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1 INTRODUCTION
The methods to perform long-term condition monitoring of struc-
tures can be generally divided into two main categories, i.e. output-
only and input-output methods. The former seeks to detect any
anomaly in the structural modal data caused by damage without
knowing the cause. Input-output normalisation methods have been
used for removing Environmental and Operational Variations (EOV)
effects, some examples of which include multiple linear regression
[1], artificial neural networks [4] and support vector regression [2].

All these methods, however, are either very complex, so that the
basic rule behind their performance cannot be unfolded or they
cannot deal with the case when there is a nonlinear dependency
between the temperature and the structural natural frequencies.
A typical example of such problems is the benchmark problem of
the Z24 bridge [3]. In this paper, the genetic programming (GP) is
used to deal with the nonlinear problem of condition monitoring
of structures under EOV.

2 A GP-BASED CONDITION MONITORING
METHOD

Figure 1 shows the pipeline of the proposed condition monitoring
strategy. It is assumed that a couple of first natural frequencies of
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Figure 1: Flowchart of the proposed pipeline.

the healthy structure as well as the air temperature signals mea-
sured at some period of time are available in the first stage to train
a GP model. The evolved GP model learn how to predict temper-
ature using the natural frequencies as input. The absolute error
of the prediction results in the secondary stage of the structure
is considered as damage sensitive feature. Finally, the predicted
errors are smoothed using a moving average sliding window and
compared against a threshold to decide whether or not the structure
has undergone a change that can be referred to as damage.

3 A THRESHOLD SETTING TECHNIQUE
Here we propose a method to specify a threshold for the damage
detection purpose. The following steps are followed to this end,

(1) A moving average sliding window1 is first used to smooth
the curve of the prediction errors.

(2) The peaks in the resulting signal corresponding to the vali-
dation set are selected.

(3) An upper-bound confidence level for the expected value of
the peaks is introduced as the threshold.

The following formula is, therefore, proposed to be used,

𝜖+ = 𝜖 + 𝑧1−𝛼/2

(
𝑠
√
𝑛

)
, (1)

1The length of the sliding window is 100 records in the example of this paper.
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Figure 2: The environmental temperature recorded during
the time of monitoring of Z24 bridge
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Figure 3: Obtained natural frequencies of the Z24 bridge
from vibration data during the monitoring period.

where 𝑧1−𝛼/2 represents the (1−𝛼/2) quantile of the 𝑧-distribution
where 𝛼 is the significance level. 𝜖+ is the upper-bond confidence
level of the expected value of the prediction errors regarding the
peak points obtained from the errors of the validation set, i.e. 𝜖 . 𝑛
represents the number of data samples in the validation set, and 𝑠
is the sample standard deviation.

4 EXPERIMENTAL VALIDATION (Z24
BRIDGE)

In this section, the long-term condition monitoring problem of the
Z24 bridge is studied as a benchmark problem. Figures 2 and 3
show respectively the air temperature and the first four natural
frequencies of the bridge signals recorded during one year prior to
the bridge dismantlement.

The introduction of damage starts at slightly before the record
number 3500 of the obtained signals. A fraction of 1/3 of the dataset
is used for training, 1/3 for validation and 1/3 for testing. Note that
that the training and validation datasets, therefore, correspond to
the healthy structure.

4.1 Training a GP model
The evolved GP program obtains a formula that outputs the value
of the air temperature given the values of the frequency signals as

Figure 4: The calculated errors corresponding to the whole
data set.

inputs. The following formula for the prediction of the temperature
𝑇 using the frequencies at each time instant is derived as follows,

𝑇 =

((
𝑐2
𝑓 2
4

)
× (𝑐2 − 𝑓1) × (𝐸𝑥𝑝 (𝑓2) + 𝑐1)

)3

, (2)

where 𝑐1 = 11.76 and 𝑐2 = 4.25. 𝑓1, 𝑓2 and 𝑓4 indicate respectively
the first, second and forth natural frequencies of the Z24 bridge at
each time instant. It can be noted from (2) that the third natural
frequency 𝑓3 has not been used for the prediction.

Regarding the test set, the value of the temperature at each
time instant given the values of the frequencies has been calculated
using (2). The predicted values have been then compared against the
observed values of the temperature. Figure 4 shows the calculated
errors of the entire dataset (3932 records). It can be seen from the
figure that the specified threshold can detect the time of the damage
occurrence accurately.

5 CONCLUSIONS
Amethod has been proposed for long-term condition monitoring of
civil infrastructures using the air temperature and a couple of lowest
structural natural frequencies identified at some time instants over
a long period of time. GP was selected as a technique to obtain an
equation that can predict the value of the temperature given the
structural natural frequencies as input. The prediction errors of
the temperature was introduced as damage sensitive feature. We
showed that the prediction errors exceed the specified threshold
when the damage occurs in the benchmark problem of the Z24
bridge.
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