
Time Complexity Analysis of the Deductive Sort in the Best Case
Sumit Mishra

IIIT Guwahati

Guwahati, India

sumit@iiitg.ac.in

Ved Prakash

IIIT Guwahati

Guwahati, India

johnvedprakash@gmail.com

ABSTRACT

Non-dominated sorting is one of the important step in multiobjec-

tive evolutionary algorithms (MOEAs) which are based on Pareto

dominance concept. Though non-dominated sorting can be per-

formed in polynomial time, it remains an asymptotical bottleneck

in many of these MOEAs. Here we show that an algorithm, Deduc-

tive Sort from the paper “Deductive Sort and Climbing Sort: New

Methods for Non-Dominated Sorting" by McClymont et al., has the
best-case time complexity of Θ(MN

√
N + N 2).

CCS CONCEPTS

• Theory of computation→ Sorting and searching; •Mathe-

matics of computing→ Mathematical optimization;

KEYWORDS

Non-dominated sorting, dominance comparisons, time complexity

ACM Reference Format:

Sumit Mishra and Ved Prakash. 2021. Time Complexity Analysis of the

Deductive Sort in the Best Case. In 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.

3459416

1 INTRODUCTION

Modern multiobjective evolutionary algorithms (MOEAs) often

rank the solutions in the population based on the Pareto domi-

nance relation. Let P = {s1,s2, . . . ,sN } be a population of size N
in RM where each solution si ,1 ≤ i ≤ N is represented as fol-

lows si =
〈
si1 ,si2 , . . . ,siM

〉
. Without loss of generality, we assume

minimization of each of M objectives, and say that a solution si
dominates a solution s j , denoted as si ≺ s j , if ∀m it holds that

sim ≤ s jm , and ∃m such that sim < s jm .

Non-dominated sorting divides the population P into disjoint

fronts F1,F2, . . . such that all the solutions in a particular front does

not dominate each other and for every solution s ∈ Fi+1 there exists
a solution s ′ ∈ Fi such that s ′ ≺ s . Such a partition is unique. If a

solution belongs to a front Fi , it is said to have a rank i .
Fast non-dominated sorting algorithm [1]made the non-dominated

sorting procedure popular, and after that, many researchers have

startedworking towards improving the efficiency of the non-dominated

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8351-6/21/07.

https://doi.org/10.1145/3449726.3459416

Algorithm 1 Deductive Sort

Require: P = {s1, s2, . . . , sN }: points in M-dimensional space

Ensure: F = {F1, F2, . . . }: points from P split into fronts

1: x ← 1 ◃ Set first front
2: f ← 0 ◃ Number of sorted solutions to be 0

3: isSorted[1...N]← False ◃ Boolean sorted flag array

4: F← ∅ ◃ Initialize set of fronts
5: while f < N do ◃ While not all solutions are sorted

6: Fx ← ∅ ◃ Initialize a front
7: isDominated[1...N]← False ◃ Boolean dominated flag array

8: for i ← 1 to N do ◃ Iterate through solutions in P
9: if !isDominated[i] & !isSorted[i] then

10: for j ← i + 1 to N do ◃ From next solution to last

11: if !isDominated[j] & !isSorted[j] then
12: domRel← Dominates(s i , s j) ◃ Obtain dominance

relationship between s i and s j
13: if domRel = 1 then ◃ s i dominates s j
14: isDominated[j]← True

15: else if domRel = 3 then ◃ s j dominates s i
16: isDominated[i]← True

17: Break

18: if !isDominated[i] then ◃ s i is not dominated

19: Fx ← Fx ∪ {s i } ◃ Insert s i into Fx
20: isSorted[i]← True

21: f ← f + 1 ◃ Increment number sorted

22: F← F ∪ {Fx } ◃ Add Fx to F
23: x ← x + 1 ◃ Increment current front

24: Return F ◃ Return the set of fronts

sorting procedure. Among those approaches, we consider the al-

gorithm called the Deductive Sort [2]. The original paper claimed

that the best-case occurs when N solutions are equally divided into
√
N fronts such that each solution in a front is dominated by all the

solutions in its preceding front. It is assumed that the first solution

selected in each iteration is in the current front. In this case, the

number of dominance comparisons is
N
√
N −1
2

+

√
N (
√
N −1)
2

[2]. Re-

cently, the worst-case time complexity of Deductive Sort is analyzed

in [3]. Similarly, the worst-case time complexity DDA-NS [7] is an-

alyzed in [4]. In this paper, we show that the number of dominance

comparisons in the best case by Deductive Sort isN (
√
N −1) (which

is approx. double than the claimed one), and the time complexity is

O (MN
√
N + N 2).

2 ALGORITHM

Initially, all the solutions are unranked and not dominated. In each

iteration, a pivot solution is selected from the population (which is

neither ranked nor dominated) and is compared with only unranked
and not dominated solutions. The solutions which are dominated

by the pivot is marked dominated. If the pivot is dominated, then

we choose another pivot and again start comparing the pivot with

other solutions. At the end of the iteration, all the non-dominated

solutions are comprised of the desired front. The Deductive Sort

algorithm is summarized in Algorithm 1.

337

https://doi.org/10.1145/3449726.3459416
https://doi.org/10.1145/3449726.3459416
https://doi.org/10.1145/3449726.3459416

GECCO ’21 Companion, July 10–14, 2021, Lille, France Sumit Mishra, and Ved Prakash

3 ANALYSIS

In the best case, N solutions are equally divided into

√
N fronts.

Let the solutions in front F1 be
{
s1,s2, . . . ,s√N

}
, the solutions in

front F2 be
{
s√N+1

,s√N+2
, . . . ,s

2

√
N

}
, the solutions in front F3 be{

s
2

√
N+1
,s
2

√
N+2
, . . . ,s

3

√
N

}
and so on. In general, the solutions

in front FK be

{
s
(K−1)

√
N+1
,s
(K−1)

√
N+2
, . . . ,sK

√
N

}
. For the best

case, the first solution selected in each iteration should be in the cur-

rent front so the ordering of the solutions should be:

{
F1,F2, . . . ,F√N

}
.

However, among the

√
N solutions of a particular front, any order-

ing will be suffice.

In each iteration (While Loop) of the algorithm, the array isDominated[]
is initialized. Initially all the N solutions are unsorted (line 3). The

number of unsorted (unranked) solutions after obtaining the so-

lutions of F1,F2, . . . ,FK−1 (or before obtaining the front FK) is

N − (K − 1)
√
N . While obtaining FK , the first solution of front FK

(s
(K−1)

√
N+1

) is compared with all the remaining unranked solu-

tions. Thus, the number of solutions to which s
(K−1)

√
N+1

is com-

pared =
(
N − (K − 1)

√
N − 1

)
. During this comparison, all the so-

lutions of FK+1,FK+2, . . . ,F√N are marked dominated. Only the so-

lutions of FK are not marked dominated. Now the second solution of

FK (s
(K−1)

√
N+2

) is comparedwith s
(K−1)

√
N+3
,s
(K−1)

√
N+4
, . . . ,sK

√
N

so the second solution is compared with

√
N − 2 solutions. Sim-

ilarly, the third solution of FK (s
(K−1)

√
N+3

) is compared with

s
(K−1)

√
N+4
,s
(K−1)

√
N+5
, . . . ,sK

√
N so the third solution is com-

pared with

√
N − 3 solutions and so on. Thus, while obtaining front

FK , the number of dominance comparisons by the Deductive Sort

in the best case is obtained by Eq. (1).

DCK =
(
N − (K − 1)

√
N − 1

)
+

(√
N − 2

)
+

(√
N − 3

)
+ . . . + 1

=
(
N − (K − 1)

√
N − 1

)
+

1

2

(√
N − 2

) (√
N − 1

)
(1)

Thus, the total number of dominance comparisons by the Deductive

Sort in the best case is obtained by Eq. (2).

DC =
∑√

N

K=1
DCK = N

(√
N − 1

)
(2)

However, the authors claimed that the number of dominance com-

parisons in this case is
N
√
N −1
2

+

√
N (
√
N −1)
2

[2]. The ratio of the

claimed number of dominance comparisons to the actual number

of dominance comparisons is obtained by Eq. (3).

R = lim

N→∞

Claimed

Obtained

= lim

N→∞

N
√
N −1
2

+

√
N (
√
N −1)
2

N
(√

N − 1

)
= lim

N→∞

N
√
N + N −

√
N − 1

2N
√
N − 2N

=
1

2

(3)

Thus, the claimed number of dominance comparisons is approxi-

mately half the correct number of dominance comparisons.

The number of unsorted (unranked) solutions after obtaining

the solutions of F1,F2, . . . ,FK−1 (or before obtaining the front FK)

is N − (K − 1)
√
N . For the i th solution (say si),While loop in line

10 runs N − i + 1 times. However, it is not necessary that solution si
is compared with N − i + 1 solutions. It depends whether a solution
has been already ranked or it has been marked dominated by some

other solution. Thus while obtaining FK , for solution s
(K−1)

√
N+1

line 10 runs N − (K − 1)
√
N − 1 times. For solution s

(K−1)
√
N+2

line

10 runs N − (K − 1)
√
N − 2 times and so on. For solution sK

√
N

line 10 runs N − (K − 1)
√
N −
√
N times. Thus, to obtain the K th

front, the number of times line 10 executes is obtained by Eq. (4).

CK =
[
N − (K − 1)

√
N − 1

]
+

[
N − (K − 1)

√
N − 2

]
+

· · · +
[
N − (K − 1)

√
N −
√
N
]

=

√
N

2

[
2N − (2K − 1)

√
N − 1

]
(4)

Thus, the total number of times line 10 executes in the Deductive

Sort in the best case is obtained by Eq. (5).

C =
∑√

N

K=1
CK =

1

2

N (N − 1) = O (N 2) (5)

Thus, the time complexity of Deductive Sort in the best case is

Θ(MN
√
N + N 2).

4 CONCLUSION & FUTUREWORK

In this paper, we have shown that the number of dominance com-

parisons by the Deductive Sort in its best-case is N (
√
N − 1). We

have also proved that the best-case time complexity of Deductive

Sort is Θ(MN
√
N +N 2). The worst-case time complexity of Deduc-

tive Sort is proved to be Θ(MN 3) in [3]. This means this algorithm

is not useful in performance-critical systems (in-spite of being sim-

ple), especially those which are outside the domain of evolutionary

computation. For relatively small population size, this sorting can

be a good choice as it does not presort the solutions, unlike vari-

ous recent approaches [5, 6] and also it only uses the array data

structure.

REFERENCES

[1] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A Fast

and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (April 2002), 182–197.

[2] Kent McClymont and Ed Keedwell. 2012. Deductive Sort and Climbing Sort: New

Methods for Non-Dominated Sorting. Evolutionary Computation 20, 1 (Spring

2012), 1–26.

[3] Sumit Mishra and Maxim Buzdalov. 2020. If Unsure, Shuffle: Deductive Sort is

Θ(MN 3), but O (MN 2) in Expectation over Input Permutations. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO’2020). 516–523.

[4] Sumit Mishra, Maxim Buzdalov, and Rakesh Senwar. 2020. Time Complexity Analy-

sis of the Dominance Degree Approach for Non-Dominated Sorting. In Proceedings
of Genetic and Evolutionary Computation Conference Companion (GECCO’2020).
169–170.

[5] Sumit Mishra, Sriparna Saha, Samrat Mondal, and Carlos A. Coello Coello. 2019.

A Divide-And-Conquer Based Efficient Non-Dominated Sorting Approach. Swarm
and Evolutionary Computation 44 (February 2019), 748–773.

[6] Proteek Chandan Roy, Kalyanmoy Deb, and Md Monirul Islam. 2018. An Efficient

Nondominated Sorting Algorithm for Large Number of Fronts. IEEE Transactions
on Cybernetics 99 (2018), 1–11.

[7] Yuren Zhou, Zefeng Chen, and Jun Zhang. 2017. Ranking Vectors by Means of

the Dominance Degree Matrix. IEEE Transactions on Evolutionary Computation 21,

1 (2017), 34–51.

338

	Abstract
	1 Introduction
	2 Algorithm
	3 Analysis
	4 Conclusion & Future Work
	References

