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ABSTRACT
Smoothness of mobile and vehicle navigation has become relevant
to ensure the safety and the comfortability of riding. The robotics
community has been able to render smooth trajectories in mo-
bile robots by using non-linear optimization approaches and well-
known fairness metrics considering the curvature variations along
the path. In this paper, we introduce the possibility of computing
smooth paths from observed mobile robot trajectories from higher
order non-linear fairness functionals. Our approach is potential to
enable the generation of simple and computationally-efficient path
planning smoothing for navigation in mobile robots.
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1 INTRODUCTION
With the advent of recent technologies, the applications of mo-
bile robots have found capitalization opportunities in resource ad
labour intensive fields, such as agriculture, logistics, forestry and
manufacturing.

Path planning with smoothness considerations has attracted the
attention of the community due to the straightforward implications
for safety and comfortability [1, 2]. To generate smooth trajectories,
the conventional approaches have used the idea of placing knots and
fitting data points to curves encoded by polynomials and kernels, in
which trajectory tracking ensures compliance with the generated
smooth path. The above-mentioned problem is basically a non-
linear optimization task, and its solution is amenable to gradient-
free approaches, e.g. Particle Swarm Optimization [3], Differential
Evolution [4, 5] and Estimation of Distribution Algorithms [6].
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Figure 1: Basic idea of the main elements in our approach.

The above-mentioned approaches rendered the attractive per-
formance considering smoothness in a number of design and path
planning scenarios. In this paper, we evaluate the feasibility to
generate smooth paths considering the curve fitting and fairing to
observed mobile robot trajectories with quasi-linear variation of
curvature as a byproduct of higher order derivatives on the curva-
ture. Thus, we propose the approach to generate trajectory profiles
that pass through anchoring points, in which smooth trajectories
are computed by considering the curvature and the fitting to fair
curves given inputs of trajectories of real-world robotic hardware.

2 PROPOSED APPROACH
Smooth paths are computed by solving the following

min
𝑝𝑖

𝐹 = 𝐸 + 𝜆𝐻 (1)

, where 𝑝𝑖 is the 𝑖-th control point of a Bézier curve 𝑟 (𝑢) (Fig. 1),
𝐸 is the fitting error of the curve 𝑟 (𝑢) to given input trajectory
coordinates 𝑞 𝑗 , 𝑗 = 1, 2, ...,𝑚, 𝐻 is the smoothness (fairness metric)
of the curve 𝑟 (𝑢), and 𝜆 is the user-defined constant to balance
fairing and fitting. Also, the fitting error is defined by the sum of
distances of points in the trajectory to the given curve

𝐸 =

𝑚∑
𝑗=1

∥𝑎 𝑗 ∥2, (2)

𝑎 𝑗 = 𝑞 𝑗 − 𝑐 𝑗 (3)
, where

• 𝑚 is the number of input trajectory points,
• 𝑎 𝑗 is the vector pointing from 𝑐 𝑗 to 𝑞 𝑗 ; in which 𝑐 𝑗 is a point
in the curve 𝑟 (𝑢) (described below),

• 𝑞 𝑗 ∈ R2 is the 𝑗-th input trajectory coordinate obtained from
the robot’s trajectory measurements,

• 𝑐 𝑗 ∈ R2 is the nearest point in the curve 𝑟 (𝑢) to the input
coordinate 𝑞 𝑗 , which is obtained by the following:

min
𝑢

∥𝑞 𝑗 − 𝑟 (𝑢)∥ (4)

319

https://doi.org/10.1145/3449726.3459430
https://doi.org/10.1145/3449726.3459430


GECCO ’21 Companion, July 10–14, 2021, Lille, France V. Parque.

Figure 2: Curvature profile of a path. In the left, various
curves for the same set of trajectory input points. In the
right, the curvature𝜅 as a function of arc length for each of
the curve in the left.

Figure 3: Curvature Profiles. In the top, the radius of curva-
ture as function of curve length. In the bottom, the curva-
ture profiles for each value of constant 𝜆.

, where 𝑢 ∈ [0, 1], and ∥ · ∥ denotes the Euclidean norm.
Whereas the fitting quality is measured by the error metric 𝐸,

the smoothness of the curve 𝑟 (𝑢) is computed by the mapping
𝐻 : 𝜅 → R:

𝐻 (𝜅) =
∫ (

ℎ(𝜅)
)2
𝑑𝑠, (5)

, where 𝜅 is the curvature of the curve 𝑟 (𝑢), 𝑠 is the arc length, and
ℎ is either curvature 𝜅, 𝜅 ′ = 𝑑𝜅

𝑑𝑠
or 𝜅 ′′ = 𝑑2𝜅

𝑑𝑠2
.

The basic idea of using the curvature profile as a smoothness
metric in robot navigation is to aim at the monotonous transition
between origin and destination. Fig. 2 shows an example of the
curvature profile of a Bézier curve. Here, in the left, the points
from a trajectory and the control points of the Bézier curve are
presented. In the right, the metric𝜅 as a function of arc length 𝑠 . The
quasilinear nature of the curvature plot implies the monotonous
variation of the trajectory. Although the function ℎ1 = 𝜅 is well-
known in the literature, in this paper we evaluate the feasibility of
using higher order derivatives of the above-mentioned function.

3 COMPUTATIONAL EXPERIMENTS
In order to show the performance of our proposed approach, we
evaluated our algorithms in Matlab under a plural number of values

of 𝜆 = {0.001, 0.01, 0.1, 1, 10}. The solution of Eq. 1 is done by
Ratio-Based Differential Evolution[7] under convergence tolerance
on the solution and function at 10−3. Although using other gradient-
free algorithms is potential, the throughout comparison is out of
the scope of this paper. As for input trajectory, we considered an
arbitrary trajectory over a quadratic domain. Solutions converged
to reach the above-stated tolerance in the order of seconds.

To portray the kind of curve configurations, Fig. 3 shows the
curvature profiles of the smoothed paths for arbitrary input points
and for distinct fairness functionals. Here, Fig. 3-(a) shows the case
when ℎ1 = 𝜅, Fig. 3-(b) shows the case when ℎ2 = 𝜅 ′ and Fig. 3-(c)
shows the case when ℎ3 = 𝜅 ′′. Note that in Fig. 3, 𝜌 = 1

𝜅 denotes
the radius of curvature as a function of curve length 𝑠 . Also, Fig. 3
shows in the bottom the curvature profiles for each kind of fairness
functional and constant 𝜆. As shown by the results of Fig. 3, we
observe the following facts:

• Our approach shows the potential to compute curves with
quasi-linear variation of radius of curvature for distinct fair-
ness functionals and values of 𝜆. Achieving the quasi-linear
variation of radius of curvature implies the smooth naviga-
tion and the comfortability during driving.

• The fairness functionals (b) ℎ2 = 𝜅 ′ and (c) ℎ3 = 𝜅 ′′ shows
the improved robustness to the choice of constant 𝜆, im-
plying that higher order fairness functionals balance the
fairing and fitting reasonably well with no significant effect
in undermining the quality of smoothness. In all such cases,
the quasi-linear variation of the radius of curvatures are
obtained.

• It is possible to obtain smooth curves with quasilinear vari-
ation of curvature for any user-defined 𝜆 when (b) ℎ2 = 𝜅 ′

and (c) ℎ3 = 𝜅 ′′ are used.

Our above results offer the building blocks to further advance
towards developing data-driven path planning, path smoothing
algorithms and control algorithms with comfortability and safety
considerations.
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