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ABSTRACT
A new class of test functions for black box optimization is intro-

duced. Affine OneMax (AOM) functions are defined as compositions

of OneMax and invertible affine maps on bit vectors. The black box

complexity of the class is upper bounded by a polynomial of large

degree in the dimension. Tunable complexity is achieved by ex-

pressing invertible linear maps as finite products of transvections.

Finally, experimental results are given to illustrate the performance

of search algorithms on AOM functions.
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1 INTRODUCTION
Theoretical and empirical analyses of search algorithms in the

context of black box optimization often require test functions. On

the practical side, an algorithm is usually selected by its perfor-

mance across a collection of diverse test functions such as OneMax,

LeadingOnes, MaxSat, etc. In particular, NK landscapes [4] are a

class of functions with tunable complexity. In this model, the fitness

of an 𝑛-dimensional bit vector is the sum of 𝑛 partial functions, one

per variable. Each partial function depends on a variable and its

𝑘 neighbors. The number 𝑘 controls the interaction graph hence

the complexity of the fitness landscape. NK landscapes have found

many applications from theoretical biology to combinatorial opti-

mization. When used as test functions, their flexibility comes at the

price of a great number of parameters. Values of partial functions

are often sampled from normal or uniform distributions, which

generates highly irregular landscapes with unknown maximum,

even for small 𝑘 .
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Affine OneMax (AOM) functions are test functions defined as

compositions of OneMax and invertible affine maps on bit vectors.

They are integer-valued, have a known maximum, and their repre-

sentations only require a number of bits quadratic in the dimension.

The idea of composition of a fitness function and a linear or affine

map has already been explored in the context of evolutionary com-

putation [6–8]. The problem addressed in this line of research is

to identify a representation of the search space, e.g. an affine map,

able to transform a deceptive function into an easy one for genetic

algorithms. We propose an algorithm which learns such a represen-

tation for AOM functions. Moreover, considering the identity as a

linear map, it appears that functions of increasing complexity can

be obtained starting with the identity and applying small pertur-

bations to it. In the language of linear algebra, those perturbations

are called elementary (or special) transvections. The key parameter

of resulting AOM functions is the sequence length which is the

analogue of parameter 𝑘 in NK landscapes.

The paper is organized as follows. Sec. 2 introduces general AOM

functions and gives their basic properties. Sec. 3 introduces elemen-

tary transvections and their products. In Sec. 4, we report results

of experiments involving search algorithms on random instances.

Sec. 5 concludes the paper.

2 GENERAL CASE
The OneMax function ℓ : {0, 1}𝑛 → R is defined by ℓ (𝑥) = ∑𝑛

𝑖=1 𝑥𝑖 ,

where the 𝑥𝑖 ’s are seen as real numbers. OneMax takes 𝑛 + 1 values
0, 1, . . . , 𝑛 and, for all 𝑘 ∈ [0..𝑛], |ℓ−1 ({𝑘}) | =

(𝑛
𝑘

)
. It reaches its

maximum 𝑛 only at 1
𝑛 = (1, 1, . . . , 1). From now on, the set {0, 1}

is seen as the finite field F2 (1 + 1 ≡ 0 (mod 2)) and {0, 1}𝑛 as a

linear space over F2. An affine map {0, 1}𝑛 → {0, 1}𝑛 is defined by

𝑥 ↦→ 𝑀𝑥 + 𝑏, where𝑀 is a 𝑛 × 𝑛 bit matrix and 𝑏 a 𝑛 × 1 bit vector.
Sums and products in𝑀𝑥 + 𝑏 are computed in F2 not in R.

An affine OneMax function 𝑓 is the composition of OneMax and

an invertible affine map. More precisely, it is defined by 𝑓 (𝑥) =
ℓ (𝑀𝑥 + 𝑏), where 𝑀 is an invertible matrix and 𝑏 ∈ {0, 1}𝑛 . The
invertibility of 𝑀 is important because it ensures that 𝑓 shares

the properties of OneMax outlined above. Firstly, it takes 𝑛 + 1
values 0, 1, . . . , 𝑛 and, for all 𝑘 ∈ [0..𝑛], |𝑓 −1 ({𝑘}) | =

(𝑛
𝑘

)
. Secondly,

it reaches its maximum 𝑛 only once at 𝑥∗ = 𝑀−1 (1𝑛 + 𝑏). The set
of all AOM functions will be denoted by F . By construction, F is

closed under invertible affine maps but

Theorem 2.1. F is not closed under permutations.

As a consequence, by a NFL theorem [9], the average perfor-

mance of an algorithm over all AOM functions depends on the

algorithm.

Interestingly, given an AOM function, it is possible to learn its

parameters𝑀 and 𝑏, hence maximize it, using a polynomial number

of queries. The idea is to exploit the sparsity of the Fourier spectrum

of AOM functions. To do so, we propose to apply a modified version

of the Kushilevitz-Mansour algorithm [5] whose original goal is to

approximate Boolean functions.
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Theorem 2.2. Let 𝑓 ∈ F and 𝛿 ∈ (0, 1). There is a random-
ized algorithm which exactly learns and maximizes 𝑓 with at most
𝑚1𝑚2𝑛

2 +𝑚3𝑛 evaluations and probability at least 1−𝛿 , where𝑚1 =

Θ
(
𝑛4 log(𝑛2/𝛿)

)
,𝑚2 = Θ

(
𝑛4 log(𝑛2𝑚1/𝛿)

)
,𝑚3 = Θ

(
𝑛2 log(𝑛/𝛿)

)
.

Using this algorithm, we can provide an upper bound of the (un-

restricted) black box complexity [1, 2] of AOM functions. The black

box complexity 𝐵F of AOM functions is defined as inf𝐴∈A sup𝑓 ∈F
E(𝑇 (𝐴, 𝑓 )), where A is the set of randomized search algorithms

and E(𝑇 (𝐴, 𝑓 )) the expected runtime of algorithm𝐴 on 𝑓 . We have

Corollary 2.3. 𝐵F = 𝑂 (𝑛10 log2 𝑛).

3 SEQUENCES OF TRANSVECTIONS
Wewould like to sort AOM functions from the easiest to the hardest

ones to maximize or at least provide them with some structure.

We will achieve this goal using elementary transvections. For all

𝑖, 𝑗 ∈ [1..𝑛], with 𝑖 ≠ 𝑗 , let 𝜏𝑖 𝑗 denote an elementary transvection.

For all 𝑥 ∈ {0, 1}𝑛 , 𝜏𝑖 𝑗𝑥 is obtained from 𝑥 by adding 𝑥 𝑗 to 𝑥𝑖 or

𝑥𝑖 ← 𝑥𝑖 + 𝑥 𝑗 , leaving other bits unchanged. At most one bit is

changed. It is clear that 𝜏𝑖 𝑗 is a linear map. The key property is that

elementary transvections are generators of the group of invertible

matrices.

Having defined transvections, we consider finite products of

transvections and the corresponding classes of AOM functions.

Let 𝑡 be a positive integer and 𝐺𝑡 be the set of all products of 𝑡

transvections. Let F𝑡 be the set of functions 𝑥 ↦→ ℓ (𝑀𝑥 +𝑏), where
𝑀 ∈ 𝐺𝑡 and 𝑏 ∈ {0, 1}𝑛 . Functions in classes F𝑡 will be refered to

as transvection sequence AOM (TS-AOM) functions.

4 EXPERIMENTS
The first experiment

1
is a fixed-budget experiment in which search

algorithms have been applied to random instances of AOM func-

tions (𝑛 = 100, 3 · 105 evaluations, 20 runs). In particular, for each

run, a new invertible 100 × 100 matrix has been sampled. We have

considered the following search algorithms: random search, ran-

dom local search, hill climbing, simulated annealing, GA, (1+1) EA,
(10 + 1) EA, PBIL, MIMIC, UMDA, HBOA, LTGA, and P3. For all of

them, the median function value is not greater than 73, whereas the

function maximum is 100. It should be noted that random search

performs as well as other algorithms.

On the contrary to AOM functions, TS-AOM functions with

small sequence length make good test functions. They reveal how

search algorithms resist an increasing number 𝑡 of perturbations

(elementary transvections). Fig. 1 shows the results for 𝑛 = 100.

MIMIC is the first algorithm to fail to maximize an instance (at

𝑡 = 10) whereas P3 is the last one (at 𝑡 = 130).

5 CONCLUSION
We have introduced affine OneMax functions which are test func-

tions for search algorithms. They are defined as compositions of

OneMax and invertible affine maps on bit vectors. They have a

simple representation and a known maximum. Tunable complexity

is achieved by expressing invertible linear maps as finite prod-

ucts of transvections. The complexity is controlled by the length

1
All experiments have been produced with the HNCO framework [3].
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Figure 1: Mean fixed-budget performance of search algo-
rithms on TS-AOM functions as a function of sequence
length 𝑡 ∈ [0..150] (𝑛 = 100, 3 · 105 evaluations, 20 runs).

of transvection sequences and their properties. Transvection se-

quence AOM functions with small sequence length are of practical

interest in the benchmarking of search algorithms. We have shown

by means of Fourier analysis that the black box complexity of AOM

functions is upper bounded by a high degree polynomial. However,

it can be as low as logarithmic for the simplest AOM functions.

Many open questions remain. The gap between the lower and

upper bounds of the black box complexity in the general case is sig-

nificant and should be reduced. A rigorous analysis of the runtime

of (1 + 1) EA on AOM functions would be of great interest. One-

Max is one of the simplest nontrivial functions used in black box

optimization. It seems legitimate to consider alternative functions

to define new classes in the same way as for AOM functions. Can-

didate functions include pseudo-linear functions or LeadingOnes.

However, since LeadingOnes is not sparse, the method presented

in this paper does not apply.
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