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ABSTRACT
Genetic Improvement (GI) can be used to give better quality soft-
ware and to create new functionality.

We show that GI can evolve the PowerPC open source GNU C
runtime library square root function into cube root, binary loga-
rithm log2 and reciprocal square root. The GI cbrt is competitive in
run-time performance and our inverted square root x−

1
2 is far more

accurate than the approximation used in the Quake video game.
We use CMA-ES to adapt constants in a Newton-Raphson table,
originally from glibc’s sqrt, for other double precision mathematics
functions. Such automatically customised math libraries might be
used for mobile or low resource, IoT, mote, smart dust, bespoke
cyber-physical systems.

Evolutionary Computing (EC) can be used to not only adapt
source code but also data, such as numerical constants, and could
enable a new way to conduct software data maintenance. This is an
exciting opportunity for the GECCO and optimisation communities.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering.
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1 INTRODUCTION
We hope to alert the optimisation community to a new opportunity
to apply their existing tools and techniques to an exciting and im-
portant potential application: optimising and maintaining existing
software.

∗We summarise our ACM TELO article [8]. See https://dlnext.acm.org/journal/telo.
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Figure 1: First fitness landscape for GI cube root (goal is to
minimise). The global optima is at 1.0,0.333,0. This fitness
guides CMA-ES to find the first pair of initial values of x and
the derivative of x for the Newton-Raphson solution of 3√ .

Table 1: GI accuracy [8, 9] and total time time for CMA-ES

Start Evolved accuracy seconds
sqrt → cbrt() 3√x double precision, i.e. ≤6.7 10−16 270
sqrt → log2() log2 x double precision, i.e. ≤2.2 10−16 6
sqrt → invsqrt() x−1/2 double precision, i.e. ≤2.2 10−16 6
sqrt → reciprocol x−1 double precision, i.e. ≤2.2 10−16 6

“Genetic Improvement of Data for Maths Functions” [8] is the
first journal publication in which we optimise numbers in source
code to generate new functionality. These mathematical functions
use a table containing start values for the Newton-Raphson method.
Newton’s method is often used to reduce runtime of complex arith-
metic operations. We evolve values in an existing table to give
new functions. This method is not just for mathematical functions:
we have also used genetic improvement (GI) to improve the an-
swers given by a program by tuning 50 000 parameters buried in its
source code [6]. We used CMA-ES [3] on 1024 floating point num-
bers within glibc’s implementation of square root for the PowerPC
and manually adapted the function and derivative to give a C imple-
mentation of cube root. Not only does the new 3√ code give double
precision accuracy but, subsequently we were able to show, it is
competitive with standard implementations for C++ and indeed it
is faster than Java [4]. The journal article also extends this to other
double precision mathematical functions (see Table 1).

Glibc is the GNU C runtime library. It is a key component of the
Free Software Movement’s support for the widely used C program-
ming language and core to GNU and GNU/Linux systems. Note
glibc does not support cube root.

31

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
https://en.wikipedia.org/wiki/Fast_inverse_square_root
http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://aist.fh-hagenberg.at/index.php/en/team-2/oliver-krauss-2
https://doi.org/10.1145/3449726.3462730
https://dlnext.acm.org/journal/telo
https://doi.org/10.1145/3449726.3462730
https://github.com/cma-es/c-cmaes/
https://www.gnu.org/software/libc/


GECCO ’21 Companion, July 10–14, 2021, Lille, France William B. Langdon and Oliver Krauss

right shift by 1 bit
Division by 2

sign=0

9 bit index into 512 item table

Figure 2: Glibc sqrt divides double precision float exponent
by two with right shift and extracts nine bit index (0..511).

Almost all software contains numbers, e.g. the glibc source code
contains more than a million integers. These tend to be set when the
code is written. Many are indeed fixed, but some of them represent
tunable parameters whose values are often chosen by the initial
software developer before first contact with the users, and never
subsequently updated. The Evolutionary Computation (EC) commu-
nity has the opportunity to develop new tools for automatic update
of source code parameters. Uses include: 1) first initial tuning, and
also retuning in response to 2) increased user load, 3) changing user
expectations or user behaviour and 4) to support new hardware.
(E.g. increased/decreased RAM, GPU, multi-core, mobile computing,
internet-of-things (IOT) and smart dust or mote computing.)

2 SQUARE ROOT⇒ CUBE ROOT VIA DATA
If there is no hardware support for square root, glibc uses the
Newton-Raphson method to iteratively solve x2 − a = 0 (i.e. to find
x = a

1
2 ) [13]. To get double precision accuracy quickly, Newton-

Raphson needs to start with a good approximation of√ . To achieve
this, glibc divides the double precision number range into 512 bins
(Figure 2) and stores good start values for Newton-Raphson in each.

To convert the open source glibc C code to support cube root,
we need a little manual code manipulation, e.g. to remove the
trap for negative values of x and to divide the exponent (11 green
bits in Figure 2) by 3 rather than 2. However our article shows
it is easy to use evolutionary computation to mutate the “fixed”
sqrt numbers into numbers for the new cube root function. The
evolved 3√ function has been tested many thousands of times to
show it does indeed give the true double precision cube root.

The CMA-ES fitness function (Figure 1) uses the values in the
table to try and calculate the cube root. It cubes the calculated
value. This is compared to the original number and the absolute
difference becomes the fitness value guiding CMA-ES. (See the
journal paper [8] for details.)

3 CONCLUSIONS
Genetic Improvement (GI) [15] has been widely used to automati-
cally fix bugs [12], speed up programs [7], reduce energy consump-
tion [2] and transplant code [14] [1]. In our ACM TELO paper [8],
we show GI can be applied, not just to code, but also to data. Giv-
ing functionally improved software primarily by evolving floating
point numbers in its source code.

The method gives in all cases correct double precision answers.
It was able to rapidly evolve hundreds of C source code constants.
(See Table 1.)

In a world addicted to software, software maintenance is a huge
cost. Most research concentrates on maintaining source code and,
as yet, there is little research on maintaining numbers within pro-
grams. Therefore both automated data maintenance and data trans-
plantation could be vital new areas for optimisation research.
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Code. Our code is available via https://github.com/oliver-krauss/
Replication_GI_Division_Free_Division or http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
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