
The Influence of Uncertainties on Optimization of Vaccinations
on a Network of Animal Movements

Krzysztof Michalak
Department of Information Technologies, Wroclaw

University of Economics and Business
Wroclaw, Poland

krzysztof.michalak@ue.wroc.pl,ORCiD:
0000-0003-4994-9930

Mario Giacobini
Department of Veterinary Science, University of Torino

Grugliasco (TO), Italy
mario.giacobini@unito.it,ORCiD:0000-0002-7647-5649

ABSTRACT
This summary presents the results reported in the article Krzysztof
Michalak and Mario Giacobini, "The influence of uncertainties on
optimization of vaccinations on a network of animal movements"
which studies the influence of uncertainties on the effectiveness
of vaccination schemes obtained by using evolutionary algorithms
and vaccination strategies. In this work the uncertainties are rep-
resented as unknown disease cases and changes introduced to the
network of contacts by a rewiring mechanism. The experiments
show that evolutionary algorithms outperform vaccination strate-
gies when provided information is accurate, that is, when most
disease cases are known and the intensity of rewiring is low. With
higher level of uncertainty the strategies produce better results.
Results presented in the article motivate further work in several
areas: modelling and prediction of changes in the contacts network,
development of computational methods for estimating the number
of initial disease cases, and hybridization of evolutionary optimizers
with vaccination strategies and other knowledge-based approaches.
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1 INTRODUCTION
This article addresses the problem of optimizing a vaccination
scheme intended to stop an epidemic that spreads among animal
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farms and pastures through animal movements. The decisions to
vaccinate or not are taken at the farms level, so the decision space
in the considered optimization problem is Ω = {0, 1}Nf arms . The
optimization problem is biobjective: f1 is the number of animals in
the vaccinated farms and f2 is the number of animals infected in
a simulation starting with an outbreak of the disease at αinf = 1%
of the farms. Both objectives are to be minimized.

The calculation of the objective f2 is done by simulating an
epidemic which propagates from the initially infected farms over
a dynamic network of animal movements. In the article, a real-
life dataset is used describing animal transports in the Piedmont
region of Italy in 2017 as a network (graph) in which nodes are
9313 farms housing 560812 animals and 573 pastures, and edges are
animal transports. There are 36293 farm-to-farm movements, 1998
farm-to-pasture movements and 2037 pasture-to-farm movements.

Two approaches to this optimization problem are studied: opti-
mization using evolutionary algorithms and selection of farms to
vaccinate using strategies based on the number of farms a given
farm trades with, the number of transports of animals sent or re-
ceived by the farm, the farm size, etc. Evolutionary optimization is
performed using three state-of-the-art multiobjective optimization
algorithms: the Multiobjective Evolutionary Algorithm Based on
Decomposition, MOEA/D [2], the Non-dominated Sorting Genetic
Algorithm, NSGA-II [1] and the Strength Pareto Evolutionary Al-
gorithm, SPEA2 [3], all combined with a dedicated local search
procedure proposed in this article.

2 UNCERTAINTIES
The focus of the article is the influence of uncertainties on the
quality of solutions to the optimization problem obtained by evo-
lutionary algorithms and vaccination strategies. In the article, the
uncertainties are represented as random changes to the network
of animal transports and to the disease outbreak. Two kinds of
uncertainties studied in the article are:

(1) Unknown disease cases. The decisions which farms to
vaccinate are made with a fraction αknown of the actual
disease cases known to the method which selects farms for
vaccination. In the experiments αknown = 0.1, 0.2, 0.5, 0.8, 0.9
and 1.0 was tested. To compensate this lack of information,
additional disease cases were randomly generated with the
Ra parameter, used as amultiplier for determining howmany
cases to add, ranging from 0 (no artificially generated cases)
to 2 (twice as many artificial cases as the known ones).

(2) Changes in the contacts network. The network of con-
tacts used when decisions about vaccinations are made is
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different than the network of contacts used to simulate the
epidemic when solutions are evaluated. The changes are
introduced via pairwise rewiring of the original graph in
which pairs of movements of the same type (farm-to-farm,
farm-to-pasture, or pasture-to-farm) are randomly selected
and their destinations are swapped, keeping the number of
moved animals unchanged. The intensity of the rewiring is
controlled by the parameter αr ewire = 0.00, 0.02, 0.04, 0.06,
0.08, 0.10, 0.20, 0.30, 0.40 and 0.50. The number of rewired
pairs is αr ewire · |E |/2, where |E | is the number animal move-
ments.

Therefore, when the optimization algorithms and vaccination
strategies make decisions which farms to vaccinate they work with
the outbreak and the network that differ from the epidemic simu-
lated when solutions are evaluated.

3 THE INFLUENCE OF UNCERTAINTIES ON
OPTIMIZATION RESULTS

In order to assess the influence of uncertainties on optimization
results the evolutionary algorithms and vaccination strategies were
used to decide which farms to vaccinate in scenarios in which
the values of αknown , αr ewire and Ra parameters were set to the
values listed in Section 2. The Pareto front produced by eachmethod
was evaluated using the hypervolume indicator. Figure 1 presents
the difference ∆ between the hypervolume attained by the best-
performing EA (theMOEA/D algorithm) and the best result attained
using the vaccination strategies.

Figure 1: The difference ∆ between the hypervolume at-
tained by MOEA/D and the best of the vaccination strate-
gies depending on the value of rewired movements fraction
αr ewire and known disease cases fraction αknown . Surfaces
plotted for Ra = 0 (blue) and Ra = 2 (orange). The gray sur-
face shows the reference level ∆ = 0.

Clearly, if enough information is given (αknown > 0.5, αr ewire
≤ 0.3) the evolutionary algorithm is able to find better solutions
than the vaccination strategies as evidenced by the fact that the
blue surface is above the reference level of ∆ = 0 (gray). Unfortu-
nately when a half or fewer of the disease cases are known the

effectiveness of the EA quickly deteriorates. A deterioration of the
optimization results quality, albeit less severe, can also be observed
for αr ewire > 0.3. A mechanism proposed in the article to coun-
teract the negative influence of the unknown disease cases was to
randomly generate additional cases, with the Ra parameter serving
as a multiplier determining how many cases to add. The change in
the shape of the surface representing the difference between the EA
and the strategies for Ra = 2 shows, that additional disease cases,
even though they are placed randomly, improve the optimization
results when many real cases are unknown. Unfortunately, this
improvement comes at a price of deteriorating the results when
most of the disease cases are known.

4 FURTHERWORK
Evolutionary optimizers can produce good optimization results,
but they require possibly accurate knowledge of the initial cases
of the disease as well as the network structure. In the article it
was shown that the lack of knowledge of the disease cases can be
compensated by randomly adding artificial cases of the disease, but
adding too many artificial cases degrades the optimization quality.
These observations motivate further work in several areas:

• Modelling and prediction of future contacts in the dynamic
network (e.g. of animal movements) with the aim to provide
a better approximation of the true network of contacts for
the optimization algorithms to work with.

• Development of computational methods for estimating the
number of initial disease cases. This direction of research is
motivated by the observation made in the article, that the
location of randomly added artificial cases of the disease
does not have to be known exactly, but adding too few or
too many may negatively impact the optimization results.

• Hybridization of evolutionary optimizers with vaccination
strategies and other knowledge-based approaches. Because
vaccination strategies were less impacted by the lack of infor-
mation, this line of research seems promising especially for
real-life application where uncertainties are usually present.
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