
Diagnosing Autonomous Vehicle Driving Criteria with an
Adversarial Evolutionary Algorithm

Mark A. Coletti
colettima@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Shang Gao
gaos@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Spencer Paulissen
paulissensr@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Nicholas Quentin Haas
haasnq@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Robert Patton
pattonrm@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

ABSTRACT
We repurposed an adversarial evolutionary algorithm, Gremlin,
from finding driving scenarios where a model of an autonomous
vehicle drove poorly to troubleshooting driving quality evaluation
criteria. We evaluated the driving performance of a “perfect driver”
robot in a virtual town environment using the same fitness criteria
intended for a deep learner (DL) trained driver. We found that the
fitness evaluation criteria poorly handled turns, and used Grem-
lin to iteratively improve that criteria. We were confident that the
same criteria could then be applied to the DL-based models as orig-
inally intended, and that this approach could be used as a general
means of troubleshooting autonomous vehicle driving criteria.

KEYWORDS
evolutionary algorithms, autonomous vehicles, adversarial algo-
rithms

ACM Reference format:
Mark A. Coletti, Shang Gao, Spencer Paulissen, Nicholas Quentin Haas,
and Robert Patton. 2021. Diagnosing Autonomous Vehicle Driving Criteria
with an Adversarial Evolutionary Algorithm. In Proceedings of 2021 Genetic
and Evolutionary Computation Conference Companion, Lille, France, July 10–
14, 2021 (GECCO ’21 Companion), 2 pages.
https://doi.org/10.1145/3449726.3459573

1 MOTIVATION
Sound driving evaluation criteria is paramount for training an ef-
fectiveAutonomousVehicle (AV)model. If the criteria is too simple,
then it is difficult to train a correspondingly high qualitymodel. For
example, some criteria focus mainly on the total distance driven
by an AV without collision or intervention, which lacks differenti-
ation between factors such as weaving, staying within lanes, hav-
ing abrupt accelerations, or severe braking [1, 3, 5]. Moreover, as
the number of driving criteria increases, the more challenging it is

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
2021. ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459573

to tune the criteria to achieve desired driving behavior. This com-
plexity creates a need for a tool to assist in designing and tuning
the parameters of a given driving quality metric.

2 METHODOLOGY
We created such a tool by applying an adversarial evolutionary al-
gorithm (EA), Gremlin, to evaluate specific driving scenarios using
a “perfect driver”. The expectation is that for a given fitness crite-
ria a “perfect driver” would yield consistently high score values
regardless the driving scenario. Evaluation scores that had high
variance would signal a potential problem, and an analysis of the
worst performing scenarios could yield clues as to how to improve
the evaluation criteria. Gremlin could then be iteratively applied to
gradually improve the fitness evaluation criteria until the criteria
yielded consistently desirable results.

We tested this approach by representing scenarios as 37m
stretches of road for the CARLA AV simulation framework’s
“Town01” map that used one of 14 preset times of day and weather
[2] — alternatively these segments could be described as a 25m non-
overlapping stretch of road with 6m that overlapped with the seg-
ments on either end, thus ensured that there was comprehensive
coverage of available route features. There were a total of 64 such
overlapping segments for Town01. What scenarios were selected
and how they were scored was dictated by the EA, Gremlin, where
each individual represented a single scenario. Each scenario was
statically bound to one of those 14 presets, such as “Noon, Sunny”
or “Hard Rain, Sunset” [2].

Gremlin would evaluate a scenario, or individual, by placing
a virtual car driven by a CARLA “roaming agent” on a segment
dictated by the individual’s genome, assign the time of day and
weather associated with that segment, and drive that segment
yielding a score at the end of the run. It would repeat this trial
three times and assign the average of the fitness scores as the over-
all final fitness. The “roaming agent” was a robot driver provided
by the CARLA framework that would perfectly drive a virtual AV
along a preset collection of waypoints.

Gremlin was implemented as an asynchronous steady-state evo-
lutionary algorithm (ASEA) to ensure minimal idle time of associ-
atedHPC resources [4].That is, a population of evaluated scenarios
was continually updated as new offspring that represented scenar-
ios had their fitnesses computed. A single, new offspring was then

301

https://doi.org/10.1145/3449726.3459573
https://doi.org/10.1145/3449726.3459573


GECCO ’21 Companion, July 10–14, 2021, Lille, FranceMark A. Coletti, Shang Gao, Spencer Paulissen, Nicholas Quentin Haas, and Robert Patton

Figure 1: Town01map of scenarios for both evaluation crite-
ria. This shows a close-up of the Town01 test route that was sub-
divided into 64 overlapping 37m segments represented by num-
bered grey strips with overlaps as slightly brighter grey. The dots
are shaded from red to blue, with red denoting the worst scenarios
for a single run and blue the best. The dot radius is the number
of times that scenario was exercised for that Gremlin run. The left
map shows the original evaluation criteria results, and the right
the newer, improved version.(Background map image courtesy of
the CARLA project.)

immediately created and assigned to that recently freed computa-
tional resource. We ran this configuration on Oak Ridge National
Laboratory (ORNL)’s Summit supercomputer with an initial popu-
lation size of 25 individuals, a population of 25, a birth budget of
500, and ran this on two Summit nodes with six CARLA servers per
node evaluating scenarios in parallel. We did two runs, one for a
set of driving evaluation criteria that turned out to be flawed, and
another for evaluation criteria that had been improved based on
analysis of the first run.

3 RESULTS
Figure 1 shows a side-by-side subset of themap of Town01with the
left map corresponding to the first run with original driving qual-
ity criteria, and the right for the improved criteria. The scenarios
are numbered from 0 to 63 in gold letters next to their respective
segments. The dots are colored from red to blue in proportion to
the relative fitnesses for that run, with red for the worst and blue
the best.

Based on the leftmap, we observed that the roaming agent lower
scores were for turns. The original evaluation criteria had only
been tested on straight sections, and so was updated to better ac-
commodate turns. The right map shows that these changes cor-
rected that problem in that the roaming agent had the expected
consistent higher scores.

4 CONCLUSIONS
Gremlin was originally intended to tune model training data by
adding more examples of scenarios where a driving model per-
formed poorly to model training data. However, we found while

developing that system that it could also be used to find and trou-
bleshoot problems with driving quality fitness criteria.

That is, a “perfect driver,” which in this case was a CARLA AV
roaming agent, did not exhibit perfect fitnesses using a particular
fitness criteria of driving behavior, which signaled a problem with
that fitness criteria; i.e., we would expect a “perfect driver” to have
“perfect scoring.” Analyzing the spatial patterns of the hot spots
of poor performance revealed that the original critieria made cer-
tain assumptions that did not hold for turns. Once the criteria was
updated to handle turns, we could use Gremlin with the “perfect
driver” once more to verify that the updated criteria corrected the
problem. This approach could be similarly applied to troubleshoot-
ing fitness criteria for other AV systems that have an available “per-
fect driver” to serve as a control.

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-00OR22725.

Also, we would like to thank the ORNL Leadership Computing
Facility (OLCF) for their generous grant of 20,000 Summit node-
hours via Director’s Discretion grant LRN013 that made the Sum-
mit results possible. And, lastly, we would like to thank the U. S.
Department of Energy (DOE)’s Vehicle Technologies Office (VTO)
for their funding support.

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy (DOE). Funding provided by the U.S. Department of En-
ergy Office of Energy Efficiency and Renewable Energy Vehicle
Technologies Office. The views expressed in the article do not nec-
essarily represent the views of the DOE or the U.S. Government.
TheUnited States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid- up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, et al. 2016. End to end

learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).
[2] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, et al. 2017. CARLA: An Open

Urban Driving Simulator. CoRR abs/1711.03938 (2017). arXiv:1711.03938 http:
//arxiv.org/abs/1711.03938

[3] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, et al. 2018. Agile Autonomous Driv-
ing using End-to-End Deep Imitation Learning. In Robotics: Science and Systems
XIV, Vol. 14. https://academic.microsoft.com/paper/2806163172

[4] Eric O Scott and Kenneth A De Jong. 2015. Understanding simple asynchro-
nous evolutionary algorithms. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII. 85–98.

[5] Dequan Wang, Coline Devin, Qi-Zhi Cai, Fisher Yu, and Trevor Darrell. 2019.
Deep Object-Centric Policies for Autonomous Driving. In 2019 International
Conference on Robotics and Automation (ICRA). 8853–8859. https://academic.
microsoft.com/paper/2967895468

302

http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://academic.microsoft.com/paper/2806163172
https://academic.microsoft.com/paper/2967895468
https://academic.microsoft.com/paper/2967895468

	Abstract
	1 Motivation
	2 Methodology
	3 Results
	4 Conclusions
	Acknowledgments
	References

