I00 (Spanish Ministry of Science and Innovation), IT-
1244-19 (Basque Government), KK-2020/00049 (part of the project
3KIA, funded by the SPRI-Basque Government through Elkartek)
programs, and by Portuguese national funds through the FCT -
Foundation for Science and Technology, I.P., through the project
CISUC - UID/CEC/00326/2020. Unai Garciarena holds apredoctoral
grant (PIF16/238) by the University of the Basque Country.

REFERENCES
[1] E. Castillo, J. M. Gutierrez, and A. S. Hadi. 1997. Expert Systems and Probabilistic

Network Models. Springer.
[2] Victor Costa, Nuno Lourenço, and Penousal Machado. 2019. Coevolution of

Generative Adversarial Networks. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar). Springer, 473–487. https://doi.org/
10.1007/978-3-030-16692-2_32

[3] Unai Garciarena, Alexander Mendiburu, and Roberto Santana. 2020. Analysis of
the transferability and robustness of GANs evolved for Pareto set approximations.
Neural Networks 132 (2020), 281–296. Publisher: Elsevier.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, 2672–
2680. https://doi.org/10.5555/2969033.2969125 event-place: Montreal, Canada.

[5] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A Kernel Two-Sample Test. Journal of Machine Learning
Research 13, 25 (2012), 723–773. http://jmlr.org/papers/v13/gretton12a.html

[6] H. Li and Q. Zhang. 2008. Multiobjective Optimization Problems with Complicated
Pareto Sets, MOEA/D andNSGA-II. IEEE Transactions on Evolutionary Computation
13, 2 (2008), 284–302. https://doi.org/10.1109/TEVC.2008.925798

[7] LMetz, B Poole, D Pfau, and J Sohl-Dickstein. 2016. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163 [cs,stat] (2016). https://arxiv.org/abs/
1611.02163

[8] Marco Scutari and Jean-Baptiste Denis. 2014. Bayesian Networks: With Examples
in R. CRC press.

[9] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. (Aug. 2017). arXiv:
cs.LG/1708.07747.

280

https://doi.org/10.1007/978-3-030-16692-2_32
https://doi.org/10.1007/978-3-030-16692-2_32
https://doi.org/10.5555/2969033.2969125
http://jmlr.org/papers/v13/gretton12a.html
https://doi.org/10.1109/TEVC.2008.925798
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163

	Abstract
	1 Introduction
	2 Background
	3 Search initialization
	4 Search guide
	5 Conclusions
	Acknowledgments
	References

