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ABSTRACT
The manual design of CNNs has become exceptionally complex due
to the more sophisticated CNN architectures. Thankfully, more and
more researchers endeavour to mitigate the difficulty of manual
design by designing automated process, but the computational cost
of the automatic methods is extremely high due to the huge search
space. In this paper, an evolutionary deep learning framework based
on transfer learning is proposed to reduce the computational cost,
while maintaining the classification at a competitive level. The
main idea is to evolve a CNN block from smaller datasets, and
then increasing the capacities of the evolved block to handle larger
datasets. The proposed method obtains good CNNs with less than
40 GPU-hours. It also achieves a promising error rate of 3.46% on
the CIFAR-10 dataset.
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1 INTRODUCTION
The CNN architectures have evolved significantly in recent years
by increasing the depth and introducing more complex topology.
From VGGNet [4] to DenseNet [1], the depth has grown from tens
of layers to hundreds of layers. Also, the topology is from the
feed-forward fashion to including complex shortcut connections.
Therefore, it has become more complex to manually design CNNs.
Besides, the more complex CNNs require more time to train, so
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the trials during the manual design process are taking a much
longer time. To reduce human efforts for designing CNNs, both
reinforcement learning (RL) and evolutionary computation (EC)
methods are leveraged to automatically design CNN architectures.
An outstanding RL method is NASNet [6], which has achieved the
state-of-the-art classification accuracy, but it takes 2,000 GPU-days
to obtain the CNN architecture. On the other hand, AmobaNet
[2] has set the state-of-the-art classification accuracy for the first
time by using EC methods. However, the computation cost is still
high, which is 3150 GPU-days. In this paper, a transfer learning
based evolutionary deep learning (EDL) framework is proposed to
mitigate the issue of the huge computational cost. The proposed
EDL framework learns CNN blocks from smaller datasets, which
are then transferred to larger datasets.

2 THE PROPOSED EEDL FRAMEWORK

Figure 1: The proposed efficient EDL framework.

The proposed overall efficient EDL (EEDL) framework is com-
posed of two parts/stages as shown in Fig. 1, which are the source
domain learning and the target domain learning based on transfer
learning. A CNN block is evolved from the first stage of the source
domain learning, and a more complex CNN is learned by stacking
the CNN block from the second stage of the target domain learn-
ing as the final CNN architecture. Another benefit of introducing
the two-stage learning with multi-source domain datasets is that
a generalised CNN block is expected to be evolved only once. For
any target domain dataset, the evolved CNN block can be used for
the second stage of the target domain learning, so the first stage
does not have to be repeated, which significantly saves the com-
putational cost. To further accelerate the evolutionary process, the
surrogate model proposed in [5] is adopted.
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3 EXPERIMENTAL DESIGN
3.1 Benchmark Datasets
Thewidely-used benchmark dataset for image classification—CIFAR-
10 is used to evaluate the proposed method, which is the target
domain. Based on the availability and similarity of smaller datasets
to the target domains, the MNIST and Fashion-MNIST are chosen
as the source domain datasets for learning the knowledge to solve
image classification problems.

3.2 Parameter Settings

Table 1: Parameter settings

Parameter Value

inertia weight𝑤 0.7298

acceleration coefficient 𝑐1 1.49618

acceleration coefficient 𝑐2 1.49618

velocity range [-12.5, 12.5]

population size 30

number of generations 50

The parameters of the experiments are depicted in Table 1. The
PSO parameters are set based on the community convention [3].10
runs are performed to achieve the experimental results for statistical
tests.

4 RESULT ANALYSIS
4.1 Performance Comparisons on CIFAR-10
Table 2 lists the performance on the CIFAR-10 dataset including the
error rate, the number of parameters and the computational cost of
searching the network architectures (including both the source and
target domain learning). The bold values mean the corresponding
competitors outperform the proposed method. While the others
indicate the proposed method excels. For the proposed method, the
results from 10 runs are presented at the bottom of the table with
the best value and the mean value ± the standard deviation. In regard
to the error rate, i.e. the classification accuracy, two out of the seven
peer competitors achieve better performance than the proposed
method. However, the CNN models from three competitors with
smaller error rates substantially outsize the models obtained by
the proposed method. In terms of the number of parameters, the
proposed method ranks the 3rd among the seven peer competitors
and itself. Again, the two competitors with smaller model sizes
significantly sacrifice the classification comparing to the proposed
method. Looking at the computational cost, the proposed method
takes only 40 GPU-hours to accomplish the neural architecture
search task, which is faster than all of the 7 peer competitors. Over-
all, the proposed has demonstrated superior performance against

the 7 peer competitors on the CIFAR-10 dataset by considering the
classification accuracy, the model size and the computational cost.
Table 2: Performance comparison with peer competitors on
CIFAR-10

Method CIFAR-10
(Error rate%)

Number of
Parameters

Computational
Cost

ResNet-110 6.43 1.7M –

NASNet-A (7
@ 2304)

2.97 27.6M 2,000
GPU-days

NASH
(ensemble
across runs)

4.40 88M 4 GPU-days

AmoebaNet-B
(6,128)

2.98 34.9M 3150
GPU-days

Hier. repr-n,
evolution

(7000 samples)

3.75 – 300 GPU-days

HGAPSO 4.37 – 7 GPU-days

CGP-
CNN(ResSet)

5.98 1.68M 29.8 GPU-days

EEDL (Best
classification
accuracy)

3.46 2.29M < 40
GPU-hours

EEDL (10
runs)

3.53±0.0092 2.41M±0.04M < 40
GPU-hours

5 CONCLUSIONS
The overall goal of proposing a new evolutionary deep learning
framework has been successfully achieved. From the experimental
results, the proposed method has achieved very competitive perfor-
mance in terms of the classification accuracy, the model size of the
evolved CNNs, and the computational cost.
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