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ABSTRACT 
is paper addresses the identification of optimal “sensing spots”, 
within a network for monitoring the spread of “effects” triggered 
by “events”. Many real-world problems fit into this general 
framework: we focused on the early detection of contamination 
events in Water Distribution Networks (WDN). We model the 
sensor placement as a bi-objective optimization problem, aiming 
at minimizing the mean and standard deviation of detection time 
over a set of different simulated contamination events and solved 
using NSGA-II. A problem-specific data structure is proposed 
enabling a deeper analysis of empirical convergence of the 
population. 
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1 Introduction 
A WDN is modelled as a graph 𝐺 = (𝑉, 𝑃) where vertices in 𝑉 

are junctions, tanks, reservoirs or consumption points, and edges 
in 𝑃 are pipes, pumps, and valves. We assume a set of possible 
locations for placing sensors, that is 𝐿 ⊆ 𝑉 . Thus, a Sensor 
Placement (SP) is a subset of sensor locations, with the subset’s 
size less or equal to 𝑝 depending on the available budget. An SP is 

represented by a binary vector 𝑠 = {0,1}|௅| with 𝑠௜ = 1 if a sensor 
is placed at node 𝑖, 𝑠௜ = 0 otherwise, and ∑ 𝑠௜ = 𝑝. Let 𝐴 denote 
the set of contamination events. Then, a probability distribution 
is placed over possible contamination events. In the computations 
we assume – as usual in the literature – a uniform distribution, 
but other discrete distributions are also possible. The objective 
𝑓ଵ(𝑠)  is computed as the average of detection time 𝑓ଵ(𝑠) =
ଵ

|஺|
∑ 𝑡̂௔(𝑠)௔∈஺ , with 𝑡̂௔  the minimum time step at which 

concentration, at one of the sensors in 𝑠, reaches or exceeds a 
given threshold 𝜏 for the event 𝑎 ∈ 𝐴 ⊆ 𝑉. The second objective 
is the standard deviation of the detection time 𝑓ଶ(𝑠) =

ට
ଵ

|஺|
∑ ൫𝑡̂௔(𝑠) − 𝑓ଵ(𝑠)൯

ଶ
௔∈஺ . Both 𝑓ଵ(𝑠)  and 𝑓ଶ(𝑠) are minimized 

and for computing them we have used the Python package Water 
Network Tool for Resilience (WNTR) [1]. 

2 Single Sensor and Sensor Placement Matrices 

Let 𝑆ℓ denotes the so-called sensor matrix, with ℓ = 1, … , |𝐿| 
an index for the location where the sensor is deployed at. Each 
entry 𝑠௧௔

ℓ  is the concentration of the contaminant for the event 
𝑎 ∈ 𝐴 at the simulation step 𝑡 = 0, . . , 𝐾, with 𝑇୫ୟ୶ = 𝐾∆𝑡. In our 
study 𝑇௠௔௫ = 24, ∆𝑡 = 1 and 𝐾 = 24. Without loss of generality, 
we assume that the contaminant is injected at the begin of the 
simulation. A sensor placement matrix, 𝐻(௦) ∈ ℝ(௄ାଵ)×|஺| is also 
defined, where every entry ℎ௧௔  is the maximum concentration 
over those detected by the sensors in 𝑠, for the event 𝑎 and at time 
step 𝑡 . Suppose to have a SP 𝑠  consisting of 𝑝  sensors with 

associated sensor matrices 𝑆ଵ, … , 𝑆௣ , then ℎ௧௔ = max
௝ୀଵ,…,௣

𝑠௧௔
௝

 ∀𝑎 ∈

𝐴. Figure 1 shows the SP matrix of a SP consisting of 2 sensors. 
There is a relation between 𝑠 and 𝐻(௦): the columns of 𝐻(௦) 

having maximum concentration at row 𝑡 = 0 (i.e., injection time) 
are those associated to events with injection occurring at the 
deployment locations of the sensors in 𝑠.  𝐻(௦) is the basic data 
structure on which detection times are computed: 𝑡̂௔  is the 
minimum time step at which concentration reaches or exceeds a 
given threshold 𝜏 for the scenario 𝑎, that is 𝑡̂௔ = min

௧ୀଵ,…,௄
{ℎ௧௔ ≥ 𝜏}. 
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Figure 1: An example of sensor placement matrix 

3 Search space and information space 
The search space consists of all the possible SPs, that is 𝑠 ∈

𝛺 ⊆ {0,1}|௅|, satisfying the constraint ∑ 𝑠௜ = 𝑝. The computation 
of the two objectives 𝑓ଵ(𝑠) and 𝑓ଶ(𝑠) requires the generation of 
the associated sensor placement matrix 𝐻(௦) . For the sake of 
simplicity, let us denote with 𝜋 this computational process: 

𝑠
గ
→ 𝐻(௦) ⟹ 𝜙൫𝐻(௦)൯ = ൫𝑓ଵ(𝑠), 𝑓ଶ(𝑠)൯ 

We use 𝜙൫𝐻(௦)൯  to stress the fact that the computation is 

performed over 𝐻(௦) – within the “information space” – and then 
it generates the observation of the two objectives ൫𝑓ଵ(𝑠), 𝑓ଶ(𝑠)൯. 
A graphical representation of the mapping is given in Figure 2.  

 

Figure 2: Search space, information space and objectives 

Two SPs that are distant in 𝛺 might correspond to a similar 
sensor placement matrix, leading to very close objectives values. 
Suppose to have 𝑠, 𝑠ᇱ: 𝑑(𝑥, 𝑥ᇱ) = 𝑑௠௔௫  then you could anyway 
observe ൫𝑓ଵ(𝑠), 𝑓ଶ(𝑠)൯ ≅ ൫𝑓ଵ(𝑠′), 𝑓ଶ(𝑠′)൯  if 𝛿(𝐻, 𝐻′) ≅ 0 , with 

𝐻 = 𝐻(௦) , 𝐻ᇱ = 𝐻(௦ᇱ)  and 𝛿(. , . )  a suitable distance between 
matrices (in this paper 𝑑(𝑥, 𝑥ᇱ)  is the Hamming distance and 
𝛿(𝐻, 𝐻′) is the Frobenius Norm of 𝐻 − 𝐻′). This means that the 
landscape of the problem may have a huge number of global (not 
only local) optima, also significantly distant among them in 𝛺 . 
Thus, the convergence in terms of objectives does not translate 
into a convergence in terms of the homogeneity of the population. 
We considered the Kappa criterion [2], based on the quotient of 
the sum of all normalized distances between all individuals: 
𝑘௠௔௫ = (𝜇ଶ − 𝜇) 2⁄ , with 𝜇  the population size. Since the 
optimization framework used in this paper – i.e., Pymoo (Python 
multi-objective optimization) [3] and specifically the NSGA-II 
algorithm [4] – allows to customize both operators and 
termination criteria, we extended the performance indicators with 
two Kappa measures: one computed in the search space (Kappa-
Hamming) and one in the information space (Kappa-Frobenius). 

4 Computational results 
Neptun is a small WDN in Timisoara, Romania [5]. Its 

associated graph consists of 333 nodes and 339 edges (not reported 
here for space limitations). We set |𝐿| = |𝐴| = 332 (i.e., we have 
excluded the reservoir) and assumed 𝑝 = 25  as the maximum 
number of sensors in a SP. We have analysed: (i) Hypervolume, 
(ii) Number of individuals belonging to the approximate Pareto 
Set, (iii) Kappa-Hamming and (iv) Kappa-Frobenius. The NSGA-II 
settings: population size equal to 40, 500 generations and 30 
independent runs (all the other NSGA-II’s setting were set to the 
default values). Figure 3 (left) shows both the hypervolume of the 
approximated Pareto frontier and the number of individuals in the 
population belonging to the approximated Pareto set, at each 
generation. Values are given as mean and standard deviation on 
30 independent runs. Analogously, Figure 3 (right) reports the 
Kappa-Hamming and Kappa-Frobenius indicators over 
generations. While the population becomes more homogeneous 
within the search space (i.e., Kappa-Hamming decreases along 
generations), this is not true in the information space. Moreover, 
Kappa-Frobenius is larger than Kappa-Hamming – we want to 
remark that Kappa is a normalized indicator ranging in [0,1], 
therefore the two indicators can be compared, even if the base 
distances vary in two different ranges. 

 

Figure 3: Left: hypervolume (blue) and number of Pareto 
individuals (red). Right: Kappa indicators at each 
generation 

As main result, the comparison between the two Kappa 
indicators is a reliable performance metric of the optimization 
process and allows to also detect a lack of convergence in the 
information space. The proposed approach is applicable to other 
problems sharing a network structure with spatiotemporal 
dynamics data, such as fake news detection is social networks [6]. 
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