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ABSTRACT

We propose a visual approach of eliciting preferences from a Deci-

sion Maker (DM) in the context of comparing the stochastic out-

comes of two alternative designs or parameter configurations of an

optimization algorithm for bi-objective problems. Our proposal is

based on visualizing the differences between the empirical attain-

ment functions (EAFs) of the two alternative algorithmic configu-

rations, and then ask the DM to choose their preferred side of the

differences. Information about the regions preferred by the DM is

translated into a weighted hypervolume indicator that will assign

higher quality values to approximation fronts that result in EAF

differences preferred by the DM. This indicator may be used to

guide an automatic algorithm configuration method, such as irace,

to search for parameter values that perform better in the objective

space regions preferred by the DM. Experiments on the well-known

bi-objective quadratic assignment problem and a real-world pro-

duction planning problem arising in the manufacturing industry

show the benefits of the proposal.
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1 INTRODUCTION

In order to compare different configurations of multiobjective op-

timisers, most automatic configuration (AC) methods use unary

quality indicators to assign a single scalar value to each approxima-

tion of the Pareto front [2]. However, the preferences of the user

of the AC method, i.e., the decision maker (DM), may be different

to the ones implied by such quality indicators. The incorporation

of DM’s preferences into quality indicators can be achieved, for in-

stance through the weighted hypervolume indicator (HV𝑤 ) [1], but

expressing preferences in terms of a weight function may be a chal-

lenging task, especially when comparing the stochastic outcomes

of alternative algorithm configurations.

2 FROM EAF DIFFERENCES TO HV𝑤

Given a multiset of approximation fronts, the EAF [8] can be un-

derstood as the number of fronts that attain, i.e., weakly dominate,

each point in the objective space. By visualising the EAFs of two

stochastic multi-objective algorithms, it is possible to assess differ-

ences in the expected location of their outcomes [9], which is an

effective and intuitive way to assess their performance [10, 11].

Our approach starts with two multisets, each containing 𝑛 ap-

proximation fronts generated by two different algorithms. First we

compute a finite representation of the rectangular regions of the

objective space with the same value of the EAF difference between

the multisets. Next, the DM is shown a visualisation of the regions

and is asked to choose their preferred side (e.g., Fig. 2). The regions

with an EAF difference in favour of the DM’s choice can be seen as

weights on the objective space according to the DM’s preferences.

Given these regions and a new approximation front, we com-

pute the value of the corresponding HV𝑤 as a combination of the

unweighted hypervolume (HV ) [12] and a weighted component,

which is scaled by a factor and added to HV . The weighted compo-

nent takes into account the area and the EAF value of the regions

dominated by the points of the approximation front. The scaling

factor is relative to the maximum possible HV in order to provide a

strong bias towards the regions preferred by the DM, even if their

total area is much smaller than the total area of the objective space.

The resulting HV𝑤 assigns a better quality to objective vectors

or approximation fronts that attain the areas where the EAF dif-

ferences are in favour of the DM’s preferences, while respecting

the Pareto-optimality criterion. This HV𝑤 may be used to rank

approximation fronts that are incomparable in terms of Pareto op-

timality, to guide a hypervolume-based optimiser [3], or to guide

the AC of multi-objective optimisers [6]. We believe that eliciting

preferences through this approach is simpler and more intuitive

than directly specifying a weight function, as the DM only needs

to select between the two sides of a plot similar to Fig 2.
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3 RESULTS

We demonstrate our approach on the configuration of the length

parameter of Weighted Robust Taboo Search (W-RoTS) [9] for the

bi-objective quadratic assignment problem (P1). We start from

two initial configurations: P1C1 (ℓ = 1) performs better along

the front except for a few specific regions and P1C2 (ℓ = 100) re-

turns higher-quality solutions at the extremes of the front. From

their EAF differences, we obtain two different HV𝑤 indicators

and use them to guide two different settings of irace, denoted as

P1iraceC1 and P1iraceC2. Each configuration returned by irace is

run 30 times. We simulate DM’s preferences for the centre of the

front and for extreme values of either objective by computing their

weighted hypervolume according to a goal-oriented weight distri-

bution 𝑤goal [1] and an exponential weight distribution 𝑤exp [1],

respectively, which irace did not know about. Figure 1 (see [6] for

complete details) shows that the configurations generated by irace

follow the true preferences of the DM, and thus confirms that our

elicitation method works as expected.

Moreover, we demonstrate that our approach also works on a

real-world production planing problem under uncertainty (P2) [4, 5],

where no prior knowledge is available about the algorithm configu-

rations that would satisfy the DM’s preferences. Figure 2 (see [6] for

complete details) shows that irace returned configurations that are

clearly specialised towards satisfying two alternative preferences of

the DM, confirming once again the effectiveness of our approach.

4 CONCLUSIONS

Our results show that the algorithm configurations found by irace

when guided by the HV𝑤 computed from EAF differences not only

outperformed the ones generated when guided by the unweighted

HV , but also performed significantly better on preferred regions of

the objective space, thus confirming that the ACmethod was indeed

biased by the DM’s preferences. To the best of our knowledge, this

is the first method proposed to incorporate DM’s preferences into

the AC of multi-objective optimizers. Given its generality, it can be

integrated into other AC methods different from irace.
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(a) 𝑤goal with ®𝑔 = (1264374, 1166290)
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(b) 𝑤exp (𝜇exp = 0.1)

Figure 1: Boxplots of HV𝑤 values according to two different

weight distributions: 𝑤goal (left) and 𝑤exp (right). The same

approximation fronts are evaluated on both subfigures. Sets

P1C1 and P1C2 contain 30 fronts each (30 runs of one config-

uration of W-RoTS). Sets P1iraceC1 and P1iraceC2 contain

900 fronts each (30 runs of the best configuration ofW-RoTS

returned by each of the 30 independent runs of irace). Pairs

joined by a linewere comparedwith theWilcoxon rank-sum

test, and the resulting p-value is shown above the line.

(Reproduced from [6])

Figure 2: EAF differences between P2iraceC1 and P2iraceC2.

■ (left) and ♦ (right) show the location of the two goals

that simulate the DM’s true preferences. P2iraceC1 and

P2iraceC2 denote the 30 configurations given by iracewhen

the DM prefers each goal, respectively. Each side contains

data from the approximation fronts generated by 30 runs of

the best configuration returned by each of 30 runs of irace

guided by the corresponding HV𝑤 . (Reproduced from [6])
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