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ABSTRACT
Vital to primary visual processing, retinal circuitry shows many
similar structures across a very broad array of species, both verte-
brate and non-vertebrate, especially functional components such
as lateral inhibition. This surprisingly conservative pattern raises
a question of how evolution leads to it, and whether there is any
alternative that can also prompt helpful preprocessing. Here we
design a method using genetic algorithm that, with many degrees
of freedom, leads to architectures whose functions are similar to
biological retina, as well as effective alternatives that are different
in structures and functions. We compare this model to natural evo-
lution and discuss how our framework can inspire neuroevolution.
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1 INTRODUCTION
Retina serves as the first visual processing unit in animals’ visual
systems. The neural circuitry is very similar across species [5] with
respect to topology, such as lateral inhibition, in which a group
of cells suppresses the activities of their surrounding cells so as
to enhance sharpness and modify color discrepancy [3, 6, 7]. Is
this similarity due to a general optimization principle? Though
cannot answer the question directly, we use genetic algorithm
to simulate the evolutionary process and analyze the resulting
structures with high fitness in order to gain a better understanding
of the evolutionary process.
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Figure 1: A diagram of retina process. Only 2 types of in-
terneurons are shown to save space.

2 METHOD
2.1 Retina Model
In this work we assume radial symmetry in retina and thus use only
1-D recurrent neural networks. Photoreceptors (PRs, input layer)
and retina ganglion cells (RGCs, output layer) have the same and
fixed amount of neurons for all networks at any generation, since
the algorithm would otherwise maximize the numbers of PRs and
RGCs to enhance visual acuity, and "ignore" effective processing.

During simulation, the PRs receive constant, slightly perturbed
edge inputs, while modulated by the recurrent inputs from interneu-
rons (Fig. 1). The only spiking neurons in the retina, RGCs also
receive input from the interneurons. The exponential integration-
and-fire model is used to simulate the spiking activities of RGCs.
The neuronal dynamics, in general, can be described by:

𝜏 ( 𝑗)
d
d𝑡
𝑉 ( 𝑗) (𝑡) = −(𝑉 ( 𝑗) −𝑉𝑟𝑒𝑠𝑡 ) +

∑
𝑖

𝑉 (𝑖)𝑇𝑊𝑖 𝑗 (1)

where𝑉 ( 𝑗) is the vector of membrane potentials of type1 𝑗 , limited
within [0, 1] for physiological plausibility. Each type receives from
some other types 𝑖 . 𝜏 , time constant;𝑉𝑟𝑒𝑠𝑡 , the resting potential. The
mean firing rates of RGCs are the input to the trainable perceptron
that perform regression on the edge locations (Fig. 1).

2.2 Genome
We use genetic algorithm as an imitation of natural evolution. The
number of interneuron types in each retina is initialized to 0. In the
following generations, the individuals may gain or lose interneuron
1"Type" is the same as "layer". However, to downplay the notion of spatial order, since
forward and backward skip connections do happen, the term "layer" is circumvented.
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types through mutation and crossover. Each neuronal type, 𝑖 , except
for the PR and RGC, has variable number of cells. Moreover, each
type possesses a time constant 𝜏 , shape parameters, and binary
encoding of pre- and postsynaptic features, all of which are mutable.
Specifically, the shape parameters determine the projection and
reception ranges, and the overlap between the projection range
of the presynaptic type and reception range of the postsynaptic
type determines the weight magnitudes. In our simulation, we take
the advantage of Beta distribution PDF to control the projection
and reception range. The polarity of weights from type 𝑖 to 𝑗 is the
product of the presynaptic feature encoding of 𝑖 and postsynaptic
feature encoding of 𝑗 . For simplicity, encoding is either +1 or −1.
Finally, all types but RGC have a variable set 𝐶 containing the
indices of the postsynaptic types that this type projects to.

2.3 Selection, Crossover, and Mutation
We use the binary tournament selection algorithm [4]. For each
of the parents, 2 rivals are drawn from the population without
replacement. The rival with better fitness evaluation has higher
chance to be the parent. During crossover, the values associated
with one type of neurons are passed together to the offspring and
do not mix with those of other types. Each mutation phase after
crossover contains (1) changes in the values of the variables and (2)
deletion and duplication of a neuron type.

2.4 Fitness Evaluation
We postulate that the major selective pressure is based on retina
performance and not directly on architectural features. It is thus
evaluated with a perceptron representing early simple cognitive
processing. The evaluation measures how well a retina can empha-
size edges, while not restricting a retina’s topology or dynamics;
comparably, in nature, visual animals need to infer the locations of
objects’ boundaries.

At each generation, every retina receives a the same set of per-
turbed 1-D edges with different edge locations. Each retina is asso-
ciated with a perceptron initialized at every generation and trained
to map from the RGC firing rates to edge locations (Fig. 1). The
sample size, learning rate, and training epochs are set such that
they are insufficient for the perceptron to be well-trained, so the
retina should preprocess the raw inputs to some degree that makes
the training easier. Each retina’s output on the fixed testing set is
used to test its trained perceptron. The 𝑅2 score of a perceptron
determines the main component of the associated retina’s fitness.

We also penalize, with small weight, complexity that contributes
trivially to the effectiveness, for the number of synapses affects
energy consumption and light absorbance [2]. Structures where
interneurons are connected to more types will have smaller gains:

𝑔 =

{
0 𝐶 (0) = ∅ or 𝑛𝑡 = 0∑𝑛𝑡

𝑖=1
1−|length(𝐶 (𝑖 ) )−1 |

𝑛𝑡
otherwise

(2)

Finally, a retina’s fitness equals 0.85𝑅2 + 0.15𝑔 where the weights
are set according to preliminary experiments.

3 RESULTS AND DISCUSSION
Multiple trials of 400 generations have been run. In each generation,
10 of 150 individuals survive. Across all trials, the survival gain,
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Figure 2: An example of the fitness scores (different colors)
of survivors over generations.

defined as the difference between the minima of the survivors at the
first and last generations, is significantly greater than 0 (left-tailed p
test, 𝑝 = 9.3×10−44 < 10−3). This together with the non-decreasing
fitness scores demonstrates the efficacy of our algorithmic design
that it optimizes retina topology and dynamics. The simulated evo-
lution does not happen in every generation, but manifests several
breakthrough points, between which the intervals vary (Fig. 2),
agreeing with the Darwinian theory punctuated equilibrium [1].

Case studies of the connection matrices and tuning curves of the
survivors at the final generations from different trials report that all
survivors’ RGCs have well-separated spatial tuning curves. Some
also contain the center-surround receptive field resembling that of
biological retina. This is reasonable because well-separated spatial
tuning makes RGC firing more informative, while center-surround
tuning, a subset of it, may further boost the informativeness.

Nature contains more variables and non-survival-driven evolu-
tion. Unlike our simulation, in nature a new species may not always
have higher "fitness scores" than their antecedents; factors such as
genetic drift may give rise to a more complex, non-monotonic rela-
tion between changes and survival. These factors may explain the
non-existance of spatial tunings not fallen into the center-surround
class, but are well-separated and have high fitness in our simulation.

Finally, our framework may inspire neuroevolution. The topol-
ogy and dynamics of a neural network can be optimized with evo-
lutionary algorithms, by keeping finding better networks that ease
the computation and enhance the performance of another model,
instead of by designing loss functions directly. This approach may
free the optimization from human bias and empiricism.
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