
Neurogenetic Programming Framework for Explainable
Reinforcement Learning

Vadim Liventsev∗
Eindhoven University of Technology

Eindhoven, the Netherlands
v.liventsev@tue.nl

Aki Härmä
Philips Research

Eindhoven, the Netherlands
aki.harma@philips.com

Milan Petković∗
Eindhoven University of Technology

Eindhoven, the Netherlands
m.petkovic@tue.nl

ABSTRACT
Automatic programming, the task of generating computer pro-
grams compliant with a specification without a human developer,
is usually tackled either via genetic programming methods based
on mutation and recombination of programs, or via neural lan-
guage models. We propose a novel method that combines both
approaches using a concept of a virtual neuro-genetic programmer,
or scrum team. We demonstrate its ability to provide performant
and explainable solutions for various OpenAI Gym tasks, as well
as inject expert knowledge into the otherwise data-driven search
for solutions.

CCS CONCEPTS
• Software and its engineering → Automatic programming;
• Theory of computation → Reinforcement learning;

KEYWORDS
Reinforcement Learning, Program Synthesis, Genetic Programming
ACM Reference Format:
Vadim Liventsev, Aki Härmä, and Milan Petković. 2021. Neurogenetic Pro-
gramming Framework for Explainable Reinforcement Learning. In Proceed-
ings of the Genetic and Evolutionary Computation Conference 2021 (GECCO
’21). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.
3459537

1 INTRODUCTION
Unlike black box machine learning [9], automatic programming
promotes exchange of knowledge between human experts and
machine learning models:
• Models can generate new programs by applying modifica-
tions to expert-written programs, using them as the basis
• Experts can examine the generated programs, understand
the algorithm suggested by the system and learn from it

It is usually solved via genetic programming [5, 7] where new
programs are generated by mutating and mixing a population of pro-
grams or, more recently, by training neural models that generate ex-
ecutable programs as text [2–4]. But "there is no reason whatsoever

∗Also with Philips Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3459537

to not combine both technologies" [1]: a neural networkwith a finite
number of parameters can approximate the space of high-quality
programs so that the optimal solution is a few mutations away
from the solution sampled from a neural network. In this poster we
test this hypothesis and develop a hybrid method. Its open-source
implementation can be found at https://github.com/vadim0x60/cibi

2 METHODOLOGY
2.1 Instant Scrum
We call our algorithm Instant Scrum in reference to a popular Agile
software team work model [13]. It requires

(1) function Eval(𝑐) that runs program 𝑐 and returns score,
(2) team𝑇 of developers ⟨𝑝dev (𝑐 |𝜃dev,𝐶),Update(𝜃, 𝑐, 𝑅)⟩ where

a developer is defined as a distribution over the space of
programs 𝑐 with trainable parameters 𝜃dev updated with
reinforcement learning via function Update(𝜃, 𝑐, 𝑅),

(3) tuple of pre-existing programs C. C is optional in a sense that
in can be an empty set, but including them lets the system
incorporate expert knowledge,

(4) iteration limit 𝑁max
.

Algorithm 1 Instant Scrum with a team of developers

1: function InstantScrum(Eval,𝑇 , C, 𝑁max)
2: for 𝑁 ← 1, . . . , 𝑁max do
3: for ⟨𝑝dev,Update⟩ ∈ 𝑇 do ⊲ For each developer
4: 𝑐new ∼ 𝑝𝑖 (𝑐 |𝜃𝑖 , C) ⊲ Sample a program
5: 𝑅 ← Eval(𝑐new) ⊲ Test it
6: C ← C ∪ {⟨𝑐new, 𝑅⟩} ⊲ Save to the codebase
7: 𝜃𝑖 ← Update(𝜃𝑖 , 𝑐, 𝑅) ⊲ Train the developer
8: end for
9: end for

10: return argmax
𝑐uniq

(
𝐶∑
⟨𝑐,𝑅⟩
I[𝑐uniq = 𝑐]𝑅)/(

𝐶∑
⟨𝑐,𝑅⟩
I[𝑐uniq = 𝑐])

11: end function

This method enables several heterogeneous program synthe-
sis methods to contribute to a common task and learn from each
other. Neurogenetic Programming is Instant Scrum with team 𝑇 that
includes both genetic and neural developers (described below)

2.2 Genetic developer
2.2.1 Sampling procedure. Genetic developer contributes to code-

base𝐶 by sampling 2 programs 𝑐1 and 𝑐2 from𝐶 and merging them
with one of 7 genetic operators. Programs are sampled from the
following distribution:

329

https://doi.org/10.1145/3449726.3459537
https://doi.org/10.1145/3449726.3459537
https://doi.org/10.1145/3449726.3459537
https://github.com/vadim0x60/cibi

GECCO ’21, July 10–14, 2021, Lille, France V. Liventsev et al.

Parent 1 ae>>>>>34+
Parent 2 a[e>-a-]b[e>>-b-]

Shuffle mutation >>4+>3>e>a
Uniform mutation ae@>!>>35+
1-point crossover ae>>>>-]b[e>>-b-]
2-point crossover ae>>-a-34+
Uniform crossover aee>->>3b+
Messy crossover ae>>>>e>-a-]b[e>>-b-]

Pruning e>>>>>4+

Table 1: All operators applied a pair of BF++ [10] programs

𝑝 (𝑐sampled |C) ∼

𝐶∑
⟨𝑐,𝑅⟩
I[𝑐sampled = 𝑐]𝑒𝑅

𝐶∑
⟨𝑐,𝑅⟩
I[𝑐sampled = 𝑐]

(1)

That is, proportional to exponentiated score, averaged over all
copies of the program in C. Such weighting reduces variance by
averaging over several attempts to evaluate the program. It also
(due to exponentiation) prioritizes programs that have been very
successful a few times, even if their average 𝑅 is low. We consider
such programs to be high-quality additions to the codebase because
they contain the knowledge necessary for succeeding, even if on
average they don’t.

2.2.2 Operators. Once 𝑐1 and 𝑐2 are chosen, genetic developer
picks one of available operators [5, 6] (see table 1): output a shuf-
fled version of 𝑐1; replace some tokens with a random one from
the alphabet; merge 𝑐1 and 𝑐2 with one- or two-point or messy
crossover - an operator inspired by DNA [11] that randomly picks
a breakpoints in 𝑐1 and 𝑐2 and copies characters before the break-
point from 𝑐1, the rest from 𝑐2; uniform crossover (tossing a coin
for each character to decide whether it will come from 𝑐1 or 𝑐2)

After initial experiments we found that generated programs
often contain sections of unreachable code or code that makes
changes to the execution state and fully reverses them. To address
this, we introduced an additional operator for removing dead code
(pruning): pruning helps separate sections of this program that led
to its success from sections that appeared in a highly-rated program
by accident.

The task of choosing a genetic operator to generate a program
with high 𝑅 is a multi-armed bandit problem [12] solved using
one of the standard bandit algorithms [8], such as epsilon-greedy
optimization.

2.3 Neural developer
The neural developer, also known as the senior developer because of
their unique ability to write original programs, is an LSTM network
followed by a linear layer that generates a sequence of vectors
ℎ1, ℎ2, ℎ3, . . . where ℎ𝑖 ∈ R |L |+1∀𝑖 and 𝑗-th element of vector ℎ𝑖 ,
ℎ
(𝑗)
𝑖

, represents the probability of 𝑖-th token of the program being
𝑗-th token in the alphabet, 𝑝 (𝑐 (𝑖) = L (𝑗)). The last element of the
vector represents a special end of program symbol.

For the Updateneural procedure we use the algorithm proposed
in [2]. The subproblem of generating a program 𝑐 is considered as a
reinforcement learning episode of it’s own, where tokens are actions
and token number |𝑐 | + 1 (end of program token) is assigned reward
𝑞 = 𝑒𝑅 ;𝑅 ∼ 𝐸𝑣𝑎𝑙 (𝑐). In this subenvironment ℎ𝑖 (𝜃) is the policy
network [14, chapter 13] trained using REINFORCE algorithm with
Priority Queue Training. This algorithm involves a priority queue of
best known programs. In our case, priority queue is best programs
from 𝐶 as weighted by (1) which means that the neural developer
can train on programs written by other developers.

ℎ𝑖 (𝜃) can also represent several LSTM layers stacked or a differ-
ent type of recurrent neural network, i.e. GRU.

2.4 Dummy developer
The last type of developer in 𝑇 is the simplest one: it samples a
program from distribiton (1) and outputs its identical copy. The
reason for this is to get the program evaluated again so that the
average 𝑅 of this program better approximates its expected score.
Adding a dummy developer helps avoid programs that achieve a
high score by accident once and derail the entire process.

ACKNOWLEDGMENTS
This work was funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement 812882.
This work is part of "Personal Health Interfaces Leveraging HUman-
MAchine Natural interactionS" (PhilHumans) project

REFERENCES
[1] [n. d.]. Algorithm Synthesis: Deep Learning and

Genetic Programming. http://iao.hfuu.edu.cn/blogs/
33-algorithm-synthesis-deep-learning-and-genetic-programming. ([n.
d.]). (Accessed on 02/03/2021).

[2] Daniel A. Abolafia, Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V.
Le. 2018. Neural Program Synthesis with Priority Queue Training. arXiv preprint
arXiv:1801.03526 (2018). arXiv:1801.03526 http://arxiv.org/abs/1801.03526

[3] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural language
models of code. In International Conference on Machine Learning. PMLR, 245–256.

[4] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin,
and Daniel Tarlow. 2016. DeepCoder: Learning to Write Programs. CoRR
abs/1611.01989 (2016). arXiv:1611.01989 http://arxiv.org/abs/1611.01989

[5] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: an introduction. Vol. 1. Morgan Kaufmann Publishers San
Francisco.

[6] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[7] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

[8] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit
problems. CoRR abs/1402.6028 (2014). arXiv:1402.6028 http://arxiv.org/abs/1402.
6028

[9] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274 (2017).

[10] Vadim Liventsev, Aki Härmä, and Milan Petković. 2021. BF++:a language for
general-purpose neural program synthesis. (2021). arXiv:cs.AI/2101.09571

[11] Thomas Hunt Morgan. 1916. A Critique of the Theory of Evolution. Princeton
University Press.

[12] Herbert Robbins. 1952. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc. 58, 5 (1952), 527–535.

[13] Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum.
Vol. 1. Prentice Hall Upper Saddle River.

[14] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

330

http://philhumans.eu/
http://iao.hfuu.edu.cn/blogs/33-algorithm-synthesis-deep-learning-and-genetic-programming
http://iao.hfuu.edu.cn/blogs/33-algorithm-synthesis-deep-learning-and-genetic-programming
http://arxiv.org/abs/1801.03526
http://arxiv.org/abs/1801.03526
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1402.6028
http://arxiv.org/abs/1402.6028
http://arxiv.org/abs/1402.6028
http://arxiv.org/abs/cs.AI/2101.09571

	Abstract
	1 Introduction
	2 Methodology
	2.1 Instant Scrum
	2.2 Genetic developer
	2.3 Neural developer
	2.4 Dummy developer

	Acknowledgments
	References

