
A Coevolutionary Approach to Deep Multi-Agent
Reinforcement Learning

Daan Klijn
Vrije Universiteit Amsterdam

d.s.klijn@student.vu.nl

A.E. Eiben
Vrije Universiteit Amsterdam

a.e.eiben@vu.nl

ABSTRACT
Traditionally, Deep Artificial Neural Networks (DNN’s) are trained
through gradient descent. Recent research shows that Deep Neu-
roevolution (DNE) is also capable of evolvingmulti-million-parameter
DNN’s, which proved to be particularly useful in the field of Rein-
forcement Learning (RL). This is mainly due to its excellent scal-
ability and simplicity compared to the traditional MDP-based RL
methods. So far, DNE has only been applied to complex single-
agent problems. As evolutionary methods are a natural choice for
multi-agent problems, the question arises whether DNE can also be
applied in a complex multi-agent setting. In this paper, we describe
and validate a new approach based on coevolution. To validate
our approach, we benchmark two Deep coevolutionary Algorithms
on a range of multi-agent Atari games and compare our results
against the results of Ape-X DQN. Our results show that these Deep
coevolutionary algorithms (1) can be successfully trained to play
various games, (2) outperform Ape-X DQN in some of them, and
therefore (3) show that coevolution can be a viable approach to
solving complex multi-agent decision-making problems.

CCS CONCEPTS
•Computer systems organization→Neural Networks; •The-
ory of computation→ Evolutionary algorithms.

KEYWORDS
Deep Neuroevolution, Coevolution, Evolution Strategies, Genetic
Algorithm, Multi-agent Reinforcement Learning
ACM Reference Format:
Daan Klijn and A.E. Eiben. 2021. A Coevolutionary Approach to Deep
Multi-Agent Reinforcement Learning. In Proceedings of the Genetic and
Evolutionary Computation Conference 2021 (GECCO ’21). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459576

1 INTRODUCTION
Recent developments have caused Evolutionary Reinforcement
Learning to gain momentum. Salimans et al. [4] showed that the
combination of Evolution Strategies (ES) and Neuroevolution is a
perfect alternative to the MDP-based approaches that are typically
used in RL. Their ES was capable of evolving DNN’s that achieved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3459576

state-of-the-art performance on some of the benchmarks while
maintaining near-linear scalability. It also proved to be invariant
to action frequency and is resistant to delayed rewards and long
horizons. Such et al. [5] took the ES as an inspiration and showed
that a similar thing is possible using a simple Genetic Algorithm
(GA). While ES relies on approximations of the gradients, GA’s
are truly gradient-free. It is therefore remarkable to see that this
approach is able to train networks with millions of parameters.
These advances demonstrated the far-reaching capabilities of DNE
and have laid the foundations for new breakthroughs in RL.

While most RL problems consist of an agent solely interact-
ing with an environment, a subfield called Multi-Agent Reinforce-
ment Learning (MARL) encompasses the problems where multiple
agents are present. The goal of MARL is to develop agents that
can successfully cooperate or compete with other agents. Similarly,
Evolutionary Computation has a class of algorithms that is called
Coevolutionary Algorithms. Compared to the single-agent flavor
of these problems, multi-agent problems tend to be more challeng-
ing as they include another uncertainty, namely, the other agents.
Due to this, the measured performance of an agent is subjective,
as it depends on the other agents’ performance. While MARL has
been proven to be an effective solution for complex Multi-Agent
problems, coevolution has never been scaled to high-complexity
problems.

The main goal of this paper is to investigate whether the combi-
nation of DNE and Coevolution could open up a new door in the
field of MARL. To this end, we develop two Deep coevolutionary
algorithms, one based on the ES from Salimans et al. [4] and an-
other based on the GA from Such et al. [5]. To assess our approach’s
viability, we train these algorithms on eight different games from
the PettingZoo benchmark [7] and compare the evolved agents to
the ones delivered by Ape-X DQN.

2 METHODOLOGY
In this work, we combine DNE with a coevolutionary approach.
We apply this approach to two successful DNE algorithms; the ES
from Salimans et al. [4] and the GA from Such et al. [5]. To prove
that even a simple coevolutionary setup works in combination
with DNE, we only transform the original two algorithms to their
coevolutionary counterparts and limit the number of features we
add to them. Below we shortly describe the specifications of the
forged coevolutionary algorithms.

2.1 Coevolutionary Evolution Strategies
Salimans et al. [4] proposed an ES that is capable of evolving DNN’s
with millions of parameters and showed that it could solve various
complex Reinforcement Learning problems. The ES proposed here
is more scalable a variant of Natural Evolution Strategies [8]. We

283

https://doi.org/10.1145/3449726.3459576
https://doi.org/10.1145/3449726.3459576

GECCO ’21, July 10–14, 2021, Lille, France Daan Klijn and A.E. Eiben

altered this ES in such a way that it can be applied to multi-agent
problems. While the original ES evaluates each of the mutations
𝜃 + 𝜖 using the fitness function, we now need to consider that we
also need to provide individuals to evaluate against. We have tried
various approaches and discovered that evaluating each individual
against the 𝑘 parents of the previous populations (i.e., 𝜃𝑡 to 𝜃𝑡−𝑘)
resulted in the most stable convergence. Sometimes, using only the
previous parent was enough. The 𝑘 fitnesses are then averaged for
each individual and used in combination with the update rule of
the original ES.

2.2 Coevolutionary Genetic Algorithm
Based on the work of Salimans et al. [4], Such et al. [5] showed that a
GA is also capable of evolving similar DNN’s. The GA they proposed
consists of a single population, only uses the mutation operator
and performs fitness-based truncation. Our coevolutionary variant
is based on this GA and will stay as close to the original design as
possible. Again, we replace the original fitness evaluation with an
evaluator-based fitness evaluation. For the GA, we will use a Hall of
Fame (HoF) that stores the best individuals of previous generations.
To evaluate individuals, we select the last 𝑘 elites from the HoF.
This makes sure that the fitness approximation is reliable and that
historical traits are not lost. Note that for both the Coevolutionary
ES (CoES) and the Coevolutionary GA (CoGA), 𝑘 should not be too
high as that will increase the number of evaluations per individual,
which can increase runtime if the fitness function is expensive to
compute.

3 EXPERIMENTS
Numerous RL works benchmark algorithms using the Atari games,
as they require the agent to perform a range of complex tasks that
can be compared to the difficulties of some real-life tasks. While
Salimans et al. [4] and Such et al. [5] use single-player Atari games
to benchmark their algorithms, we will use a diverse set of multi-
player Atari games from the PettingZoo benchmark [7]. Below a
short overview is given of our experimental setup. Next to that, the
code that was used for these experiments can be found on GitHub 1

• Preprocessing - We process the game frames as proposed
byMnih et al. [2]. Besides that, we also add a form of agent in-
dication [1] as it is essential for each agent to know whether
it is player one or player two.

• Network architecture - We use a DNN that is similar to
the large DQN that was used by Mnih et al. [2]. Furthermore,
we use virtual batch normalization (VBN) [3] to ensure that
the evolved agents are diverse enough. Without VBN, many
evolved agents were not diverse and always performed the
same actions, regardless of the input.

• Hyperparameters - In comparison to the original ES and
GA, we used a slightly higher noise standard deviation and a
smaller population size. We were able to get the best results
using a population size of 200 and standard deviations of
0.005 (GA) and 0.05 (ES). Furthermore, we found that using
𝑘 = 3 for the GA and 𝑘 = 1 for the ES was enough to ensure
accurate evaluations of individuals.

1https://github.com/daanklijn/neurocoevolution/

We trained both the CoES and the CoGA on eight different games,
whereas we start learning from scratch for each of the games. After
200 million frames, we evaluate the trained agents by playing 50
games against a random agent. The average performance against
the random agent of the ES, GA and Ape-X[7] can be found in
Table 1. Videos of selected gameplays of both the CoES and CoGA
are available2. Furthermore, a more comprehensive set of results
combined with a more thorough analysis can be found in the full
version of this paper. 3

.
Random Ape-X DQN CoES CoGA

Game frames - 80M 200M 200M
Training frames - 20M 50M 50M
Generations - - 500 160
Wall time (96 cores) - - 6h 6h

Basketball Pong 0.0 ~1.0 0.0 2.1
Boxing 0.0 80.0 0.7 1.0
Combat Plane 0.0 -2.0 2.5 1.8
Combat Tank 0.0 0.3 0.1 0.4
Joust 3951.0 3846.0 5362.2 4910.0
Pong 0.0 20.5 17.6 15.8
Space war 0.0 1.1 1.8 0.8
Tennis -3.6 22.5 6.9 -20.2
Table 1: Performance of Ape-X, CoES and CoGA against a
Random Policy for various games. The Ape-X results are de-
rived from [6] and are based on the last 20 evaluations.
Our results demonstrate that the coevolutionary approach can train
agents that can play most of the games to some extent while even
outperforming Ape-X DQN in several of them. We hypothesize
that this approach’s effectiveness might be due to the EA’s being
more resistant to the non-stationarity that is introduced by the
multi-agent aspect of these problems. Although this work only
explores the capabilities of simple coevolutionary algorithms on a
small range of benchmarks, we do believe that this might open up
a new door in the field of MARL.

REFERENCES
[1] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative

multi-agent control using deep reinforcement learning. In International Conference
on Autonomous Agents and Multiagent Systems. Springer, 66–83.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[3] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. (2016).

[4] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. (2017).

[5] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a com-
petitive alternative for training deep neural networks for reinforcement learning.
(2017).

[6] Justin K Terry and Benjamin Black. 2020. Multiplayer support for the arcade
learning environment. (2020).

[7] Justin K Terry, Benjamin Black, Ananth Hari, Luis Santos, Clemens Dieffendahl,
Niall L Williams, Yashas Lokesh, Caroline Horsch, and Praveen Ravi. 2020. Pet-
tingZoo: Gym for Multi-Agent Reinforcement Learning. (2020).

[8] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. 2008. Natural
evolution strategies. In 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence). IEEE, 3381–3387.

2https://youtube.com/playlist?list=PLdGO0x90WS8eCCGA1w4jOPLz9ahWSmZEw
3https://arxiv.org/pdf/2104.05610.pdf

284

https://github.com/daanklijn/neurocoevolution/
https://youtube.com/playlist?list=PLdGO0x90WS8eCCGA1w4jOPLz9ahWSmZEw
https://arxiv.org/pdf/2104.05610.pdf

	Abstract
	1 Introduction
	2 Methodology
	2.1 Coevolutionary Evolution Strategies
	2.2 Coevolutionary Genetic Algorithm

	3 Experiments
	References

