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ABSTRACT
We evolved weights in a recurrent neural network (RNN) to repli-
cate the behavior and neural activity observed in rats during a
spatial and working memory task. The rat was simulated using a
robot simulator to navigate a virtual maze. After evolving weights
from sensory inputs to the RNN, within the RNN, and from the
RNN to the robot’s motors, the robot successfully navigated the
space to reach four reward arms with minimal repeats before the
timeout. Our current findings suggest that it is the RNN dynamics
that are key to performance, and that performance is not dependent
on any one sensory type, which suggests that neurons in the RNN
are performing mixed selectivity and conjunctive coding. The RNN
activity resembles spatial information and trajectory-dependent
coding observed in the hippocampus. The evolved RNN exhibits
navigation skills, spatial memory, and working memory.
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1 INTRODUCTION
We used the Webots robot simulation environment [1] to investi-
gate cognitive map behavior observed in rats during a spatial and
working memory task, known as the triple T-maze [2]. In this task,
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Figure 1: The maze visualization in Webots.

the rat or the robot must take one of four paths to receive a reward.
If it repeats a path, there is no additional reward. It should eventu-
ally learn to quickly reach each of the four rewards with minimal
repeats. This requires knowledge of where it is now, where it has
been, and where it should go next.

Our results show that the evolved RNN was capable of guiding
the robot through the triple-T maze with similar behavior to that
observed in the rat. Our analysis of the RNN activity indicates that
the behavior was not dependent on any one sensory projection type
but rather relied on the evolved RNN dynamics. Furthermore, the
population of neurons in the RNNwere not only sufficient to predict
the robot’s current location but also carried a predictive code of
future intended reward paths. The present method for evolving
neural networks for robot controllers may also be applicable to
other memory tasks. More details describing the model and results
are available in Zou et al. [4] .

2 METHODS
Figure 1 shows the maze simulation environment. The red circles,
which denote the location of the rewards, were not observable by
the robot and are only included in the figure for illustrative purposes.
The agent was an e-puck robot which has an accelerometer, a front
camera, 8-direction proximity sensors, several LEDs, and 2 wheel
motors. The e-puck needed to learn by neuroevolution to find four
rewards (and return home after each reward visit) with minimal
repeats before the timeout.
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Figure 2: Neural network architecture for controlling the e-
puck robot in Webots.

Figure 3: Evolved performance for the best-so-far agent.

Table 1: Ablation performance (mean ± 95% CI).

Fitness Elapsed Steps

No Ablation 3.65±0.14 4644±169
Proximity Sensors 3.29±0.16 4774±128
Linear accelerometer 3.49±0.16 4640±131
Grayscale Vision 3.21±0.17 4785±67
Input Weights 2.93±0.085 4981±16∗
Recurrent Weights 2.95±0.11∗ 4946±43∗
Output Weights 2.84±0.10∗ 4978±22∗

The neural network architecture received inputs from the e-
puck’s 8-direction proximity sensors, 3D linear accelerometer val-
ues, and normalized pixel values from its 10 × 8 grayscale camera
frame (Figure 2). These 91 input neurons were fully connected to 50
recurrent neurons, which were fully connected with one another.
This recurrent layer was then fully connected with the two neurons
in the output layer that controlled the rotational speed of the two
wheel motors separately.

3 RESULTS
Figure 3 shows the best-so-far evolutionary performance and the
number of elapsed steps for five runs. Each run lasted 200 gener-
ations, with 50 genotypes per generation. In each generation, the
fitness value of a genotype was averaged over 5 trials.

We carried out a set of ablation simulations to test whether
performance was dependent on any sensory projection type or
just evolved weights in the neural network (see Table 1). We either
randomly shuffled different sensor input values or shuffled the RNN
input (𝑊𝑥𝑟 ,) recurrent (𝑊𝑟𝑟 ), or output (𝑊𝑟𝑦 ) weights. Interestingly,
none of the sensory projection ablations had a significant impact
on performance. However, ablating the evolved weights (input,

Table 2: Prospective path prediction for segments.

Seg1 Seg3-1 Seg3-2 Seg8-1 Seg8-2

correctness 41% 77% 69% 47% 55%
bins off 0.9 0.2 0.2 2 2

recurrent, and output) all had a significant impact. This suggests
that it was the RNN dynamics that were key to performance.

Borrowing techniques from neuroscience [2, 3], we further tested
whether the RNN contained spatial information with a population
code. The location prediction for each bin in all 25 test trials shows
that the RNN activity was sufficient to predict the robot’s position in
the maze. The robot’s position was predicted with perfect accuracy
on 58% of the bins, and the predicted error had an average distance
of 3.1 bins (i.e., 0.25 meters).

Solving the triple-T maze task requires the agent to remember
which path it has already taken and which path to take next. Table
2 shows how well the RNN activity could predict the robot’s path.
The probability of correct path prediction on Segment 1, where the
robot could take one of 4 paths, was well above chance level (t-test;
p < 0.0001). The correctness on Segment 3-1 or 3-2, where the robot
could take one of two paths, was also well above chance level (t-test;
p < 0.0001 for Segment 3-1 and p < 0.005 for Segment 3-2). This
suggests that the RNN carried a prospective code of where the robot
intended to go next. The probabilities of correct path prediction on
Segments 8-1 and 8-2 were not significant. These results suggest
that the evolved RNN had prospective information of whether the
robot intended to turn left or right, but we could not yet observe
retrospective information of where it had already visited.

4 CONCLUSIONS
We introduced a recurrent neural network (RNN) model that linked
the robot sensor values to its motor speed output. The evolved
network architecture achieved the goal of successfully performing a
cognitive task that required spatial and working memory. The RNN
population carried spatial information sufficient to localize robot
in the triple T-maze. It also carried predictive information of which
path robot intended on taking. Robot behavior was dependent on
RNN dynamics rather than a sensor-to-motor mapping. Ourmethod
shows that complex robot behavior, similar to which being observed
in animal models, can be evolved and realized in RNNs.
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