
Tutorial:
A Gentle Introduction to Theory

(for Non-Theoreticians)

Benjamin Doerr
Laboratoire d’Informatique (LIX)

École Polytechnique, CNRS
Institut Polytechnique de Paris

lastname@lix.polytechnique.fr

http://gecco-2021.sigevo.org/

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
GECCO ’21 Companion, Lille, France
© 2021 Copyright held by the owner/author. Publication rights licensed to ACM.
ISBN 978-1-4503-8351-6/21/07 $15.00
DOI 10.1145/3449726.3461406 Benjamin Doerr: A gentle introduction to theory

Instructor: Benjamin Doerr
 Benjamin Doerr is a full professor at the French École Polytechnique.

 He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from the university of Kiel (Germany). His research area is
the theory of both problem-specific algorithms and randomized search
heuristics like evolutionary algorithms. Major contributions to the latter
include runtime analyses for existing evolutionary algorithms, the
determination of optimal parameter values, and the theory-guided design
of novel operators, on-the-fly parameter choices, and whole new
evolutionary algorithms.

 Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several
journals, among them Artificial Intelligence, Evolutionary Computation,
Natural Computing, and Theoretical Computer Science. Together with
Frank Neumann, he edited the book Theory of Evolutionary Computation
– Recent Developments in Discrete Optimization (Springer 2020).

2

Benjamin Doerr: A gentle introduction to theory

This Tutorial: A Real Introduction to Theory

 GECCO, CEC, PPSN always had a good number of theory tutorials.

 They did a great job in educating the theory community.

 However, not much was offered for those attendees which

 have little experience with theory,

 but want to understand what the theory people are doing (and why).

 This is the target audience of this tutorial. We try to answer those
questions which come before the classic theory tutorials.

3 Benjamin Doerr: A gentle introduction to theory

Questions Answered in This Tutorial

 What is theory in evolutionary computation (EC)?

 Why do theory? How does it help us understanding EC?

 How do I read and interpret a theory result?

 What type of results can I expect from theory?

 What are current “hot topics” in the theory of EC?

4

369

Benjamin Doerr: A gentle introduction to theory

Focus: EAs for Discrete Search Spaces
 In principle, all we say is valid for all subareas of theory.

 However, to not overload you with definitions and notation, we focus
mostly on classic evolutionary algorithms for discrete search spaces.

 Hence we intentionally omit examples from

 continuous optimization, e.g., CMA-ES, differential evolution, …

 genetic programming, ant colony optimizers, swarm intelligence, …

 exception: a discussion of the recent theory advances on
estimation-of-distribution algorithms in part V.

5 Benjamin Doerr: A gentle introduction to theory

The Most Important Point Before We Start
 If I’m saying things you don’t understand or if you want to know more

than what I had planned to discuss,
don’t be shy to ask questions at any time!
 This is “your” tutorial and I want it to be as useful for you as possible.

 I’m trying to improve the tutorial each time I give it. For this, your
feedback (positive and negative) is greatly appreciated!

 So talk to me after the tutorial, during the coffee breaks, social
event, late-night beer drinking, … or send me an email.

6

virtualin case you
are in Paris

Benjamin Doerr: A gentle introduction to theory

Structure of the Tutorial
 Part I: What is Theory of EC?

 Part II: A Guided Walk Through a Famous Theory Result

 an illustrative example to convey the main messages of this tutorial

 Part III: How Theory Has Contributed to a Better Understanding of EAs

 3 ways how theory has an impact

 Part IV: How Theory Can Help YOU

 Part V: Current Hot Topics in the Theory of EAs

 EDAs, dynamic&noisy optimization, dynamic/adaptive parameter
choices

 Part VI: Concluding Remarks

 Appendix: glossary, references

7 Benjamin Doerr: A gentle introduction to theory

Part I:
What is

Theory of EC

8

 Definition: theory of EC

 What can you achieve with theoretical research?

 Comparison: theory vs. experiments

370

Benjamin Doerr: A gentle introduction to theory

What Do We Mean With Theory?
 Definition (for this tutorial):

By theory, we mean results proven with mathematical rigor.

 Mathematical rigor:

 make precise the evolutionary algorithm (EA) you regard

 make precise the problem you try to solve

 formulate a precise statement how this EA solves this problem

 prove this statement

 Example:
Theorem: The (1+1) EA finds the optimum of the OneMax benchmark
function ୀଵ in an expected number of at most

iterations.
Proof: blah, blah, …

9 Benjamin Doerr: A gentle introduction to theory

Other Notions of Theory
 Theory: Mathematically proven results

 Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Try to describe/measure/quantify observations.

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis

10

Benjamin Doerr: A gentle introduction to theory

Other Notions of Theory
 Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============

 Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Try to describe/measure/quantify observations.

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis

11 Benjamin Doerr: A gentle introduction to theory

Why Do Theory? Because of the Results!
 Absolute guarantee that the result is correct (it is proven).

 You can be sure.

 Reviewers can check truly the correctness of results.

 Readers can trust reviewers or, with moderate maths skills, check the
correctness themselves.

 Many results can only be obtained by theory; e.g., because you make a
statement on a very large or even infinite set:

 all bit-strings of length ,

 all TSP instances on vertices,

 all input sizes ,

 all possible algorithms for a problem.

12

371

Benjamin Doerr: A gentle introduction to theory

Why Do Theory? Because of the Approach!
 A proof (automatically) gives insight in

 how things work (working principles of EC),

 why the result is as it is.

 Self-correcting/self-guiding effect of proving:

 When proving a result, you are automatically pointed to the questions
that need more thought.

 You see what exactly is the bottleneck for a result.

 Trigger for new ideas:

 clarifying nature of mathematics,

 playful nature of mathematicians.

13 Benjamin Doerr: A gentle introduction to theory

Limitations of Theoretical Research
 Restricted scope: So far, mostly simple algorithms could be analyzed for

simple optimization problems.

 Less precise results: Constants are not tight, or not explicit as in
“ ଶ ” = “less than ଶ for some unspecified constant ”.

 Less specific results:

 You obtain a (weaker) guarantee for all problem instances,

 but not a stronger guarantee for those instances which show up in
your application.

 Theory results can be very difficult to obtain: The proof might be short
and easy to read, but finding it took long hours.

 Usually, there is no generic way to the solution, but you need a
completely new, clever idea.

14

Benjamin Doerr: A gentle introduction to theory

Part II:
A Guided Walk Through a

Famous Theory Result

15

We use a simple but famous theory result

 as an example for a non-trivial result

 to show how to read a theory result

 to explain the meaning of such a theoretical statement

 to illustrate what we just discussed

Benjamin Doerr: A gentle introduction to theory

A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function ଵ

ୀଵ ଵ
in an expected number of iterations.

Reference:
[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81, 2002.

– Famous paper (500+ citations, maybe the most-cited pure EA theory paper)

– Famous problem (20+ papers working on exactly this problem, many highly
useful methods were developed in trying to solve this problem)

16

372

Benjamin Doerr: A gentle introduction to theory

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function ଵ

ୀଵ ଵ
in an expected number of iterations.

(1+1) evolutionary algorithm to maximize 𝒏 :
1. choose uniformly at random
2. while not terminate do
3. generate from by flipping each bit independently

with probability (“standard bit mutation”)
4. if then
5. output

Reading This Result

17

at most for some
unspecified constant

a hidden all-quantifier: we claim
the result for all ଵ

performance measure: number of iterations or
fitness evaluations, but not runtime in seconds

A mathematically
proven result

should be made
precise in the paper to
avoid any ambiguity

Benjamin Doerr: A gentle introduction to theory

Why is This a Good Result?
 Gives a proven performance guarantee

 General: a statement for all linear functions in all dimensions

 Non-trivial

 Surprising

 Provides insight in how EAs work

18

 more on these 3 items
on the next slides

Benjamin Doerr: A gentle introduction to theory

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

19 Benjamin Doerr: A gentle introduction to theory

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

 Hard to prove
 7 pages complicated maths proof in [DJW02].
 We can do better now, but only because we developed deep analysis

techniques (drift analysis).

 No “easy” explanation
 monotonicity: flipping a 0 to a 1 always increases the fitness

 Are monotonic functions easy to optimize for a EAs (because you
only need to collect 1s)?

 No! Exponential runtimes can occur [DJS+13, LS18].
 separability: a linear function can be written as a sum of functions

such that the depend on disjoint sets of bits
 Is the optimization time of such a sum small?

 No! The can interact badly [DSW13].

20

373

Benjamin Doerr: A gentle introduction to theory

Surprising: Same Runtime For Very
Different Fitness Landscapes

 Example 1: OneMax, the function counting the number of 1s in a string, ଵ ୀଵ :

 unique global maximum at

 perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum.

 Example 2: BinaryValue (BinVal for short), the function mapping a bit-
string to the number it represents in binary ଵ ି ୀଵ :

 unique global maximum at

 very low fitness-distance correlation:

 ିଵ, distance to optimum is ,

 ିଵ , distance to optimum is .
21 Benjamin Doerr: A gentle introduction to theory

Insight in Working Principles
 Insight from the result:

 Even if there is a low fitness-distance correlation (as is the case for
the BinVal function), EAs can be very efficient optimizers.

 Insight from the proof:

 The Hamming distance ∗ of to the optimum ∗ measures
very well the quality of the search point :

 The expected number ௫ of iterations to find the optimum starting
from satisfies

∗ ௫ ∗
independent of .

22

Benjamin Doerr: A gentle introduction to theory

A Glimpse on a Modern Proof
 Theorem [DJW12]: For all problem sizes and all linear functions

with ଵ ଵ the (1+1) EA finds the optimum ∗ of in an
expected number of at most iterations.

 1st proof idea: Without loss, we can assume that ଵ ଶ .

 2nd proof idea: Regard an artificial fitness measure!

 Define ିଵ ୀଵ “artificial weights” from down to ଵ
 Key lemma: Consider the (1+1) EA optimizing the original . Assume that

some iteration starts with the search point and ends with the random
search point . Then∗ ᇱ ∗
 expected artificial fitness distance reduces by a factor of ଵସ

 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t.
the artificial fitness into a runtime bound.
 Roughly: the expected runtime is at most the number of iterations needed to

get the expected artificial fitness distance below one.

23

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen

Benjamin Doerr: A gentle introduction to theory

Multiplicative Drift Theorem
 Theorem [DJW12]: Let ଵ ଶ be a sequence of random variables taking

values in the set . Let . Assume that for all , we have

௧ାଵ ௧
Let ௧ . Then

 On the previous slide, this theorem was used with

 ,
 ௧ ∗ (௧) ,
 and the estimate .

 Bibliographical notes: Artificial fitness functions very similar to this were already used in
Droste, Jansen, and Wegener [DJW02] (conference version [DJW98b]). Drift analysis
(“translating progress into runtime”) was introduced to the field by He and Yao [HY01] to
give a simpler proof of the [DJW02] result. A different approach was given by Jägersküpper
[Jäg08]. The multiplicative drift theorem by D., Johannsen, and Winzen [DJW12]
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the
most-used tools today.

24

“Drift analysis”:
Translate

expected progress
into

expected (run-)time

374

Benjamin Doerr: A gentle introduction to theory

Limitations of the Linear Functions Result

 An unrealistically simple EA: the (1+1) EA.

 Linear functions are “trivial” artificial test function.

 Not a precise result, but

 only in [DJW02]

 or a most likely significantly too large constant in the [DJW12] result.

 Two replies (details on the following slides):

 Despite these limitations, we gain insight.

 The 2002-results was the start, now we know much more.

25 Benjamin Doerr: A gentle introduction to theory

Limitation 1: Only the Simple (1+1) EA
 Insight: Using nothing else than standard bit mutation is enough to

optimize problems with low fitness-distance correlation.

 Newer Result: The (1+) EA optimizes any linear function in expected
time (= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the expected
optimization time is ୪୭ ୪୭୪୭ ఒ
 Not all linear functions have the same optimization time [DK15]!

 We are optimistic that we will make progress towards more complicated
EAs. Known open problems include, e.g., how crossover-based
algorithms and ant colony optimizers optimize linear functions.

26

Benjamin Doerr: A gentle introduction to theory

Limitation 2: Only Linear Functions
 Insight: Linear functions are easy, monotonic functions can be difficult
 some understanding which problems are easy and hard for EAs.

 Newer runtime analyses for the (1+1) EA (and some other algorithms):
 Eulerian cycles [Neu04, DHN07, DKS07, DJ07],
 shortest paths [STW04, DHK07, BBD+09],
 minimum spanning trees [NW07, DJ10, Wit14],
 and many other poly-time optimization problems.

 We also have some results on approximate solutions for NP-complete
problems like partition [Wit05], vertex cover [FHH+09, OHY09], maximum
cliques [Sto06], graph coloring [SZ10, BS19].

 We have some results on dynamic and noisy optimization (part V).

27 Benjamin Doerr: A gentle introduction to theory

Limitation 3:
 Insight: Linear functions are easy for the (1+1) EA.

 For this insight, a rough result like is enough.

 Newer result [Wit13]: The exp. runtime of the (1+1) EA on any linear
function is , that is, at most for some constant .

 Asymptotic result, but the asymptotics are only in a lower order term.

 [Wit13] also has a non-asymptotic result, but it is harder to digest:

28

375

Benjamin Doerr: A gentle introduction to theory

Summary “Guided Tour”
 We have seen one of the most influential theory results:

The (1+1) EA optimizes any linear function in iterations.

 We have seen how to read and understand such a result.

 We have seen why this result is important:

 non-trivial and surprising,

 gives insights in how EAs work, and

 spurred the development of many important tools (e.g., drift analysis).

 We have discussed the limitations of this theory result.

29 Benjamin Doerr: A gentle introduction to theory

Part III:
How Theory Can Help

Understanding and
Designing EAs

30

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and
algorithms

3. Invent new representations, operators, and algorithms

Benjamin Doerr: A gentle introduction to theory

Contribution 1: Debunk Misconceptions

 When working with EAs, it is easy to conjecture some general rule from
observations, but without theory it is hard to distinguish between “we
often observe” and “it is true that”.

 Reason: It is often hard to falsify a conjecture experimentally.

 The conjecture might be true “often enough”, but not in general.

 Danger: Misconceptions prevail in the EA community and misguide the
future development of EAs.

 2 (light) examples on the following slides

31 Benjamin Doerr: A gentle introduction to theory

Misconception 1: Functions Without Local
Optima are Easy to Optimize

 A function has no local optima if each non-optimal search point has
a neighbor with better fitness. “unimodal function”

 If () is not optimal, then by flipping a single bit of you can reach a
better solution.

 Misconception: Such functions are easy to optimize…

 “because all you need is flipping single bits”.

 Truth: There are unimodal functions such that all reasonable EAs
with high probability need super-polynomial time to find a reasonable solution
[HGD94,Rud96,DJW98a].

 Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you
may need to do this an exponential number of times because all improving paths
to the optimum are that long

32

376

Benjamin Doerr: A gentle introduction to theory

Misconception 2: Monotonic Functions are
Easy to Optimize for EAs

 A function is monotonically strictly increasing (monotonic) if the
fitness increases whenever you flip a 0-bit into 1.

 strong version of “no local optima”: each neighbor with additional ones is better

 Misconception: Such functions are easy to optimize for standard EAs…

 because already simple hill-climbers flipping single bits (e.g., randomized local
search) do the job in time .

 Truth: There are (many) monotonic functions such that with high probability the
(1+1) EA with mutation probability needs exponential time to find the optimum
[DJS+13].
 The can be lowered to [LS18].

 Same result for many mutation-based algorithms [Len20].

 For any there is a and a monotonic such that the (1+) EA with
mutation rate needs super-polynomial time to optimize [LZ19].

33 Benjamin Doerr: A gentle introduction to theory

Summary Misconceptions

 Intuitive reasoning or experimental observations can lead to wrong beliefs.

 It is hard to falsify them experimentally, because

 counter-examples may be rare (so random search does not find them),

 counter-examples may have an unexpected structure.

 There is nothing wrong with keeping these beliefs as “rules of thumb”, but
it is important to know what is a rule of thumb and what is really the truth.

 Theory is the right tool for this!

34

Benjamin Doerr: A gentle introduction to theory

Contribution 2: Help With Design Choices

 When designing an EA, you have to choose between a huge number of
design alternatives: the basic algorithm, the operators and
representations, the parameters, ….

 Theory can guide you with deep and reliable analyses of scenarios
similar to yours.

 The question “what is a similar scenario” remains, but you have the
same problem when looking for advice from experimental research.

 Examples:

 use of fitness-proportionate selection

 representations in graph problems
 use of crossover: [JW02, SW04, FW04, FW05, JW05, Sud05, WJ07, RWP08, DT09, NT10, LY11,

KST11, DJK+11, DHK12a, DJK+13, DFK+16, Sud17, DFK+18, CO18, CO20, OSW20,Sut21]

 parameters: [Müh92, Bäc93, GKS99, JW00, Prü04, JJW05, Wit06, JS07, BDN10, Leh10, Leh11,
LY12, Sud13, Wit13, RS14, DK15, GW17, DLMN17, ADFH18, ADY19, AD20, BBD21a, Doe21]

35

 more on these 2
on the next slides

Benjamin Doerr: A gentle introduction to theory

Design Choices:
Fitness-Proportionate Selection

 Theorem [OW15]: When the Simple GA (Goldberg [Gol89]) with a
population size .ଶସଽଽ or less optimizes the OneMax test function ଵ , then in any polynomial number of iterations
it does not find an individual that is 1% better than a random individual.

 Interpretation: If fitness-proportionate has difficulties already on OneMax,
use it with caution! Similar results [HJKN08, NOW09]

36

377

Benjamin Doerr: A gentle introduction to theory

Design Choices: Representations
 Several theoretical works on shortest path problems [STW04, DHK07,

BBD+09]. All use a vertex-based representation:

 each vertex points to its predecessor in the path

 mutation: rewire a random vertex to a random neighbor

 [DJ10]: How about an edge-based representation?

 individuals are set of edges (forming reasonable paths)

 mutation: add a random edge (and delete the one made obsolete)

 Result: All previous algorithms become faster by a factor of మ|ா|
 [JOZ13]: edge-based representation also preferable for vertex cover

 Interpretation: While there is no guarantee for success, it may be useful
to think of an edge-based representation for graph-algorithmic problems

37

typical theory-
driven curiosity

Benjamin Doerr: A gentle introduction to theory

Summary Design Choices
 By rigorously analyzing simplified situations, theory can suggest

 which algorithm to use,

 which representation to use,

 which operators to use,

 how to choose parameters.

 As with all particular research results, the question remains how
representative such a result is for the general usage of EAs.

38

Benjamin Doerr: A gentle introduction to theory

Contribution 3: Invent New Operators
and Algorithms

 Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.

 Example: What is the right way to do mutation [DLMN17]?

 Outline (of the next 10+ slides):

 What is “known” about mutation

 A thorough analysis how simple EAs optimize the jump benchmark

 Some unexpected conclusions [best-paper award in the GECCO
2017 Genetic Algorithms track]

 2nd example [not shown]: Design of the GA based on black-
box complexity insight [DDE13, GP14, DDE15, DD15a, DD15b, Doe16, BD17,
DD18, KAD19, ADK19, BB19, ABD20a, ADK20, ABD20b, AD20, BB20, FS20, ABD21]

39 Benjamin Doerr: A gentle introduction to theory

General Belief on Mutation

 Note: We only deal with bit-string representations, that is, the search
space is for some .

 [Similar results hold for other discrete search spaces]

 General belief: The right way of doing mutation is standard bit mutation,
that is, flipping each bit independently with some probability (“mut. rate”).

 Global operator: from any parent you can generate any offspring
(possibly with very small probability).
 Algorithms cannot get stuck forever in a local optimum.

 General recommendation: Use a small mutation rate like .
See, e.g., [Bäc96, BFM97, Och02].

40

378

Benjamin Doerr: A gentle introduction to theory

Informal Justifications for

 Imitate local search / hill-climbing: A mutation rate of maximizes the
probability to flip a single bit.

 Reducing the rate by a factor of reduces this prob. by a factor of .

 Increasing the rate by a factor of reduces this prob. by a factor of ().
 Mutation is destructive: If your current search point has a Hamming

distance ∗ of less than from the optimum ∗, then the offspring
has (in expectation) a larger Hamming distance and this increase is
proportional to :

 ∗ ∗ ∗

41

at most for some constant
at least for some constant
both and

Benjamin Doerr: A gentle introduction to theory

Proven Results Supporting
 Optimal mutation rates for (1+1) EA:

ଵ for OneMax [Müh92; Bäc93, GKS99]

ଵ.ହଽ for LeadingOnes [BDN10]

ଵ for all linear functions [Wit13]

 monotonic functions [Jan07, DJSWZ13, LS18, LMS19]:

 , gives a expected runtime on all monotonic

functions with unique optimum,

 for some gives ଶ ,

ଶ.ଵଷ… gives an exponential runtime on some monotonic functions.

 When , then the optimal mutation rate for the EA optimizing
OneMax is ଵ [GW17].

42

Theory supports
using standard bit
mutation with
mutation rate
around

Benjamin Doerr: A gentle introduction to theory

Really?
 Can we really say that is good (at least “usually”)?

 More provocative: Can we really say that standard bit mutation is the
right way of doing mutation?

 Note: All results regard easy unimodal optimization problems.

 OneMax, LeadingOnes, linear functions, monotonic functions.

 Flipping single bits is a very good way of making progress

 Let’s look at an example with local optima…

43 Benjamin Doerr: A gentle introduction to theory

Question: What is the Best Mutation Rate for the
(1+1) EA on the Jump Functions Benchmark?

 ,: fitness of an -bit string is the number ଵ of ones, except if ଵ , then ଵ [DJW02]

 Novelty (for a theoretical analysis of the mutation rate): There are non-
trivial local optima: all with ଵ .

44

ଵ

,
global optimum ∗

379

Benjamin Doerr: A gentle introduction to theory

Runtime Analysis
 Let denote the expected optimization time of the (1+1) EA

optimizing , with mutation rate .

 Theorem: For all and ,

𝒎 𝒏ି𝒎 𝒎 𝒏ି𝒎 ିଵ
 Let ௧ ௧ .

 Theorem: If , then ௧ ⁄ ଵ ⁄
and is essentially the only optimal mutation rate.

 The right mutation rate is much higher than the usual and it
gives a huge speed-up!

45 Benjamin Doerr: A gentle introduction to theory

Missing the Optimal Mutation Rate
 Theorem: If or , then

 ଶ ௧
 In simple words: is essentially the optimal mutation rate, but a small

deviation increases the runtime massively.

 Dilemma: To find the right mutation rate, you need to know “the ”, that
is, how many bits you need to flip to leave the local optimum .

 Math. reason for the dilemma: When flipping bits independently at random
(standard bit mutation), the Hamming distance of parent and
offspring is strongly concentrated around the mean.

 Exponential tails of the binomial distribution

 Maybe standard bit mutation is not the right thing to do?

46

Benjamin Doerr: A gentle introduction to theory

From This Analysis to a
New Mutation Operator

 Recap: What do we need?

 No strong concentration of

 Larger numbers of bits flip with reasonable probability

 1-bit flips occur with constant probability (easy hill-climbing)

 Solution: Heavy-tailed mutation (with parameter , say).

 choose randomly with ିఉ [power-law].

 perform standard bit mutation with mutation rate .

 Some maths:

 The probability to flip bits is ିఉ . No exponential tails

 , e.g., 32% for (37% for classic mut.)

47

Note: Random mut-rates have been used
before in theory, but not heavy-tailed and

only for special purposes (unknown solution
length [DDK17], higher arities [DDK18])

Benjamin Doerr: A gentle introduction to theory

Heavy-tailed Mutation: Results
 Theorem: The (1+1) EA with heavy-tailed mutation () has an

expected optimization time on , of

ఉି.ହ ௧
 This one algorithm for all is only an 𝜷ି𝟎.𝟓 factor slower than

the EA using the optimal mutation rate (depending on)!
 “One size fits all” (apart from a small polynomial factor).

 Compared to the classic EA, this is a speed-up by a factor of ().
 Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than .ହ – by taking – is unavoidable:

 For sufficiently large, any distribution on the mutation rates in has an
such that ௧ .

48

380

Benjamin Doerr: A gentle introduction to theory

Experiments (m=8, n=20..150)

49

Runtime of the (1+1) EA on ଼, (average over 1000 runs). To allow this number of
experiments, the runs where stopped once the local optimum was reached and the remaining
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: A gentle introduction to theory

Beyond Jump Functions
 Example (maximum matching): Let be an undirected graph having

edges. A matching is a set of non-intersecting edges. Let be the size
of a maximum matching. Let be constant and ଶଶା .

 The classic (1+1) EA finds a matching of size ை்ଵାఌ in an expected
number of at most ,ఌ iterations, where ,ఌ is some number in ଶାଶ . [GW03]

 The (1+1) EA with heavy-tailed mutation does the same in expected
time of at most 𝒆𝒎 𝒎 𝜷ି𝟎.𝟓 𝒏,𝜺.

 2nd example: Vertex cover in bipartite graphs (details omitted).

50

Riemann zeta function:
for

Benjamin Doerr: A gentle introduction to theory

Performance in Classic Results
 Since the heavy-tailed mutation operator flips any constant number of

bits with constant probability, many classic results for the standard (1+1)
EA remain valid (apart from constant factor changes):

 runtime on OneMax

 ଶ runtime on LeadingOnes

 ଶ ୫ୟ୶ runtime on MinimumSpanningTree [NW07]

 and many others…

 The largest expected runtime that can occur on an is …

 for the classic (1+1) EA: Trap function [DJW02], minimum
makespan scheduling [Wit05]

 ఉ for the heavy-tailed (1+1) EA

51 Benjamin Doerr: A gentle introduction to theory

Working Principle of Heavy-Tailed Mutation
 Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

 Distribute this free probability mass in a power-law fashion on all other -
bit flips
 increases the prob. for a -bit flip from roughly ଵ⋅! to roughly ିఉ
 reduces the waiting time for a -bit flip from to ఉ

 This redistribution of probability mass is a good deal, because we usually
spend much more time on finding a good multi-bit flip

 ,: spend time on all 1-bit flips, but time to find
the one necessary -bit flip

 These elementary observations are a good reason to believe that heavy-
tailed mutation is advantageous for a wide range of multi-modal problems.
 Other theory works: [FQW18, FGQW18a, FGQW18b, WQT18, ABD20a, ABD20b,

DZ21, ABD21]

52
Choose all 3 parameters of an algorithm heavy-tailed and

get essentially the performance of optimal parameters.

381

Benjamin Doerr: A gentle introduction to theory

Heavy-Tailed “Fast”
 Heavy-tailed mutation has been experimented with in continuous

optimization (with mixed results as far as I understand):

 Simulated annealing [Szu, Hartley ‘87]

 Evolutionary programming [Yao, Lui, Lin ‘99]

 Evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger,
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

 Estimation of distribution algorithms [Posik ’09, ‘10]

 Algorithms using heavy-tailed mutation were called fast by their
inventors, e.g., fast simulated annealing.

 We propose to call our mutation fast mutation and the resulting
EAs fast, e.g., ఉ.

53 Benjamin Doerr: A gentle introduction to theory

Summary: Fast Mutation on
– A Theory-Guided Invention

 By rigorously analyzing the performance of a simple mutation-based EA on
the non-unimodal JUMP fitness landscape, we observe that

 higher mutation rates are useful to leave local optima

 standard bit mutation with a fixed rate is sub-optimal on most problems

 Solution: Use standard bit mutation, but with a random mutation rate
sampled from a power-law distribution

 () factor speed-up for ,
 () factor improvement of the runtime guarantee for max. matching

 first promising experimental results

 Big question: Will this work in practice and will practitioners use it?

 First results are very promising
54

Benjamin Doerr: A gentle introduction to theory

Summary Part 3
Theory has contributed to the understanding and use of EAs by

 debunking misbeliefs (drawing a clear line between rules of thumb and
proven fact)

 e.g., “no local optima” and “monotonic” do not mean “easy”

 giving hints how to choose parameters, representations, operators, and
algorithms

 e.g., if fitness-proportionate selection with comma selection cannot
even optimize OneMax, maybe it is not a good combination

 inventing new representations, operators, and algorithms: this is fueled
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

 e.g., if leaving local optima generally needs more bits to be flipped,
then we need a mutation operator that does so sufficiently often
 heavy-tailed mutation

55 Benjamin Doerr: A gentle introduction to theory

Part IV:
How Theory Can Help

YOU

56

382

Benjamin Doerr: A gentle introduction to theory

How Theory Can Help YOU

 Message of this talk so far: Theory people can produce mathematical
analyses and from these gain insights that are useful also outside theory.

 Two ways how you can profit from theory:

 Try to read some theory works and (at least) understand their meaning
for the general use of EAs
 could be difficult

 Try to imitate the theory approach (without proving everything)
 could be easy

 Next few slides: How you could have invented the heavy-tailed
mutation operator with theory-style thinking

57 Benjamin Doerr: A gentle introduction to theory

An Example of Theory-Style Thinking

 Problem: You run your favorite evolutionary algorithm on your favorite
problem and you feel that it takes too long to leave local optima.

 You try without success all your tricks:

 parameter tuning

 landscape analysis

 asking colleagues that are true experts in experimental work

 etc.

 but nothing really solves the problem.

 You’re so desperate that you try theory-style thinking…

58

Benjamin Doerr: A gentle introduction to theory

1st Step: Take a Really Simple Example
Situation

 Really simple example situation (that hopefully still is representative for
your problem of leaving local optima):

 You take a very simple optimization problem in which every reasonable
heuristic gets stuck in a local optimum jump function

 You take the most simple evolutionary algorithm you know
 the (1+1) EA with mutation rate

 You only look at the problem of leaving the local optimum (and not at
the whole runtime)

 Note: If you later see that this is too simple and not helpful, you can still
make it more complex later. But don’t be shy to start off really simple!

59 Benjamin Doerr: A gentle introduction to theory

2nd Step: Analyze Your Example Precisely
and in Full Generality

 Simple example situation: The
(1+1) EA optimizes a jump function
and is already in the local optimum.

 Question: How long does it take to leave the local optimum?

 What is the probability to generate an offspring better than the local opt.?

 Local optimum: any bit-string with ones and zeroes

 To leave this, you have to flip the missing bits and not flip the other bits

 Probability for this ି
60

ଵ

, Here

Full generality:
A formula for all

383

Benjamin Doerr: A gentle introduction to theory

3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎 for
interesting values of :

 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So
let’s use the scaling and take :ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]

61 Benjamin Doerr: A gentle introduction to theory

3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎
 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So
let’s use the scaling and take :ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]

62

Benjamin Doerr: A gentle introduction to theory 63 Benjamin Doerr: A gentle introduction to theory 64

384

Benjamin Doerr: A gentle introduction to theory

Inverse Plot: Loss From Taking Rate
Instead of the Optimal Rate

65

Less than 20% of
the optimal

performance for
and

Benjamin Doerr: A gentle introduction to theory

4th Step: Interpret the Data and
Find a Solution

 The plots clearly show:

 The classic mutation rate of is highly suboptimal:

 e.g., a factor-500 performance loss for

 There is no “right” mutation rate: Each rate is good for values of
that are close to only

 e.g., is perfect for , but gives only 20% of the optimal
performance for and

 Solution attempt: “average” over different mutation rates!

 e.g., take rate and each with probability 50%

66

Benjamin Doerr: A gentle introduction to theory

 Averaging gives significant speed-ups for

 Next steps (omitted here): Optimize this averaging strategy

67 Benjamin Doerr: A gentle introduction to theory

Summary: Theory-Style Thinking
 Step 1: Choose a really, really simple example situation.

 Step 2: Analyze this example precisely and in full generality.
 Mathematical formula

 Step 3: Use the formula to cheaply generate very trustworthy data
for any parameter values you want.

 Step 4: Interpret the data, find a solution.

68

385

Benjamin Doerr: A gentle introduction to theory

Part V:
Current Topics of Interest

in the Theory of EC

69

 Populations
 Estimation-of-distribution algorithms (EDAs)
 Dynamic and noisy optimization
 Dynamic/adaptive parameter choices
 Fine-grained runtime analysis: fixed budget/target, parameterized complexity

Benjamin Doerr: A gentle introduction to theory

 While most EAs in practice use non-trivial populations, EA theory has not
been very successful in understanding why this is good (but some
interesting results exist).

 Elitist mutation-based algorithms:
 Larger offspring population size [JJW05, DK15, GW17, GW18]:

 Allow parallel implementations (faster).
 Usually no speed-up w.r.t. the total number of fitness evaluations.
 Research question: Up to which pop. size you have a linear

speed-up, that is, the total runtime does not increase?
 Larger parent population size: Rather slows down things, but by

surprisingly little [Wit06, ADFH18, AD20].
 Both can provably give robustness against noise and dynamic

changes of the problem [JS05, GK16, LW16, DJL17, LM20].

Hot Topic 1: Populations

70

Benjamin Doerr: A gentle introduction to theory

 Non-elitist mutation-based algorithms: Need sufficiently large populations
[JS07, NOW09, Leh10, Leh11, RS14, DL16a, CDEL18, DK19, Doe20b]
 Small offspring pop: you lose good solutions too quickly and cannot

really optimize (exponential runtimes).
 Large offspring pop: you usually generate a copy of a good parent and

thus imitate an elitist algorithm.
 Inside the phase transition: strange things happen [ADY19].
 Problem: Not too much argument for non-elitism in theory so far!

Example: for no choice of the population sizes, the EA shows an
interesting speed-up over the EA on jump functions [Doe20a]

 Large parent population plus diversity mechanism: The diversity mechanism
can force the population to spread out, this can aid leaving local optima
[FHN07, Sto08, FHN09, DFK+16, DFK+18, CS18, OSZ19].

Populations (2)

71 Benjamin Doerr: A gentle introduction to theory

 Crossover-based algorithms obviously need populations. The real
problem is getting crossover to be useful.

 Summary:
 Populations can ensure robustness and parallel speed-ups
 They are needed for non-elitist algorithms, but not many useful

applications of non-elitism could be analyzed theoretically
 They are needed for cross-over based algorithms, but again our

understanding of the usefulness of crossover remains low.
 Much work do be done!

Populations (3)

72

386

Benjamin Doerr: A gentle introduction to theory

Hot Topic 2: Estimation-of-distribution
Algorithms (EDA)

 Example: compact Genetic Algorithm (cGA) of Harik, Lobo, and Goldberg
[HLG99] with hypothetical pop. size to maximize
 initialize
 while not terminate

 sample such that indep. for all
 sample such that indep. for all
 if then
 for all do

 Instead of storing concrete search points, EDAs develop a probabilistic
model (represented by the frequency vector in the cGA).
 much richer representation of knowledge

73 Benjamin Doerr: A gentle introduction to theory

What Can EDAs Do That EAs Can’t?
 Robustness to noise:

 The cGA can cope well with normally distributed additive posterior
noise [FKKS17]

 The UMDA can cope well with 1-bit prior noise [LN19b]
 (similar result for ACO found earlier [DHK12b, FK13, ST12])

 Leaving local optima: EDAs can optimize multimodal functions faster
than many classic EAs [HS18, Doe19a, Doe19b, DK20c]
 (similar result for ACO found later [BBD21b])

 Model building = representing many good solutions at once:
 MIMIC can build a probabilistic model that allows to sample a huge

number of distant good solutions (experimental) [DK20a]

74

Benjamin Doerr: A gentle introduction to theory

Difficulty: Genetic Drift
 When a bit has no influence on whether or is better (because other

bits have a higher impact), then the frequency performs a random walk:
 ௪ with probability
 ௪ with probability
 ௪ otherwise

 Such random movements can bring the frequency to a random boundary
value convergence to a sub-optimal solution.

 Insufficient solution: Artificially cap the frequencies into

 Problems: If frequencies are mostly at the artificial boundaries, then…
 our probabilistic model is not richer than that of the (1+1) EA
 the performance can drop [Witt17+LSW21, LN19a+DK20c,

Doe19+DZ20a,DL15+DK21b]

75 Benjamin Doerr: A gentle introduction to theory

Quantifying Genetic Drift
 Good news: From many previous works specifically targeting genetic drift

[Sha02, Sha05, Sha06, FKK16] and many runtime analyses coping with
genetic drift [Dro06, DLN19, LN17, LN18, HS18, Doe19b, Doe19a,
SW19, Wit19, KW20, LSW21], we now understand genetic drift well.

 Genetic drift can be quantified via drift analysis applied to the variance
and Martingale concentration results [DZ20b]:

 Theorem (stated for the cGA only): Assume that the cGA optimizes a
function with a neutral bit.
 The first time the frequency of this bit is at the boundary, is ଶ .
 The first time this frequencies leaves is ଶ .
 The probability that this frequency leaves the interval

in the first iterations, is at most ଶ ଶ
76

387

Benjamin Doerr: A gentle introduction to theory

Overcoming Genetic Drift

EDA variants trying to avoid genetic drift outright:
 stable-cGA [FKK16]: cGA with an artificially modified frequency update.

 runtime on LeadingOnes
 exponential runtime on OneMax [DK20b].

 sig-cGA [DK20b,DWZ21]: regards a longer history and changes
frequencies only when there is sufficient evidence for it
 runtime on OneMax, LeadingOnes, and

DeceivingLeadingBlocks

Automated ways to set the parameters right:
 Parallel runs with diverse parameter values [Doe19b]
 Smart restarts: Restart with a larger when the theorem on the previous

slide says that genetic drift could have occurred [DZ20a]

77 Benjamin Doerr: A gentle introduction to theory

Summary: EDA Theory

 Significant progress in the last 5 years:
 many runtime analyses, many strong methods
 understanding genetic drift.

 Cool particular results:
 EDAs work well in the presence of noise
 EDAs can leave local optima quicker than most EAs

 Many open problems:
 Tight runtime bounds for classic problems (OneMax)
 More complete picture how EDAs cope with noise (2 particular results)
 Theory for multi-variate EDAs (no result yet)

78

Benjamin Doerr: A gentle introduction to theory

Hot Topic 3:
Dynamic and Noisy Optimization

 Dynamic optimization: Optimization when the problem to be solved
changes over time

 Noisy optimization: Optimization in the presence of (typically random)
errors in the problem data

 Common question: How do EAs perform when the evolutionary
optimization process is disturbed by some external (random) source.

 General belief: due to their randomized nature, EAs can cope well with
such stochastic disturbances

79 Benjamin Doerr: A gentle introduction to theory

Dynamic OneMax
 First theory result (Droste [Dro02]):

 OneMax function with optimum : ௭
 Dynamic OneMax with 1-bit dynamics: in each iteration, with some

small probability the current optimum is replaced by a random
Hamming neighbor (=a random bit of is flipped)

 Result: If ୪୬ , then the (1+1) EA finds the optimum of this
dynamic OneMax function in ାଵା ଵ iterations (expectation).

 Droste [Dro03]: If the dynamic is such that independently with prob. ᇱ୪୬ మ each bit of the optimum is flipped (same expected change), then the
runtime bound is ସାଵା ଵ .

 Improved to ଵ...ାଶ by Kötzing, Lissovoi, Witt [KLW15]

 Improved to ଵ.ଷଽ..ାଵ by Dang-Nhu et al. [DNDD+18],
valid for all dynamics changing the opt. by at most ୪୬ in expect.

80

388

Benjamin Doerr: A gentle introduction to theory

Interpretation of These Results
 Evolutionary algorithms can be surprisingly robust to dynamically

changing problem instances!

 If ୪୬ in the 1-bit dynamic, then in average, every ୪୬ iterations the
optimum moves to a Hamming neighbor
 and we lose a fitness level (almost always)

 If the fitness distance is , then we need a roughly ௗ iterations to
improve the fitness (without dynamic changes)

 When close to the optimum (constant),

 it takes expected time to gain one fitness level without dynamics

 but we lose expected fitness levels because of the dynamic.

 Despite this, the EA finds the optimum in polynomial time

81 Benjamin Doerr: A gentle introduction to theory

Why?
 From the proofs in Dang-Nhu et al. [DNDD+18] it seems that EAs make

progress by repeatedly

 hoping for a phase of few dynamic changes

 and then making exceptionally fast progress
 supports the general belief that the randomized nature of EAs is
the reason for their robustness

82

A plot of a typical run (fitness
distance over time) for =100,
1-bit dynamic with =(ln)/

Warning: If the fitness-
distance correlation is

weak, EAs find it harder
to reoptimize [DDN19]

Benjamin Doerr: A gentle introduction to theory

Noisy Optimization
 Very roughly speaking, similar results hold for noisy optimization, see,

e.g., Droste [Dro04], Giessen, Kötzing [GK16], Qian, Bian, Jiang, Tang
[QBJT19], Dang-Nhu et al. [DNDD+18], Gavenciak, Geissmann, Lengler
[GGL19], Sudholt [Sud21]

 Additional aspect: We can tolerate higher noise levels by

 resampling (Akimoto, Astete-Morales, Teytaud [AMT15], Qian et al.
[QBJT19], D. and Sutton [DS19]),

 using larger population sizes (Giessen and Kötzing [GK16]),

 using other algorithms like

 ant colony optimizer (e.g. Sudholt and Thyssen [ST12]), or

 EDAs (Friedrich, Kötzing, Krejca, Sutton [FKKS17], Lehre,
Nguyen [LN19b])

83 Benjamin Doerr: A gentle introduction to theory

Summary Dynamic and Noisy Optimization
 Due to their randomized nature, EAs cope well with moderate levels of

noise and moderate changes of the problem instance.

 For noisy optimization, one can try to reduce the effect of noise by
resampling, larger population size, etc. For dynamic optimization, nothing
is known on how to make algorithms more robust.

84

389

Benjamin Doerr: A gentle introduction to theory

Hot Topic 4: Dynamic Parameter Choices
 Instead of fixing a parameter (mutation rate, population size, …) once

and forever (static parameter choice), it might be preferable to change
the parameter values during the run of the EA

 Hope:
 different parameter settings may be optimal at different stages of the

optimization process, so by changing the parameter value we can
improve the performance

 we can let the algorithm optimize the parameters itself (on-the-fly
parameter choice, self-adjusting parameters)

 Experimental work suggests that dynamic parameter choices often
outperform static ones (for surveys see [EHM99,KHE15])

85 Benjamin Doerr: A gentle introduction to theory

Theory for Dynamic Parameter Choices:
Deterministic Schedules

 Deterministic variation schedule for the mutation rate (Jansen and
Wegener [JW00, JW06]):

 Toggle through the mutation rates ଵ ଶ ସ ଵଶ
 Result: There is a function where this dynamic EA takes time ଶ , but any static EA takes exponential time
 For most functions, the dynamic EA is slower by a factor of
 [unpublished] For jump functions with (not too small) jump size ,

this gives a significant improvement:
 faster than standard-bit mutation by a factor of ஐ
 slower than fast mutation by a factor of ஐ

 First example proving that dynamic parameter choices can be
beneficial.

86

Benjamin Doerr: A gentle introduction to theory

Theory for Dynamic Parameter Choices:
Depending on the Fitness

 Fitness-dependent mutation rate [BDN10]: When optimizing the
LeadingOnes test function with the (1+1) EA

 the fixed mutation rate ଵ gives a runtime of ଶ
 the fixed mutation rate ଵ.ହଽ gives ଶ (optimal fixed mut. rate)

 the mutation rate 𝟏𝑳𝑶 𝒙 ା𝟏 gives ଶ (optimal dynamic rate)

 Fitness-dependent offspring pop. size
 with the right fitness-dependent , the EA optimizes OneMax in

time [BLS14]

 with 𝒏𝒏ି𝒇(𝒙), the GA optimizes OneMax in time

instead of roughly with best static [DDE15]
 Fitness-dependent parameters can pay off. It is hard to find the optimal

dependence, but many others give improvements as well.
87 Benjamin Doerr: A gentle introduction to theory

Theory for Dynamic Parameter Choices:
Success-based Dynamics

 Success-based choice of island number: You can reduce of the parallel
runtime (but not the total work) of an island model when choosing the
number of islands dynamically (Lässig and Sudholt [LS11]):
 double the number of islands after each iteration without fitness gain
 half the number of islands after each improving iteration

 Success-based choice (1/5-th rule) of in the (1+(,)) GA finds the
optimal mutation strength [DD18] (a constant):
 ర after each iteration without fitness gain
 after each improving iteration
 Important that the fourth root is taken (1/5-th rule).

The doubling scheme of [LS11] would not work

 Simple mechanisms to automatically find the current-best parameter
setting (note: this is great even when the optimal parameter does not
change over time, but is hard to know beforehand)

88

390

Benjamin Doerr: A gentle introduction to theory

A Run of the Self-Adjusting GA
on OneMax ()

89

∗
self-adjusting parameter value
optimal parameter value

Benjamin Doerr: A gentle introduction to theory

Theory for Dynamic Parameter Choices:
Success-based Dynamics II – Stagnation

Detection

 Previous success-based dynamics:
 Work well when the characteristics of the landscape changes slowly
 good parameter values “follow” the changes of the landscape.

 Not much known for abrupt changes, e.g., jump functions.

 Very recent idea: “Stagnation detection” [RW20b, RW21a, RW21b]
 When for too long (details omitted) no improvement happened, increase

the mutation strength (because there’ll be no improvement close by).
 Can be added to all mutation-based algorithms.
 Gives the best runtime for the (1+1) EA on jump functions.

 Very simple, very promising idea!

90

Benjamin Doerr: A gentle introduction to theory

Theory for Dynamic Parameter Choices:
Self-Adaptation

 So far: An extra mechanism added onto the EA controls the parameters.

 Self-adaptation: Let the usual variation-selection cycle do this for you!
 Add the parameter to the individual (extended representation)
 Extended mutation: first mutate the parameter, then mutate the

individual taking into account the new parameter value
 Hope: Better parameter values lead to fitter individuals which are

preferred by the (non-extended) selection mechanisms of the EA

 First proof that this can work (artificial example) [DL16b]
 Self-adaptation can find the right mutation rate for the (1, EA on OneMax

(classic benchmark) [DWY21]
 Self-adaptation can find the right mutation rate for the (,) EA on

LeadingOnes (also with unknown-solution length) [CL20]

 Generic way to adapt parameters, but not well-understood
91 Benjamin Doerr: A gentle introduction to theory

Summary Dynamic Parameter Choices
 State of the art: A growing number of results, some very promising

 personal opinion: this is the future of discrete EC, as it allows to
integrate very powerful natural principles like adaption and learning

 survey on theory: [DD20]

92

An extension of the classi-
fication of Eiben, Hinterding,
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,BLS14,DDE15]

[DL16b,CL20,DWY21]

[LS11,DDK16,DDY16,BD17,DD18,DDK18,DGWY19,EGL+19,
DDL19, RW20a, RW20b, FS20, RW21a, RW21b]

[hyper-heuristics: AL14,LOW20,DLOW18,LOW19]

391

Benjamin Doerr: A gentle introduction to theory

Hot Topic 5: Fine-grained Runtime Analysis

 Classic runtime analysis: Analyze the time until the optimum is found.
 Recently: Runtime notions that give more or more relevant information.

 Fixed budget perspective: Analyze the (expected) solution quality
obtainable in a given time budget [JZ12,DJWZ13,JZ14a,JZ14b,LS15,NNS17,DDY20,KW20]

 Interesting from the application perspective, but difficult to analyze!

 Fixed target analysis, starting with good solutions: Classic runtime notion
extended to arbitrary starting/ target solution qualities [BDDV20,ABD20a,DK21a].
 Classic proofs can be re-used, but different algorithms become good.

 Parameterized complexity: Analyze the runtime relative to a parameter of
the input instance [Sto06,Sto07,KLNO10,SN12,KN13,SNN14,FN15,CLNP16,Sut21]

 Hot topic in classic algorithms since 1999

93 Benjamin Doerr: A gentle introduction to theory

Part VI:
Conclusion

94

Benjamin Doerr: A gentle introduction to theory

Summary
 Theoretical research gives deep insights in the working principles of EC,

with results that are of a different nature than in experimental work

 “very true” (=proven), but often apply to idealized settings only

 for all instances and problem sizes, but sometimes less precise

 often only asymptotic results instead of absolute numbers

 proofs tell us why certain facts are true

 The different nature of theoretical and experimental results implies that
a real understanding is best obtained from a combination of both

 Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms

95 Benjamin Doerr: A gentle introduction to theory

Summary (2):
How to Use Theory in Your Work?

 Try to read theory papers (or listen to the talks in one of the theory track
sessions), but don’t expect more than from other papers

 Neither a theory nor an experimental paper can tell you the best
algorithm for your particular problem, but both can suggest ideas

 Try “theory-style thinking”: take a very very simplified version of your
problem and imagine what could work and why

 Don’t be shy to talk to the theory people!

 they will not have the ultimate solution and their mathematical
education makes them very cautious presenting an ultimate solution

 but they might be able to prevent you from a wrong path or suggest
alternatives to your current approach

96

392

Benjamin Doerr: A gentle introduction to theory

Theory Books (Written for Theory People,
But Not Too Hard to Read)

 Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization,
Springer

 Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

 Jansen (2013). Analyzing Evolutionary Algorithms, Springer

 Doerr/Neumann (2020). Theory of Evolutionary Computation – Recent
Developments in Discrete Optimization, Springer.
 Most chapters are on the arxiv; author-generated version online

97 Benjamin Doerr: A gentle introduction to theory

Acknowledgments
 This tutorial is also based upon work from COST Action CA15140

`Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO)' supported by COST (European
Cooperation in Science and Technology).

98

Benjamin Doerr: A gentle introduction to theory 99

Thanks for your attention!

Benjamin Doerr: A gentle introduction to theory

Appendix A
Big Oh Notation

100

393

Benjamin Doerr: A gentle introduction to theory

Big-Oh Notation: Motivation
 Big-Oh notation, also called asymptotic notation or Landau symbols, are

a convenient way to roughly describe how a quantity depends on
another, e.g., how the runtime depends on the problem size .

 We need this, because often

 it is often impossible to precisely compute as function of , and

 we sometimes intentionally only aim at a general description of a
phenomenon (e.g., the runtime is linear, quadratic, or exponential)
than a precise, but hard to understand formula (e.g., the following
result from [Wit13]).

101 Benjamin Doerr: A gentle introduction to theory

Big-Oh Notation: Definition
 Let us continue to use the example of the expected runtime of

some algorithm on some problem that is defined for all problems sizes
(e.g., the expected runtime of the (1+1) EA on the -dimensional
ONEMAX function.

 Big-Oh notation allows to describe the asymptotic behavior of the
runtime, that is, how the runtime depends on when we think of being
large. On the other hand, we do not say anything for a concrete, fixed
value of like .

 Definition: We say that is for some function வ if
there is a constant such for all .

 We write or . Note that the first version does not
make much sense, but is more common.

 We write ଶ when ଶ
102

Benjamin Doerr: A gentle introduction to theory

Big-Oh Notation:
 Asymptotic upper bound:

 if there is a constant such for all .

 Asymptotic lower bound:

 if there is a constant such for all .

 Asymptotically equal:

 if and .

 Asymptotically smaller, grows slower than :

 if →ஶ ்()()
 Asymptotically larger, grows faster than :

 if →ஶ ்()()
103 Benjamin Doerr: A gentle introduction to theory

Appendix B
List of References

104

394

References

[ABD20a] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast mutation in crossover-based algorithms. In Genetic and

Evolutionary Computation Conference, GECCO 2020, pages 1268–1276. ACM, 2020.

[ABD20b] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. First steps towards a runtime analysis when starting with a good

solution. In Parallel Problem Solving From Nature, PPSN 2020, Part II, pages 560–573. Springer, 2020.

[ABD21] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Lazy parameter tuning and control: choosing all parameters ran-

domly from a power-law distribution. In Genetic and Evolutionary Computation Conference, GECCO 2021. ACM, 2021. To

appear.

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics. World Scientific Publishing, 2011.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a heavy-tailed (1 + (λ, λ)) genetic algorithm on jump functions. In

Parallel Problem Solving From Nature, PPSN 2020, Part II, pages 545–559. Springer, 2020.

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. Runtime analysis for the (µ+ λ) EA optimizing OneMax.

In Genetic and Evolutionary Computation Conference, GECCO 2018, pages 1459–1466. ACM, 2018.

[ADK19] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. A tight runtime analysis for the (1 + (λ, λ)) GA on LeadingOnes. In

Foundations of Genetic Algorithms, FOGA 2019, pages 169–182. ACM, 2019.

[ADK20] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. The (1+ (λ, λ)) GA is even faster on multimodal problems. In Genetic

and Evolutionary Computation Conference, GECCO 2020, pages 1259–1267. ACM, 2020.

[ADY19] Denis Antipov, Benjamin Doerr, and Quentin Yang. The efficiency threshold for the offspring population size of the (µ, λ)
EA. In Genetic and Evolutionary Computation Conference, GECCO 2019, pages 1461–1469. ACM, 2019.

[AL14] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-heuristics with classical learning mechanisms.

In Congress on Evolutionary Computation, CEC 2104, pages 2515–2523. IEEE, 2014.

[AMT15] Youhei Akimoto, Sandra Astete Morales, and Olivier Teytaud. Analysis of runtime of optimization algorithms for noisy

functions over discrete codomains. Theoretical Computer Science, 605:42–50, 2015.

[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In International Conference on Genetic Algorithms, ICGA 1993,

pages 2–8. Morgan Kaufmann, 1993.

[Bäc96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice – Evolution Strategies, Evolutionary Programming, Genetic

Algorithms. Oxford University Press, 1996.

[BB19] Anton Bassin and Maxim Buzdalov. The 1/5-th rule with rollbacks: on self-adjustment of the population size in the (1+(λ, λ))
GA. In Genetic and Evolutionary Computation Conference Companion, GECCO 2019, pages 277–278. ACM, 2019.

Benjamin Doerr: A gentle introduction to theory 105

[BB20] Anton Bassin and Maxim Buzdalov. The (1 + (λ, λ)) genetic algorithm for permutations. In Genetic and Evolutionary

Computation Conference, GECCO 2020, Companion Volume, pages 1669–1677. ACM, 2020.

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank Neumann. Computing

single source shortest paths using single-objective fitness. In Foundations of Genetic Algorithms, FOGA 2009, pages 59–

66. ACM, 2009.

[BBD21a] Henry Bambury, Antoine Bultel, and Benjamin Doerr. Generalized jump functions. In Genetic and Evolutionary Computation

Conference, GECCO 2021. ACM, 2021. To appear.

[BBD21b] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. A rigorous runtime analysis of the 2-MMASib on jump functions: ant

colony optimizers can cope well with local optima. In Genetic and Evolutionary Computation Conference, GECCO 2021.

ACM, 2021. To appear.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF

formulas. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1343–1350. ACM, 2017.

[BDDV20] Maxim Buzdalov, Benjamin Doerr, Carola Doerr, and Dmitry Vinokurov. Fixed-target runtime analysis. In Genetic and

Evolutionary Computation Conference, GECCO 2020, pages 1295–1303. ACM, 2020.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive mutation rates for the LeadingOnes

problem. In Parallel Problem Solving from Nature, PPSN 2010, pages 1–10. Springer, 2010.

[BFM97] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evolutionary Computation. IOP Publishing Ltd.,

1997.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-box complexity of parallel search. In Parallel

Problem Solving from Nature, PPSN 2014, pages 892–901. Springer, 2014.

[BS19] Jakob Bossek and Dirk Sudholt. Time complexity analysis of RLS and (1+1) EA for the edge coloring problem. In Founda-

tions of Genetic Algorithms, FOGA 2019, pages 102–115. ACM, 2019.

[CDEL18] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Level-based analysis of genetic algorithms

and other search processes. IEEE Transactions on Evolutionary Computation, 22:707–719, 2018.

[CL20] Brendan Case and Per Kristian Lehre. Self-adaptation in nonelitist evolutionary algorithms on discrete problems with

unknown structure. IEEE Transactions on Evolutionary Computation, 24:650–663, 2020.

[CLNP16] Dogan Corus, Per Kristian Lehre, Frank Neumann, and Mojgan Pourhassan. A parameterised complexity analysis of

bi-level optimisation with evolutionary algorithms. Evolutionary Computation, 24:183–203, 2016.

[CO18] Dogan Corus and Pietro S. Oliveto. Standard steady state genetic algorithms can hillclimb faster than mutation-only

evolutionary algorithms. IEEE Transactions on Evolutionary Compututation, 22:720–732, 2018.

Benjamin Doerr: A gentle introduction to theory 106

[CO20] Dogan Corus and Pietro S. Oliveto. On the benefits of populations for the exploitation speed of standard steady-state

genetic algorithms. Algorithmica, 82:3676–3706, 2020.

[CS18] Edgar Covantes Osuna and Dirk Sudholt. Runtime analysis of probabilistic crowding and restricted tournament selection

for bimodal optimisation. In Genetic and Evolutionary Computation Conference, GECCO 2018, pages 929–936. ACM,

2018.

[DD15a] Benjamin Doerr and Carola Doerr. Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete

settings. In Genetic and Evolutionary Computation Conference, GECCO 2015, pages 1335–1342. ACM, 2015.

[DD15b] Benjamin Doerr and Carola Doerr. A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on OneMax. In Genetic and

Evolutionary Computation Conference, GECCO 2015, pages 1423–1430. ACM, 2015.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic algorithm.

Algorithmica, 80:1658–1709, 2018.

[DD20] Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-box optimization: provable perfor-

mance gains through dynamic parameter choices. In Benjamin Doerr and Frank Neumann, editors, Theory of Evolu-

tionary Computation: Recent Developments in Discrete Optimization, pages 271–321. Springer, 2020. Also available at

https://arxiv.org/abs/1804.05650.

[DDE13] Benjamin Doerr, Carola Doerr, and Franziska Ebel. Lessons from the black-box: Fast crossover-based genetic algorithms.

In Genetic and Evolutionary Computation Conference, GECCO 2013, pages 781–788. ACM, 2013.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box complexity to designing new genetic algorithms.

Theoretical Computer Science, 567:87–104, 2015.

[DDK14a] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unbiased black-box complexities of jump functions: how to cross large

plateaus. In Genetic and Evolutionary Computation Conference, GECCO 2014, pages 769–776. ACM, 2014.

[DDK14b] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The unbiased black-box complexity of partition is polynomial. Artificial

Intelligence, 216:275–286, 2014.

[DDK17] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unknown solution length problems with no asymptotically optimal run

time. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 921–928. ACM, 2017.

[DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation strengths for multi-valued decision

variables. Algorithmica, 80:1732–1768, 2018.

[DDL19] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably optimal success rules.

In Genetic and Evolutionary Computation Conference, GECCO 2019, pages 1479–1487. ACM, 2019.

Benjamin Doerr: A gentle introduction to theory 107

[DDN19] Benjamin Doerr, Carola Doerr, and Frank Neumann. Fast re-optimization via structural diversity. In Genetic and Evolution-

ary Computation Conference, GECCO 2019, pages 233–241. ACM, 2019.

[DDST16] Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing Mastermind with many colors. Journal of the

ACM, 63:42:1–42:23, 2016.

[DDY16] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation with self-adjusting k outperforms standard bit mutation. In

Parallel Problem Solving from Nature, PPSN 2016, pages 824–834. Springer, 2016.

[DDY20] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise black-box analysis. Theoretical

Computer Science, 801:1–34, 2020.

[DFK+16] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt,

and Andrew M. Sutton. Escaping local optima with diversity mechanisms and crossover. In Genetic and Evolutionary

Computation Conference, GECCO 2016, pages 645–652. ACM, 2016.

[DFK+18] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and

Andrew M. Sutton. Escaping local optima using crossover with emergent diversity. IEEE Transactions on Evolutionary

Computation, 22:484–497, 2018.

[DGWY19] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1 + λ) evolutionary algorithm with self-adjusting

mutation rate. Algorithmica, 81:593–631, 2019.

[DHK07] Benjamin Doerr, Edda Happ, and Christian Klein. A tight bound for the (1 + 1)-EA for the single source shortest path

problem. In Congress on Evolutionary Computation, CEC 2007, pages 1890–1895. IEEE, 2007.

[DHK12a] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. Theoret-

ical Computer Science, 425:17–33, 2012.

[DHK12b] Benjamin Doerr, Ashish Ranjan Hota, and Timo Kötzing. Ants easily solve stochastic shortest path problems. In Genetic

and Evolutionary Computation Conference, GECCO 2012, pages 17–24. ACM, 2012.

[DHN07] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. Speeding up evolutionary algorithms through asymmetric muta-

tion operators. Evolutionary Computation, 15:401–410, 2007.

[DJ07] Benjamin Doerr and Daniel Johannsen. Adjacency list matchings: an ideal genotype for cycle covers. In Genetic and

Evolutionary Computation Conference, GECCO 2007, pages 1203–1210. ACM, 2007.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-based representation in shortest path

problems. In Genetic and Evolutionary Computation Conference, GECCO 2010, pages 759–766. ACM, 2010.

Benjamin Doerr: A gentle introduction to theory 108

395

https://arxiv.org/abs/1804.05650

[DJK+11] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, and Carola Winzen. Faster black-

box algorithms through higher arity operators. In Foundations of Genetic Algorithms, FOGA 2011, pages 163–172. ACM,

2011.

[DJK+13] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, and Madeleine Theile. More effective crossover

operators for the all-pairs shortest path problem. Theoretical Computer Science, 471:12–26, 2013.

[DJL17] Duc-Cuong Dang, Thomas Jansen, and Per Kristian Lehre. Populations can be essential in tracking dynamic optima.

Algorithmica, 78:660–680, 2017.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even when

optimizing monotone functions. Evolutionary Computation, 21:1–21, 2013.

[DJW98a] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the optimization of unimodal functions with the (1 + 1) evolutionary

algorithm. In Parallel Problem Solving from Nature, PPSN 1998, pages 13–22. Springer, 1998.

[DJW98b] Stefan Droste, Thomas Jansen, and Ingo Wegener. A rigorous complexity analysis of the (1+1) evolutionary algorithm

for linear functions with Boolean inputs. In International Conference on Evolutionary Computation, ICEC 1998, pages

499–504. IEEE, 1998.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical

Computer Science, 276:51–81, 2002.

[DJW10] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In Genetic and Evolutionary Compu-

tation Conference, GECCO 2010, pages 1449–1456. ACM, 2010.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algorithmica, 64:673–697, 2012.

[DJWZ13] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges. A method to derive fixed budget results from

expected optimisation times. In Genetic and Evolutionary Computation Conference, GECCO 2013, pages 1581–1588.

ACM, 2013.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1 + λ) evolutionary algorithm—different

asymptotic runtimes for different instances. Theoretical Computer Science, 561:3–23, 2015.

[DK19] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift. In Genetic and Evolutionary Computation Conference, GECCO

2019, pages 1470–1478. ACM, 2019.

[DK20a] Benjamin Doerr and Martin S. Krejca. Bivariate estimation-of-distribution algorithms can find an exponential number of

optima. In Genetic and Evolutionary Computation Conference, GECCO 2020, pages 796–804. ACM, 2020.

[DK20b] Benjamin Doerr and Martin S. Krejca. Significance-based estimation-of-distribution algorithms. IEEE Transactions on

Evolutionary Computation, 24:1025–1034, 2020.

Benjamin Doerr: A gentle introduction to theory 109

[DK20c] Benjamin Doerr and Martin S. Krejca. The univariate marginal distribution algorithm copes well with deception and epista-

sis. In Evolutionary Computation in Combinatorial Optimization, EvoCOP 2020, pages 51–66. Springer, 2020.

[DK21a] Benjamin Doerr and Timo Kötzing. Lower bounds from fitness levels made easy. In Genetic and Evolutionary Computation

Conference, GECCO 2021. ACM, 2021. To appear.

[DK21b] Benjamin Doerr and Martin S. Krejca. A simplified run time analysis of the univariate marginal distribution algorithm on

LeadingOnes. Theoretical Computer Science, 851:121–128, 2021.

[DKS07] Benjamin Doerr, Christian Klein, and Tobias Storch. Faster evolutionary algorithms by superior graph representation. In

Foundations of Computational Intelligence, FOCI 2007, pages 245–250. IEEE, 2007.

[DL15] Duc-Cuong Dang and Per Kristian Lehre. Simplified runtime analysis of estimation of distribution algorithms. In Genetic

and Evolutionary Computation Conference, GECCO 2015, pages 513–518. ACM, 2015.

[DL16a] Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of non-elitist populations: from classical optimisation to partial

information. Algorithmica, 75:428–461, 2016.

[DL16b] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates in non-elitist populations. In Parallel Problem

Solving from Nature, PPSN 2016, pages 803–813. Springer, 2016.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In Genetic and Evolution-

ary Computation Conference, GECCO 2017, pages 777–784. ACM, 2017.

[DLN19] Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai Nguyen. Level-based analysis of the univariate marginal

distribution algorithm. Algorithmica, 81:668–702, 2019.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime analysis of selection

hyper-heuristics with adaptive learning periods. In Genetic and Evolutionary Computation Conference, GECCO 2018,

pages 1015–1022. ACM, 2018.

[DN20] Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary Computation—Recent Developments in Discrete

Optimization. Springer, 2020. Also available at https://cs.adelaide.edu.au/∼frank/papers/TheoryBook2019-selfarchived.pdf.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and Dorian Nogneng. A new analysis method for

evolutionary optimization of dynamic and noisy objective functions. In Genetic and Evolutionary Computation Conference,

GECCO 2018, pages 1467–1474. ACM, 2018.

[Doe16] Benjamin Doerr. Optimal parameter settings for the (1+(λ, λ)) genetic algorithm. In Genetic and Evolutionary Computation

Conference, GECCO 2016, pages 1107–1114. ACM, 2016.

[Doe19a] Benjamin Doerr. An exponential lower bound for the runtime of the compact genetic algorithm on jump functions. In

Foundations of Genetic Algorithms, FOGA 2019, pages 25–33. ACM, 2019.

Benjamin Doerr: A gentle introduction to theory 110

[Doe19b] Benjamin Doerr. A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost.

In Genetic and Evolutionary Computation Conference, GECCO 2019, pages 1488–1496. ACM, 2019.

[Doe20a] Benjamin Doerr. Does comma selection help to cope with local optima? In Genetic and Evolutionary Computation

Conference, GECCO 2020, pages 1304–1313. ACM, 2020.

[Doe20b] Benjamin Doerr. Lower bounds for non-elitist evolutionary algorithms via negative multiplicative drift. In Parallel Problem

Solving From Nature, PPSN 2020, Part II, pages 604–618. Springer, 2020.

[Doe21] Benjamin Doerr. Exponential upper bounds for the runtime of randomized search heuristics. Theoretical Computer Science,

851:24–38, 2021.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing: speeding up evolutionary algorithms

through better initialization. In Genetic and Evolutionary Computation Conference, GECCO 2015, pages 815–822. ACM,

2015.

[Dro02] Stefan Droste. Analysis of the (1+1) EA for a dynamically changing OneMax-variant. In Congress on Evolutionary Com-

putation, CEC 2002, pages 55–60. IEEE, 2002.

[Dro03] Stefan Droste. Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In Genetic and Evolutionary Compu-

tation Conference, GECCO 2003, pages 909–921. Springer, 2003.

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy OneMax. In Genetic and Evolutionary Computation Conference,

GECCO 2004, pages 1088–1099. Springer, 2004.

[Dro06] Stefan Droste. A rigorous analysis of the compact genetic algorithm for linear functions. Natural Computing, 5:257–283,

2006.

[DS19] Benjamin Doerr and Andrew M. Sutton. When resampling to cope with noise, use median, not mean. In Genetic and

Evolutionary Computation Conference, GECCO 2019, pages 242–248. ACM, 2019.

[DSW13] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary algorithms optimize separable functions in parallel?

In Foundations of Genetic Algorithms, FOGA 2013, pages 48–59. ACM, 2013.

[DT09] Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algorithms. In Genetic and Evolu-

tionary Computation Conference, GECCO 2009, pages 247–254. ACM, 2009.

[DW12a] Benjamin Doerr and Carola Winzen. Memory-restricted black-box complexity of OneMax. Information Processing Letters,

112:32–34, 2012.

[DW12b] Benjamin Doerr and Carola Winzen. Reducing the arity in unbiased black-box complexity. In Genetic and Evolutionary

Computation Conference, GECCO 2012, pages 1309–1316. ACM, 2012.

[DW14] Benjamin Doerr and Carola Winzen. Ranking-based black-box complexity. Algorithmica, 68:571–609, 2014.

Benjamin Doerr: A gentle introduction to theory 111

[DWY21] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive mutation rates. Algorithmica, 83:1012–

1053, 2021.

[DWZ21] Benjamin Doerr, Shouda Wang, and Weijie Zheng. Choosing the right algorithm with hints from complexity theory. In

International Joint Conference on Artificial Intelligence, IJCAI 2021. ijcai.org, 2021. To appear.

[DZ20a] Benjamin Doerr and Weijie Zheng. A parameter-less compact genetic algorithm. In Genetic and Evolutionary Computation

Conference, GECCO 2020, pages 805–813. ACM, 2020.

[DZ20b] Benjamin Doerr and Weijie Zheng. Sharp bounds for genetic drift in estimation-of-distribution algorithms. IEEE Transactions

on Evolutionary Computation, 24:1140–1149, 2020.

[DZ21] Benjamin Doerr and Weijie Zheng. Theoretical analyses of multi-objective evolutionary algorithms on multi-modal objec-

tives. In Conference on Artificial Intelligence, AAAI 2021. AAAI Press, 2021. To appear.

[EGL+19] Hafsteinn Einarsson, Marcelo Matheus Gauy, Johannes Lengler, Florian Meier, Asier Mujika, Angelika Steger, and Felix

Weissenberger. The linear hidden subset problem for the (1+1) EA with scheduled and adaptive mutation rates. Theoretical

Computer Science, 785:150–170, 2019.

[EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 3:124–141, 1999.

[FGQW18a] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and Markus Wagner. Evolutionary algorithms and submodular

functions: Benefits of heavy-tailed mutations. CoRR, abs/1805.10902, 2018.

[FGQW18b] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and Markus Wagner. Heavy-tailed mutation operators in single-

objective combinatorial optimization. In Parallel Problem Solving from Nature, PPSN 2018, Part I, pages 134–145. Springer,

2018.

[FHH+09] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of simple hybrid algorithms for

the vertex cover problem. Evolutionary Computation, 17:3–19, 2009.

[FHN07] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann. Rigorous analyses of simple diversity mechanisms. In Genetic

and Evolutionary Computation Conference, GECCO 2007, pages 1219–1225. ACM, 2007.

[FHN09] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann. Comparison of simple diversity mechanisms on plateau func-

tions. Theoretical Computer Science, 410:2455–2462, 2009.

[FK13] Matthias Feldmann and Timo Kötzing. Optimizing expected path lengths with ant colony optimization using fitness propor-

tional update. In Foundations of Genetic Algorithms, FOGA 2013, pages 65–74. ACM, 2013.

[FKK16] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs cannot be balanced and stable. In Genetic and Evolutionary

Computation Conference, GECCO 2016, pages 1139–1146. ACM, 2016.

Benjamin Doerr: A gentle introduction to theory 112

396

https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. The compact genetic algorithm is efficient under

extreme Gaussian noise. IEEE Transactions on Evolutionary Computation, 21:477–490, 2017.

[FN15] Tobias Friedrich and Frank Neumann. Maximizing submodular functions under matroid constraints by evolutionary algo-

rithms. Evolutionary Computation, 23:543–558, 2015.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Escaping large deceptive basins of attraction with heavy-tailed

mutation operators. In Genetic and Evolutionary Computation Conference, GECCO 2018, pages 293–300. ACM, 2018.

[FS20] Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice of the parameter control mechanism in the (1 + (λ, λ))
genetic algorithm. In Genetic and Evolutionary Computation Conference, GECCO 2020, pages 832–840. ACM, 2020.

[FW04] Simon Fischer and Ingo Wegener. The Ising model on the ring: mutation versus recombination. In Genetic and Evolutionary

Computation, GECCO 2004, pages 1113–1124. Springer, 2004.

[FW05] Simon Fischer and Ingo Wegener. The one-dimensional Ising model: Mutation versus recombination. Theoretical Com-

puter Science, 344:208–225, 2005.

[GGL19] Tomas Gavenciak, Barbara Geissmann, and Johannes Lengler. Sorting by swaps with noisy comparisons. Algorithmica,

81:796–827, 2019.

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations in stochastic environments. Algorithmica, 75:462–489,

2016.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computation,

7:173–203, 1999.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Pub-

lishing Co., Inc., 1989.

[GP14] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Genetic and Evolutionary Computation

Conference, GECCO 2014, pages 785–792. ACM, 2014.

[GW03] Oliver Giel and Ingo Wegener. Evolutionary algorithms and the maximum matching problem. In Symposium on Theoretical

Aspects of Computer Science, STACS 2003, pages 415–426. Springer, 2003.

[GW17] Christian Gießen and Carsten Witt. The interplay of population size and mutation probability in the (1 + λ) EA on OneMax.

Algorithmica, 78:587–609, 2017.

[GW18] Christian Gießen and Carsten Witt. Optimal mutation rates for the (1 + λ) EA on OneMax through asymptotically tight drift

analysis. Algorithmica, 80:1710–1731, 2018.

[HGAK06] Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. When do heavy-tail distributions help? In

Parallel Problem Solving from Nature, PPSN 2006, pages 62–71. Springer, 2006.

Benjamin Doerr: A gentle introduction to theory 113

[HGD94] Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Long path problems. In Parallel Problem Solving from Nature,

PPSN 1994, pages 149–158. Springer, 1994.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection

for optimizing linear functions. In Genetic and Evolutionary Computation Conference, GECCO 2008, pages 953–960.

ACM, 2008.

[HLG99] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic algorithm. IEEE Transactions on

Evolutionary Computation, 3:287–297, 1999.

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dynamics of the compact genetic algorithm on jump functions.

In Genetic and Evolutionary Computation Conference, GECCO 2018, pages 967–974. ACM, 2018.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127:51–

81, 2001.

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Parallel Problem Solving From Nature, PPSN 2008,

pages 41–51. Springer, 2008.

[Jan07] Thomas Jansen. On the brittleness of evolutionary algorithms. In Foundations of Genetic Algorithms, FOGA 2007, pages

54–69. Springer, 2007.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The Computer Science Perspective. Springer, 2013.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of the offspring population size in evolutionary

algorithms. Evolutionary Computation, 13:413–440, 2005.

[JOZ13] Thomas Jansen, Pietro S. Oliveto, and Christine Zarges. Approximating vertex cover using edge-based representations.

In Foundations of Genetic Algorithms, FOGA 2013, pages 87–96. ACM, 2013.

[JS05] Thomas Jansen and Ulf Schellbach. Theoretical analysis of a mutation-based evolutionary algorithm for a tracking problem

in the lattice. In Genetic and Evolutionary Computation Conference, GECCO 2005, pages 841–848. ACM, 2005.

[JS07] Jens Jägersküpper and Tobias Storch. When the plus strategy outperforms the comma strategy and when not. In Foun-

dations of Computational Intelligence, FOCI 2007, pages 25–32. IEEE, 2007.

[JW00] Thomas Jansen and Ingo Wegener. On the choice of the mutation probability for the (1+1) EA. In Parallel Problem Solving

from Nature, PPSN 2000, pages 89–98. Springer, 2000.

[JW02] Thomas Jansen and Ingo Wegener. The analysis of evolutionary algorithms – a proof that crossover really can help.

Algorithmica, 34:47–66, 2002.

[JW05] Thomas Jansen and Ingo Wegener. Real royal road functions – where crossover provably is essential. Discrete Applied

Mathematics, 149:111–125, 2005.

Benjamin Doerr: A gentle introduction to theory 114

[JW06] Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolutionary algorithm. Journal of Discrete Algorithms,

4:181–199, 2006.

[JZ12] Thomas Jansen and Christine Zarges. Fixed budget computations: a different perspective on run time analysis. In Terence

Soule and Jason H. Moore, editors, Genetic and Evolutionary Computation Conference, GECCO 2012, pages 1325–1332.

ACM, 2012.

[JZ14a] Thomas Jansen and Christine Zarges. Performance analysis of randomised search heuristics operating with a fixed budget.

Theoretical Computer Science, 545:39–58, 2014.

[JZ14b] Thomas Jansen and Christine Zarges. Reevaluating immune-inspired hypermutations using the fixed budget perspective.

IEEE Transactions on Evolutionary Computation, 18:674–688, 2014.

[KAD19] Vitalii Karavaev, Denis Antipov, and Benjamin Doerr. Theoretical and empirical study of the (1 + (λ, λ)) EA on the Leading-

Ones problem. In Genetic and Evolutionary Computation Conference, GECCO 2019, Companion Material, pages 2036–

2039. ACM, 2019.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. Parameter control in evolutionary algorithms: trends and

challenges. IEEE Transactions on Evolutionary Computation, 19:167–187, 2015.

[KLNO10] Stefan Kratsch, Per Kristian Lehre, Frank Neumann, and Pietro Simone Oliveto. Fixed parameter evolutionary algorithms

and maximum leaf spanning trees: a matter of mutation. In Parallel Problem Solving from Nature, PPSN 2010, Part I,

pages 204–213. Springer, 2010.

[KLW15] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1) EA on generalized dynamic OneMax. In Foundations of Genetic

Algorithms, FOGA 2015, pages 40–51. ACM, 2015.

[KN13] Stefan Kratsch and Frank Neumann. Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica,

65:754–771, 2013.

[KST11] Timo Kötzing, Dirk Sudholt, and Madeleine Theile. How crossover helps in pseudo-Boolean optimization. In Genetic and

Evolutionary Computation Conference, GECCO 2011, pages 989–996. ACM, 2011.

[KW20a] Timo Kötzing and Carsten Witt. Improved fixed-budget results via drift analysis. In Parallel Problem Solving from Nature,

PPSN 2020, Part II, pages 648–660. Springer, 2020.

[KW20b] Martin S. Krejca and Carsten Witt. Lower bounds on the run time of the Univariate Marginal Distribution Algorithm on

OneMax. Theoretical Computer Science, 832:143–165, 2020.

[Leh10] Per Kristian Lehre. Negative drift in populations. In Parallel Problem Solving from Nature, PPSN 2010, pages 244–253.

Springer, 2010.

Benjamin Doerr: A gentle introduction to theory 115

[Leh11] Per Kristian Lehre. Fitness-levels for non-elitist populations. In Genetic and Evolutionary Computation Conference, GECCO

2011, pages 2075–2082. ACM, 2011.

[Len20] Johannes Lengler. A general dichotomy of evolutionary algorithms on monotone functions. IEEE Transactions Evolutionary

Computation, 24:995–1009, 2020.

[LM20] Johannes Lengler and Jonas Meier. Large population sizes and crossover help in dynamic environments. In Parallel

Problem Solving from Nature, PPSN 2020, Part I, pages 610–622. Springer, 2020.

[LMS19] Johannes Lengler, Anders Martinsson, and Angelika Steger. When does hillclimbing fail on monotone functions: an entropy

compression argument. In Analytic Algorithmics and Combinatorics, ANALCO 2019, pages 94–102. SIAM, 2019.

[LN17] Per Kristian Lehre and Phan Trung Hai Nguyen. Improved runtime bounds for the univariate marginal distribution algorithm

via anti-concentration. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages 1383–1390. ACM,

2017.

[LN18] Per Kristian Lehre and Phan Trung Hai Nguyen. Level-based analysis of the population-based incremental learning algo-

rithm. In Parallel Problem Solving From Nature, PPSN 2018, pages 105–116. Springer, 2018.

[LN19a] Per Kristian Lehre and Phan Trung Hai Nguyen. On the limitations of the univariate marginal distribution algorithm to

deception and where bivariate EDAs might help. In Foundations of Genetic Algorithms, FOGA 2019, pages 154–168.

ACM, 2019.

[LN19b] Per Kristian Lehre and Phan Trung Hai Nguyen. Runtime analysis of the univariate marginal distribution algorithm under

low selective pressure and prior noise. In Genetic and Evolutionary Computation Conference, GECCO 2019, pages 1497–

1505. ACM, 2019.

[LOW19] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time complexity of algorithm selection hyper-

heuristics for multimodal optimisation. In Conference on Artificial Intelligence, AAAI 2019, pages 2322–2329. AAAI Press,

2019.

[LOW20] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. Simple hyper-heuristics control the neighbourhood size of

randomised local search optimally for LeadingOnes∗. Evolutionary Computation, 28:437–461, 2020.

[LS11] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring populations and parallel evolutionary algorithms.

In Foundations of Genetic Algorithms, FOGA 2011, pages 181–192. ACM, 2011.

[LS15] Johannes Lengler and Nicholas Spooner. Fixed budget performance of the (1+1) EA on linear functions. In Foundations

of Genetic Algorithms, FOGA 2015, pages 52–61. ACM, 2015.

[LS18] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms revisited. Combinatorics, Probability &

Computing, 27:643–666, 2018.

Benjamin Doerr: A gentle introduction to theory 116

397

[LSW21] Johannes Lengler, Dirk Sudholt, and Carsten Witt. The complex parameter landscape of the compact genetic algorithm.

Algorithmica, 83:1096–1137, 2021.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, 64:623–642, 2012.

[LW16] Andrei Lissovoi and Carsten Witt. MMAS versus population-based EA on a family of dynamic fitness functions. Algorith-

mica, 75:554–576, 2016.

[LY11] Per Kristian Lehre and Xin Yao. Crossover can be constructive when computing unique input-output sequences. Soft

Computing, 15:1675–1687, 2011.

[LY12] Per Kristian Lehre and Xin Yao. On the impact of mutation-selection balance on the runtime of evolutionary algorithms.

IEEE Transactions on Evolutionary Computation, 16:225–241, 2012.

[LZ19] Johannes Lengler and Xun Zou. Exponential slowdown for larger populations: the (µ + 1)-EA on monotone functions. In

Foundations of Genetic Algorithms, FOGA 2019, pages 87–101. ACM, 2019.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: mutation and hillclimbing. In Parallel Problem Solving from Nature,

PPSN 1992, pages 15–26. Elsevier, 1992.

[Neu04] Frank Neumann. Expected runtimes of evolutionary algorithms for the eulerian cycle problem. In Congress on Evolutionary

Computation, CEC 2004, pages 904–910. IEEE, 2004.

[NNS17] Samadhi Nallaperuma, Frank Neumann, and Dirk Sudholt. Expected fitness gains of randomized search heuristics for the

traveling salesperson problem. Evolutionary Computation, 25, 2017.

[NOW09] Frank Neumann, Pietro S. Oliveto, and Carsten Witt. Theoretical analysis of fitness-proportional selection: landscapes and

efficiency. In Genetic and Evolutionary Computation Conference, GECCO 2009, pages 835–842. ACM, 2009.

[NT10] Frank Neumann and Madeleine Theile. How crossover speeds up evolutionary algorithms for the multi-criteria all-pairs-

shortest-path problem. In Parallel Problem Solving from Nature, PPSN 2010, Part I, pages 667–676. Springer, 2010.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree

problem. Theoretical Computer Science, 378:32–40, 2007.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Compu-

tational Complexity. Springer, 2010.

[Och02] Gabriela Ochoa. Setting the mutation rate: scope and limitations of the 1/L heuristic. In Genetic and Evolutionary Compu-

tation Conference, GECCO 2002, pages 495–502. Morgan Kaufmann, 2002.

[OHY09] Pietro S. Oliveto, Jun He, and Xin Yao. Analysis of the (1+1)-EA for finding approximate solutions to vertex cover problems.

IEEE Transactions on Evolutionary Computation, 13:1006–1029, 2009.

Benjamin Doerr: A gentle introduction to theory 117

[OSW20] Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. A tight lower bound on the expected runtime of standard steady state

genetic algorithms. In Genetic and Evolutionary Computation Conference, GECCO 2020, pages 1323–1331. ACM, 2020.

[OSZ19] Pietro S. Oliveto, Dirk Sudholt, and Christine Zarges. On the benefits and risks of using fitness sharing for multimodal

optimisation. Theoretical Computer Science, 773:53–70, 2019.

[OW15] Pietro S. Oliveto and Carsten Witt. Improved time complexity analysis of the simple genetic algorithm. Theoretical Com-

puter Science, 605:21–41, 2015.

[Pos09] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Genetic and

Evolutionary Computation Conference, GECCO 2009, Companion Material, pages 2309–2314. ACM, 2009.

[Pos10] Petr Posı́k. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB noiseless testbed. In Genetic and

Evolutionary Computation Conference, GECCO 2010, Companion Material, pages 1697–1702. ACM, 2010.

[Prü04] Adam Prügel-Bennett. When a genetic algorithm outperforms hill-climbing. Theoretical Computer Science, 320:135–153,

2004.

[QBJT19] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. Running time analysis of the (1 + 1)-EA for OneMax and LeadingOnes

under bit-wise noise. Algorithmica, 81:749–795, 2019.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population size in the (1, λ) evolutionary algorithm.

Theoretical Computer Science, 545:20–38, 2014.

[Rud96] Günter Rudolph. How mutation and selection solve long path problems in polynomial expected time. Evolutionary Compu-

tation, 4:195–205, 1996.

[RW20a] Amirhossein Rajabi and Carsten Witt. Evolutionary algorithms with self-adjusting asymmetric mutation. In Parallel Problem

Solving from Nature, PPSN 2020, Part I, pages 664–677. Springer, 2020.

[RW20b] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algorithms for multimodal optimization. In Genetic and

Evolutionary Computation Conference, GECCO 2020, pages 1314–1322. ACM, 2020.

[RW21a] Amirhossein Rajabi and Carsten Witt. Stagnation detection in highly multimodal fitness landscapes. In Genetic and

Evolutionary Computation Conference, GECCO 2021. ACM, 2021. To appear.

[RW21b] Amirhossein Rajabi and Carsten Witt. Stagnation detection with randomized local search. In Evolutionary Computation in

Combinatorial Optimization, EvoCOP 2021, pages 152–168. Springer, 2021.

[RWP08] J. Neal Richter, Alden H. Wright, and John Paxton. Ignoble trails – where crossover is provably harmful. In Parallel Problem

Solving from Nature, PPSN 2008, pages 92–101. Springer, 2008.

[SGS11] Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails for natural evolution strate-

gies. In Genetic and Evolutionary Computation Conference, GECCO 2011, pages 845–852. ACM, 2011.

Benjamin Doerr: A gentle introduction to theory 118

[SH87] Harold H. Szu and Ralph L. Hartley. Fast simulated annealing. Physics Letters A, 122:157–162, 1987.

[Sha02] Jonathan L. Shapiro. The sensitivity of PBIL to its learning rate, and how detailed balance can remove it. In Foundations

of Genetic Algorithms, FOGA 2002, pages 115–132. Morgan Kaufmann, 2002.

[Sha05] Jonathan L. Shapiro. Drift and scaling in estimation of distribution algorithms. Evolutionary Computing, 13:99–123, 2005.

[Sha06] Jonathan L. Shapiro. Diversity loss in general estimation of distribution algorithms. In Parallel Problem Solving from Nature,

PPSN 2006, pages 92–101. Springer, 2006.

[SN12] Andrew M. Sutton and Frank Neumann. A parameterized runtime analysis of evolutionary algorithms for the Euclidean

traveling salesperson problem. In AAAI Conference on Artificial Intelligence, AAAI 2012. AAAI Press, 2012.

[SNN14] Andrew M. Sutton, Frank Neumann, and Samadhi Nallaperuma. Parameterized runtime analyses of evolutionary algo-

rithms for the planar Euclidean traveling salesperson problem. Evolutionary Computation, 22:595–628, 2014.

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony optimizer for stochastic shortest path problems. Algorithmica,

64:643–672, 2012.

[Sto06] Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs. In Genetic and Evolutionary

Computation Conference, GECCO 2006, pages 567–574. ACM, 2006.

[Sto07] Tobias Storch. Finding large cliques in sparse semi-random graphs by simple randomized search heuristics. Theoretical

Computer Science, 386:114–131, 2007.

[Sto08] Tobias Storch. On the choice of the parent population size. Evolutionary Computation, 16:557–578, 2008.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolutionary algorithms on sorting and shortest

paths problems. Journal of Mathematical Modelling and Algorithms, 3:349–366, 2004.

[Sud05] Dirk Sudholt. Crossover is provably essential for the Ising model on trees. In Genetic and Evolutionary Computation

Conference, GECCO 2005, pages 1161–1167. ACM, 2005.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running time of evolutionary algorithms. IEEE Transactions on

Evolutionary Computation, 17:418–435, 2013.

[Sud17] Dirk Sudholt. How crossover speeds up building block assembly in genetic algorithms. Evolutionary Computation, 25:237–

274, 2017.

[Sud21] Dirk Sudholt. Analysing the robustness of evolutionary algorithms to noise: refined runtime bounds and an example where

noise is beneficial. Algorithmica, 83:976–1011, 2021.

[Sut21] Andrew M. Sutton. Fixed-parameter tractability of crossover: steady-state GAs on the closest string problem. Algorithmica,

83:1138–1163, 2021.

Benjamin Doerr: A gentle introduction to theory 119

[SW04] Tobias Storch and Ingo Wegener. Real royal road functions for constant population size. Theoretical Computer Science,

320:123–134, 2004.

[SW19] Dirk Sudholt and Carsten Witt. On the choice of the update strength in estimation-of-distribution algorithms and ant colony

optimization. Algorithmica, 81:1450–1489, 2019.

[SZ10] Dirk Sudholt and Christine Zarges. Analysis of an iterated local search algorithm for vertex coloring. In International

Symposium on Algorithms and Computation, ISAAC 2010, Part I, pages 340–352. Springer, 2010.

[Wit05] Carsten Witt. Worst-case and average-case approximations by simple randomized search heuristics. In Symposium on

Theoretical Aspects of Computer Science, STACS 2005, pages 44–56. Springer, 2005.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean functions. Evolutionary Computation, 14:65–

86, 2006.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combinatorics,

Probability & Computing, 22:294–318, 2013.

[Wit14] Carsten Witt. Revised analysis of the (1+1) EA for the minimum spanning tree problem. In Genetic and Evolutionary

Computation Conference, GECCO 2014, pages 509–516. ACM, 2014.

[Wit19] Carsten Witt. Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax. Algorithmica,

81:632–667, 2019.

[WJ07] Richard A. Watson and Thomas Jansen. A building-block royal road where crossover is provably essential. In Genetic and

Evolutionary Computation Conference, GECCO 2007, pages 1452–1459. ACM, 2007.

[WQT18] Mengxi Wu, Chao Qian, and Ke Tang. Dynamic mutation based Pareto optimization for subset selection. In Intelligent

Computing Methodologies, ICIC 2018, Part III, pages 25–35. Springer, 2018.

[YL97] Xin Yao and Yong Liu. Fast evolution strategies. In Evolutionary Programming, volume 1213 of Lecture Notes in Computer

Science, pages 151–162. Springer, 1997.

[YLL99] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary

Computation, 3:82–102, 1999.

Benjamin Doerr: A gentle introduction to theory 120

398

