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ABSTRACT
Routing plays a fundamental role in network applications, but it is
especially challenging in Delay Tolerant Networks (DTNs). These
are a kind of mobile ad hoc networks made of e.g. (possibly, un-
manned) vehicles and humans where, despite a lack of continuous
connectivity, data must be transmitted while the network condi-
tions change due to the nodes’ mobility. In these contexts, routing
is NP-hard and is usually solved by heuristic “store and forward”
replication-based approaches, which however produce relatively
low delivery probabilities. Here, we genetically improve two routing
protocols widely adopted in DTNs, namely Epidemic and PRoPHET,
in the attempt to optimize their delivery probability. First, we dis-
sect them into their fundamental components, i.e., functionalities
such as checking if a node can transfer data, or sending messages
to all connections. Then, we apply Genetic Improvement (GI) to
manipulate these components as terminal nodes of evolving trees.
We apply this methodology, in silico, to six test cases of urban
networks made of hundreds of nodes, and find that GI produces
consistent gains in delivery probability in four cases.
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1 INTRODUCTION
One of the most important aspects in networking is the concept of
network protocol, i.e., a set of well-defined data format and rules that
allow nodes in a network to communicate with each other. While
efficient routing protocols exist for IP networks, routing in mobile
ad hoc networks (MANETs) is still a very active area of research.
One particularly challenging kind of MANETs is represented by the
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delay tolerant networks (DTNs), also known as disruption tolerant
networks, opportunistic networks or intermittently connected wireless
networks. In these contexts, routing is NP-hard [2] and as such it is
usually solved by heuristic “store and forward” replication-based
approaches, where multiple copies of the same message are moved
and stored across nodes in the hope that at least one will eventually
reach its destination. Still, the sparsity and mobility of the nodes
causes unpredictable meeting patterns and frequent disconnections,
which result in relatively low data delivery probabilities (i.e., the
probability that a message reaches its destination) even with well-
established protocols such as Epidemic [1] and PRoPHET [5].

Here, we consider the Genetic Improvement (GI) [4] of these two
protocols. Our methodology consists in the following: first, we
dissect the two protocols into their fundamental components, i.e.,
basic network functionalities such as checking if a node can start
transferring data, or sending messages to all connections; then, we
apply Genetic Programming (GP) to rearrange these components
into evolving trees, in the attempt to maximize the data delivery
probability. It is worth stressing that, in principle, this methodology
can be easily generalized to other protocols and different kinds of
networks. To evaluate the proposed methodology, we perform a
broad in silico experimentation where we improve Epidemic and
PRoPHET on six test cases of urban networks made of three differ-
ent kinds of mobile nodes (pedestrians, cars, and trams). Overall,
we find that GI consistently produces a gain in delivery probability.

2 METHODS
We used the strongly typed GP (with a custom repair method)
provided by the Jenetics library [7]. The candidate GP individu-
als, represented as tree structures, are obtained by composing the
elements in the terminal and non-terminal sets specified in the Ap-
pendix online (https://bit.ly/2Nkyyjm). The non-terminals include
basic Boolean operators as well as the inequality test, the if and
the sequence operators. The terminals, instead, are obtained by
“dissecting” the update() method of the baseline protocols into
its main functional components, which are then rearranged by GP.
This is an important aspect of our proposal: rather than evolving
from scratch the entire protocol’s logic, which would entail an ex-
cessively large, hard-to-explore protocol space, we use available
knowledge in the form of protocol basic components, for which we
then try to identify a better rearrangement by means of GP. See the
Appendix for the GP parameters (default values in Jenetics).

3 EXPERIMENTAL SETUP
For the numerical experiments, we used The ONE (Opportunistic
Network Environment) [3]. We considered six different test cases,
based on three different maps and two different numbers of agents.

∗An extended version of this work appears in [6].

35

https://doi.org/10.1145/3449726.3462716
https://doi.org/10.1145/3449726.3462716
https://doi.org/10.1145/3449726.3462716
https://bit.ly/2Nkyyjm


GECCO ’21 Companion, July 10–14, 2021, Lille, France Lorandi, et al.

The maps used are those available in The ONE, namely the city
center of Helsinki (that in The ONE is identified as the “default”
map), the metropolitan area of Helsinki (i.e., Greater Helsinki), and
a Manhattan-like map. In the following, we will refer to these three
maps as “Default”, “Helsinki” and “Manhattan” respectively.

The simulation time of each DTN simulation is 12 hours (with
an update interval of 0.1 seconds), starting after a warm-up period
of 1000 seconds of simulation time needed to allow the node mo-
bility to reach steady state conditions. The simulated DTNs are
made of three types of mobile nodes (referred to as hosts): pedes-
trians, cars and trams. Hosts are further divided into 6 groups:
two groups of pedestrians, one group of cars and three groups of
trams. The groups of pedestrians and cars are composed of 40 or
100 hosts each (depending on the experiments), while in all the
experiments the groups of trams are composed of 2 hosts each. Dur-
ing the simulations, a new message of size 500KB-1MB is generated
every 25-35 seconds (both the message size and the interval are
uniformly sampled in these ranges), with source and destination
randomly chosen among all the hosts in the network. Each group
has different networking parameters and mobility behaviors, which
are specified in the settings file and have been set according to
the default parameters of The ONE. As for the mobility behavior,
the hosts are randomly placed on the map at the beginning of the
simulation, and the destination of each host is chosen randomly
between a set of available target points. Pedestrians and cars use
the ShortestPathMapBasedMovementmobility model, while trams
use the MapRouteMovement model available in The ONE.

4 EXPERIMENTAL RESULTS
In Table 1, we report the comparative results (median across 10 sim-
ulations) of the delivery probability obtained by the baseline Epi-
demic protocol vs that obtained by the best evolved protocol on each
test case. We consider as best evolved protocol the one showing the
highest delivery probability across 10 runs of GP, and the lowest
number of nodes in case of equal delivery probability. For each
pairwise comparison, we report also the p-value of the Wilcoxon
rank-sum test (𝑁 = 10, 𝛼 = 0.05). From the table, it can can observed
that GP is able to obtain statistically significant improvements of
the delivery probability (p-value ≤ 𝛼) in the Default and Helsinki
cases. Finally, the analysis of the fitness trends shown in the Appen-
dix (mean ± std. dev. of the best delivery probability found at each
generation across 10 runs of GP) reveals that in 5 out of 6 test cases
the initial GP population shows an average delivery probability
lower than the corresponding baseline (median across 10 simula-
tions, shown as a dashed blue line). In all cases, the average delivery
probability quickly increases during the evolutionary process.

The same analysis has been performed comparing the PRoPHET
routing protocol, as baseline, and the best evolved protocol for each
test case, see Table 2. The corresponding fitness trends are shown
in the Appendix. The results reveal that also in this case GP is
able to obtain statistically significant improvements of the delivery
probability (p-value ≤ 𝛼) in all cases except the two Manhattan
test cases. As for the fitness trends, it can be noted that in the two
Default test cases the average delivery probability of the initial GP
population is approximately equal to that of the baseline, while in
the remaining cases it is quite lower.

Table 1: Comparison on the delivery probability of Epidemic
routing vs the corresponding best evolved protocol.

Test case Epidemic GP p-value

Default (40 hosts) 0.2542 0.3342 0.005
Default (100 hosts) 0.2041 0.3764 0.005
Helsinki (40 hosts) 0.1910 0.2467 0.005
Helsinki (100 hosts) 0.1798 0.2887 0.005
Manhattan (40 hosts) 0.1685 0.1654 0.574
Manhattan (100 hosts) 0.1774 0.1664 0.139

Table 2: Comparison on the delivery probability of
PRoPHET vs the corresponding best evolved protocol.

Test case PRoPHET GP p-value

Default (40 hosts) 0.2673 0.3281 0.005
Default (100 hosts) 0.2307 0.3829 0.005
Helsinki (40 hosts) 0.2047 0.2447 0.005
Helsinki (100 hosts) 0.2078 0.2887 0.005
Manhattan (40 hosts) 0.1719 0.1647 0.333
Manhattan (100 hosts) 0.2092 0.2109 0.646

5 CONCLUSIONS
We applied Genetic Programming to improve two replication-based
routing protocols widely adopted in intermittently connected net-
works, namely Epidemic and PRoPHET. In four out of six test cases,
GP was able to find protocol implementations that produced signifi-
cantly better delivery probabilities w.r.t. the two baseline protocols.
In the two Manhattan-like test cases, on the other hand, no sig-
nificant improvement was obtained. In the full paper [6] we also
show that: 1) A similar difference in performance is observed when
comparing our improved PRoPHET protocols against three variants
of PRoPHET proposed in the recent literature; 2) The evolved pro-
tocols are in general characterized by a reduced overhead yet larger
latencies w.r.t. the baseline protocols; 3) Apart from the Manhattan
cases the evolved protocols could generalize across test cases.
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