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ABSTRACT
We repurposed an adversarial evolutionary algorithm, Gremlin,
from finding driving scenarios where a model of an autonomous
vehicle drove poorly to troubleshooting driving quality evaluation
criteria. We evaluated the driving performance of a “perfect driver”
robot in a virtual town environment using the same fitness criteria
intended for a deep learner (DL) trained driver. We found that the
fitness evaluation criteria poorly handled turns, and used Grem-
lin to iteratively improve that criteria. We were confident that the
same criteria could then be applied to the DL-based models as orig-
inally intended, and that this approach could be used as a general
means of troubleshooting autonomous vehicle driving criteria.
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1 MOTIVATION
Sound driving evaluation criteria is paramount for training an ef-
fectiveAutonomousVehicle (AV)model. If the criteria is too simple,
then it is difficult to train a correspondingly high qualitymodel. For
example, some criteria focus mainly on the total distance driven
by an AV without collision or intervention, which lacks differenti-
ation between factors such as weaving, staying within lanes, hav-
ing abrupt accelerations, or severe braking [1, 3, 5]. Moreover, as
the number of driving criteria increases, the more challenging it is
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to tune the criteria to achieve desired driving behavior. This com-
plexity creates a need for a tool to assist in designing and tuning
the parameters of a given driving quality metric.

2 METHODOLOGY
We created such a tool by applying an adversarial evolutionary al-
gorithm (EA), Gremlin, to evaluate specific driving scenarios using
a “perfect driver”. The expectation is that for a given fitness crite-
ria a “perfect driver” would yield consistently high score values
regardless the driving scenario. Evaluation scores that had high
variance would signal a potential problem, and an analysis of the
worst performing scenarios could yield clues as to how to improve
the evaluation criteria. Gremlin could then be iteratively applied to
gradually improve the fitness evaluation criteria until the criteria
yielded consistently desirable results.

We tested this approach by representing scenarios as 37m
stretches of road for the CARLA AV simulation framework’s
“Town01” map that used one of 14 preset times of day and weather
[2] — alternatively these segments could be described as a 25m non-
overlapping stretch of road with 6m that overlapped with the seg-
ments on either end, thus ensured that there was comprehensive
coverage of available route features. There were a total of 64 such
overlapping segments for Town01. What scenarios were selected
and how they were scored was dictated by the EA, Gremlin, where
each individual represented a single scenario. Each scenario was
statically bound to one of those 14 presets, such as “Noon, Sunny”
or “Hard Rain, Sunset” [2].

Gremlin would evaluate a scenario, or individual, by placing
a virtual car driven by a CARLA “roaming agent” on a segment
dictated by the individual’s genome, assign the time of day and
weather associated with that segment, and drive that segment
yielding a score at the end of the run. It would repeat this trial
three times and assign the average of the fitness scores as the over-
all final fitness. The “roaming agent” was a robot driver provided
by the CARLA framework that would perfectly drive a virtual AV
along a preset collection of waypoints.

Gremlin was implemented as an asynchronous steady-state evo-
lutionary algorithm (ASEA) to ensure minimal idle time of associ-
atedHPC resources [4].That is, a population of evaluated scenarios
was continually updated as new offspring that represented scenar-
ios had their fitnesses computed. A single, new offspring was then
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Figure 1: Town01map of scenarios for both evaluation crite-
ria. This shows a close-up of the Town01 test route that was sub-
divided into 64 overlapping 37m segments represented by num-
bered grey strips with overlaps as slightly brighter grey. The dots
are shaded from red to blue, with red denoting the worst scenarios
for a single run and blue the best. The dot radius is the number
of times that scenario was exercised for that Gremlin run. The left
map shows the original evaluation criteria results, and the right
the newer, improved version.(Background map image courtesy of
the CARLA project.)

immediately created and assigned to that recently freed computa-
tional resource. We ran this configuration on Oak Ridge National
Laboratory (ORNL)’s Summit supercomputer with an initial popu-
lation size of 25 individuals, a population of 25, a birth budget of
500, and ran this on two Summit nodes with six CARLA servers per
node evaluating scenarios in parallel. We did two runs, one for a
set of driving evaluation criteria that turned out to be flawed, and
another for evaluation criteria that had been improved based on
analysis of the first run.

3 RESULTS
Figure 1 shows a side-by-side subset of themap of Town01with the
left map corresponding to the first run with original driving qual-
ity criteria, and the right for the improved criteria. The scenarios
are numbered from 0 to 63 in gold letters next to their respective
segments. The dots are colored from red to blue in proportion to
the relative fitnesses for that run, with red for the worst and blue
the best.

Based on the leftmap, we observed that the roaming agent lower
scores were for turns. The original evaluation criteria had only
been tested on straight sections, and so was updated to better ac-
commodate turns. The right map shows that these changes cor-
rected that problem in that the roaming agent had the expected
consistent higher scores.

4 CONCLUSIONS
Gremlin was originally intended to tune model training data by
adding more examples of scenarios where a driving model per-
formed poorly to model training data. However, we found while

developing that system that it could also be used to find and trou-
bleshoot problems with driving quality fitness criteria.

That is, a “perfect driver,” which in this case was a CARLA AV
roaming agent, did not exhibit perfect fitnesses using a particular
fitness criteria of driving behavior, which signaled a problem with
that fitness criteria; i.e., we would expect a “perfect driver” to have
“perfect scoring.” Analyzing the spatial patterns of the hot spots
of poor performance revealed that the original critieria made cer-
tain assumptions that did not hold for turns. Once the criteria was
updated to handle turns, we could use Gremlin with the “perfect
driver” once more to verify that the updated criteria corrected the
problem. This approach could be similarly applied to troubleshoot-
ing fitness criteria for other AV systems that have an available “per-
fect driver” to serve as a control.
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