
Using Knowledge of Human-Generated Code to Bias the Search
in Program Synthesis with Grammatical Evolution
Dirk Schweim

schweim@uni-mainz.de
Johannes Gutenberg University

Mainz, Germany

Erik Hemberg
hembergerik@csail.mit.edu

MIT
Cambridge, MA, USA

Dominik Sobania
dsobania@uni-mainz.de

Johannes Gutenberg University
Mainz, Germany

Una-May O’Reilly
unamay@csail.mit.edu

MIT
Cambridge, MA, USA

Franz Rothlauf
rothlauf@uni-mainz.de

Johannes Gutenberg University
Mainz, Germany

ABSTRACT
Recent studies show that program synthesis with GE produces code
that has different structure compared to human-generated code,
e.g., loops and conditions are hardly used. In this article, we ex-
tract knowledge from human-generated code to guide evolutionary
search. We use a large code-corpus that was mined from the open
software repository service GitHub and measure software metrics
and properties describing the code-base. We use this knowledge to
guide the search by incorporating a new selection scheme. Our new
selection scheme favors programs that are structurally similar to
the programs in the GitHub code-base. We find noticeable evidence
that software metrics can help in guiding evolutionary search.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Genetic programming.

KEYWORDS
Program Synthesis, Software Synthesis, Grammar Guided Genetic
Programming, Genetic Programming, Grammatical Evolution, Min-
ing Software Repositories

ACM Reference Format:
Dirk Schweim, ErikHemberg, Dominik Sobania, Una-MayO’Reilly, and Franz
Rothlauf. 2021. Using Knowledge of Human-Generated Code to Bias the
Search in Program Synthesis with Grammatical Evolution. In 2021 Genetic
and Evolutionary Computation Conference Companion (GECCO ’21 Com-
panion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3449726.3459548

1 INTRODUCTION
A recent study [4] identified several problems in program synthe-
sis with grammatical evolution (GE, [2]). For example, condition-
als or loops are often not effectively used since the fitness signal

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459548

does not guide the search towards these complex structures [4]. In-
stead, small building blocks are combined and the search iteratively
evolves very specialized programs. The authors come to the con-
clusion that “the current problem specification and especially the
definition of the fitness functions do not allow guided search, as the
resulting problem constitutes a needle-in-a-haystack problem” [4].
They state that a main challenge for future research in program
synthesis is to find new ways that help to guide the search.

In this article we focus on the question of how knowledge gained
from human-generated code can be used as an additional bias to
guide program synthesis with GE. In current approaches, general
programming knowledge is only incorporated into the evolution-
ary search process via the BNF grammar. The evolved solutions
are in many cases unreadable as well as “bloated” and thus hardly
maintainable or testable [3]. We extend the current approaches and
investigate the possibility to use software metrics from an existing
code-base to guide the search with GE for program synthesis prob-
lems. Our work is a first step to evaluate the question if general
programming knowledge can be used to bias an evolutionary search
towards programs that are similar to human-generated programs.

Therefore, we mined a code-corpus, consisting of 211,060 real-
world and high-quality Python functions. We use this human-
generated code and measure the frequencies of software metrics
that describe properties of the code in the code-base. Then, we
propose multiple GE variants where the additional knowledge is
used as an additional signal to guide the search. Our results show
evidence that additional information can help in guiding the search.
Furthermore, we gain valuable insight on how future approaches
can be improved. For example, we learn that setting too many addi-
tional objectives is detrimental, because the conventional fitness
signal is obfuscated.

2 GITHUB CODE CORPUS
In our experiments we use human-generated code in the program-
ming language Python that was mined from the software repository
hosting service GitHub. On GitHub, users are able to rate software
repositories. We only use high-quality code, i.e., repositories with
150 or more positive ratings (“stars”). We cloned a total of 10,723
repositories that met the aforementioned search criteria. We use
widely known software metrics to perform a descriptive analysis of

331

https://doi.org/10.1145/3449726.3459548
https://doi.org/10.1145/3449726.3459548


GECCO ’21 Companion, July 10–14, 2021, Lille, France D. Schweim et al.

the code-base, investigating the question if there are certain simi-
larities in high-quality human-generated Python code that could be
useful to help in guiding an evolutionary search. In summary, code
that received positive ratings (“stars”) by human programmers has
several similarities in its structural properties. Often, it consists
of short code with a low complexity where certain concepts are
used repeatedly. This is in line with the goal of this article: we
seek to evolve simple, understandable code that looks like human-
generated code. Therefore, it seems appropriate to use the metrics
evaluated in this section to guide evolutionary search with the goal
to improve the readability and maintainability of the generated
code.

3 EXPERIMENTS
It is an open question how additional information can be appro-
priately added to an evolutionary search to increase search per-
formance. Furthermore, it is not clear what kind of information is
helpful. In our experiments, we use the frequency distributions of
the software metrics gained from the GitHub code-base and test
multiple methods how this additional knowledge can be added to
the search. We compare five GE variants with a standard GE algo-
rithm. Overall, the additional information gained from the GitHub
repository does not improve the search performance. However,
our goal is to improve readability and maintainability of the code.
We can see that the best programs found with standard GE are
very large compared to many other variants. Interestingly, the high
parsimony pressure in one of the settings does not effectively pre-
vent bloat. An explanation for this behavior is that, due to elitism,
bloated solutions will always stay in the population when their
performance is better compared to other programs that were opti-
mized for their size. The search has to evolve small and highly fit
solutions from time to time to effectively prevent bloat.

In the last part of our analysis we want to focus on the AST node
types that are used in the evolved programs. It is very interesting to
see that GEwith additional information from software metrics often
evolves programs that use the same node types that are also used in
a hand-coded program. Other node types are rarely used and bloat
results from very fewmeaningless function calls, e.g., “min(in0,in0)”.
This is a good property if the search gets a clear fitness signal like
in the median problem. On the other hand, it limits the possibility
to find more complex solutions. For example, the grammars that
we used would also allow more complex solutions where loops,
conditionals, and comparisons are necessary. To find such a complex
solution will be hard when following the conventional fitness signal.

If we take into account both, the performance and the size of
the evolved programs, a standard GE with a depth limit is the most
favorable setting. With dmax = 17, bloat is limited very effectively
while the performance is comparable to a standard GE without
depth limit. However, the approach does not help to find complex
programs. For example, our results indicate that more complex
non-linear program structures like conditionals and loops are not
effectively used by the current GE approaches (with “general gram-
mars” that are not optimized for a problem instance)

In summary, in our experiments, we find evidence that software
metrics and n-gram frequencies can help evolving good solutions,
while helping to limit bloat and allowing for more complexity.

Arguably, meta information like the softwaremetrics investigated in
this work is possibly not enough of additional signal to be effectively
exploited by evolutionary search. This is no big surprise, since it is
also hard for humans to quantify code quality. Overall, our work
is a first step towards the goal to effectively use additional input
signals to guide the search towards meaningful complex programs.

4 CONCLUSION
Creating high-quality code is a complex task, even for humans.
The goal of this paper was to discuss and evaluate the idea of how
additional knowledge gained from a large amount of high-quality
human-generated code can help in an evolutionary search. We find
noticeable evidence that meta-information can help in guiding the
search.

Future work has to investigate how information from the existing
code-base can be used more effectively to further improve the
search performance. Furthermore, these new approaches should
be combined with other additional sources of information, e.g.,
domain-specific knowledge and problem knowledge as proposed
in [1].

ACKNOWLEDGMENTS
The authors thank Jordan Wick for sharing his expertise, the in-
sightful discussions, and his help on our project. This work was
supported by a fellowship within the IFI programme of the German
Academic Exchange Service (DAAD).

REFERENCES
[1] Erik Hemberg, Jonathan Kelly, and Una-May O’Reilly. 2019. On Domain Knowl-

edge and Novelty to Improve Program Synthesis Performance with Grammatical
Evolution. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’19). ACM, New York, NY, 1039–1046.

[2] Conor Ryan, J. J. Collins, and Michael O’Neill. 1998. Grammatical Evolution:
Evolving Programs for an Arbitrary Language. In Proceedings of the First European
Workshop on Genetic Programming, EuroGP 1998, Wolfgang Banzhaf, Riccardo
Poli, Marc Schoenauer, and Terence C. Fogarty (Eds.). Springer, Berlin, Heidelberg,
83–96.

[3] Dominik Sobania and Franz Rothlauf. 2019. Teaching GP to Program Like a
Human Software Developer: Using Perplexity Pressure to Guide Program Synthesis
Approaches. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2019). ACM, New York, NY, 1065–1074.

[4] Dominik Sobania and Franz Rothlauf. 2020. Challenges of Program Synthesis
With Grammatical Evolution. In European Conference on Genetic Programming
(LNCS, Vol. 12101), Ting Hu, Nuno Lourenço, Eric Medvet, and Federico Divina
(Eds.). Springer International Publishing, Cham, 211–227.

332


	Abstract
	1 Introduction
	2 GitHub Code Corpus
	3 Experiments
	4 Conclusion
	Acknowledgments
	References

