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Why Use Neural Networks?
OUTPUTS

INPUTS

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples
I Utilize big datasets
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Why Evolve Neural Networks?

I . Original role (since 1990s): Sequential Decision Tasks
I Both the structure and the weights evolved (no training)
I Power from recurrency: POMDP tasks; behavior

I . A new role (since 2016): Optimization of Deep Learning Nets
I Architecture, hyperparameters, functions evolved; weights trained
I Power from complexity

I . A possible future role: Emergence of intelligence
I Body/brain co-evolution; Competitive co-evolution
I Evolution of memory, language, learning
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I. Sequential Decision Tasks

I A sequence of decisions creates a sequence of states
I States are only partially known
I Optimal outputs are not known
I We can only tell how well we are doing

I Exist in many important real-world domains
I Robot/vehicle/traffic control
I Computer/manufacturing/process optimization
I Game playing; Artificial Life; Biological Behavior
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Value-Function Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I E.g. Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states
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Policy-Search Reinforcement Learning

Neural NetSensors Decision

I E.g. REINFORCE, policy gradients
I The policy is optimized directly through hill climbing
I Works well in simple cases

I Large/continuous states and actions possible
I Hidden states (in POMDP) disambiguated through memory
I Does not scale well
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Neuroevolution Reinforcement Learning

I Takes advantage of population-based search
I In essence, multiple interacting searches
I Each discover building blocks that are combined
I Extensive exploration possible

I Makes it possible to scale up:
I to large spaces (e.g. 2270 states45)
I to high dimensionality (e.g. up to 1B9)
I to deceptive landscapes (with e.g. multiobj and novelty66)
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How Well Does It Work?

I In the OpenAI Gym CartPole-v0 benchmark vs. PPO, DQN
I NE converges faster, has lower variance, lower regret
I NE is more efficient, reliable, and safer12

I In a double-pole benchmark vs. Sarsa, Q-MLP, etc.
I The only method that can find solutions to 1m, 0.1m, POMDP17

8/60

427



Neuroevolution for POMDP

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Recurrent connections implement memory
I Memory helps with POMDP
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Basic Neuroevolution (1)

I Evolving connection weights in a population of networks 49,61,84,85

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed topology
I Initially random
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Basic Neuroevolution (2)

I Parallel search for a solution network
I Each NN evaluated in the task
I Good NN reproduce through crossover, mutation
I Bad thrown away

I Natural mapping between genotype and phenotype
I GA and NN are a good match!

11/60

Advanced NE 1: Evolving Partial Networks

I Evolving individual neurons to cooperate in networks1,50,53

I E.g. Enforced Sub-Populations (ESP15)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved
I Populations learn compatible subtasks

I Can be applied at the level of weights, and modules17
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Evolving Neurons with ESP
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I Evolution encourages diversity automatically
I Good networks require different kinds of neurons

I Evolution discourages competing conventions
I Neurons optimized for compatible roles

I Large search space divided into subtasks
I Optimize compatible neurons
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Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES22)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Smaller space, less convergence, fewer conventions

14/60

Advanced NE 3: Evolving Network Structure

I Optimizing connection weights and network topology2,10,13,86

I E.g. Neuroevolution of Augmenting Topologies (NEAT69,72)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors

15/60

Why Complexification?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I Challenge with NE: Search space is very large
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental construction of intelligent agents

16/60
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Advanced NE 4: Indirect Encodings (1)

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection2,10,48,67,86

I E.g. Cellular Encoding (CE20)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network
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Indirect Encodings (2)

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT7)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x1, y1, x2, y2) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)
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Properties of Indirect Encodings (1)

I Smaller search space

I Avoids competing conventions

I Describes classes of networks
efficiently

I Modularity, reuse of structures
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs
I Useful for evolving morphology
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Properties of Indirect Encodings (2)

I Not fully explored (yet)
I See e.g. CS track at GECCO

I Promising current work
I More general L-systems;

developmental codings;
embryogeny73

I Scaling up spatial coding8,14

I Genetic Regulatory Networks57

I Evolution of symmetries79

20/60

430



Further NE Techniques

I Incremental and multiobjective evolution16,64,78,85

I Utilizing population culture3,39,76

I Utilizing evaluation history38

I Evolving NN ensembles and modules24,37,52,58,82

I Evolving transfer functions and learning rules6,59,74

I Bilevel optimization of NE35

I Evolving LSTMs for strategic behavior30

I Combining learning and evolution5,11,39,51,70,76,83

I Evolving for novelty
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Evolving for Novelty

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

CPPN = Compositional 
Pattern  
Producing Network 

Mapping 

45 

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 
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CPPN Patterns (Also for brains?) 
From http://picbreeder.org 52,53 

(All are 100% evolved: no retouching) 

47 

CPPN-based Indirect Encoding:  
Hypercube-based NEAT (HyperNEAT)19,60 
• Main insight: 2-D connections isomorphic to 4-D points 

– Nodes situated in 2 spatial dimensions (x,y) 
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

• HyperNEAT extends 2-D CPPNs to 4-D 
– CPPN encodes 4-D patterns (i.e. inside a hypercube) 

• 4-D patterns can express the same regularities as 2d patterns 
• 4-D patterns interpreted as connectvitity patterns 

               CPPN                                      Output                                              CPPN                                          Output 

48 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com65

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?
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Novelty Search

I Evolutionary algorithms maximize a performance objective
I But sometimes hard to achieve it step-by-step

I Novelty search rewards candidates that are simply different27,71

I Stepping stones for constructing complexity
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Novelty Search Demo (1)

I Illustration of stepping stones40,41

I Nonzero fitness on “feet” only; stepwise increase
I Top and right “toes” are stepping stones to next “foot”
I Difficult for fitness based search; novelty can do it

I DEMO
24/60
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Novelty Search Demo (2)

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural27,71

I Allows building on stepping stones
I As a secondary objective—or even the only one!

I DEMO
25/60

Neuroevolution Applications

Control
Pole-Balancing

Satellite Asst. Helicopter
Rocket

Robotics
Soccer

Driving Bipedal Multilegged

Games

a b

1

2

3

4

5

6

7

8

c d e f g h

Othello NERO Pac-Man Unreal

Alife
Duel

Predators Hyenas/Zebras Virtual Creatures
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Games: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!

27/60

Evolving an Unreal Bot

I Evolve effective fighting behavior63

I Human-like with resource limitations (speed, accuracy...)

I Also scripts & learning from humans (unstuck, wandering...)

I 2007-2011: bots 25-30% vs. humans 35-80% human

I 6/2012 best bot better than 50% of the humans

I 9/2012...?
28/60
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Success!!!

I In 2012, two teams reach the 50% mark!
I Fascinating challenges remain:

I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I DEMO
29/60

II. Optimization of DL Architectures

Szegedy et al. 2014

I Big Data and Big Compute available since 2000s
I Machine learning systems have scaled up

I E.g. Deep Learning ideas existed since the 1990s
I With million times more data & compute, they now work!

I A new problem: How to configure such systems?

30/60

Configuring Complex Systems

I A new general approach to engineering
I Humans design just the framework
I Machines optimize the details

I Programming by optimization21
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E.g. Optimizing NE in Helicopter Hovering

I A challenging benchmark
I RL, NE solutions exist

I Eight parameters optimized by hand25

I Hard for a human designer to do more
I With EA, increased to 15

I !Significantly better performance35

32/60
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33

Designing Deep Learning Architectures

34

How to Discover Network Structure?

34

Evolutionary Neural Architecture Search is a natural fit:
• Population-based search covers the space
• Crossover between structures discovers principles
• Novelty search maximizes exploration

Building on Neuroevolution work since the 1990s
Hyperparameters; nodes; modules; topologies; multiple tasks

35

Progress in Evolutionary Deep Learning

35

Understanding ES and GAs in RL (Uber, OpenAI)
• ES provides more exploration than gradients; GA more than ES
Scaling and regularization (Google)
• State-of-the art in CIFAR-10, CIFAR-100, ImageNet
Population-based training (DeepMind, Cognizant)
• Continual training and evolution

26,60,75

55

23,32

36

Progress in Evolutionary Deep Learning (2)

36

Optimizing activation functions and loss functions (Cognizant)
• Regularization and refinement (Gonzalez et al. GECCO’21; Liang et al. GECCO21)
Designing machine learning algorithms with GP (Google)
• Adapts to different task types
• Discovering new layer types

Coevolution of multiple aspects of network design?

4,18,19,32

36,56
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E.G. Neural Architecture Search with CoDeepNEAT

37

Evolution at three levels
• Module subpopulations optimize building blocks
• Blueprint population optimizes their combinations
• Hyperparameter evolution optimizes their instantiation

Fitness of the complete network drives evolution
Applies to both CNN (vision), LSTM (language) networks

46

38

ENN:
Improve Human Design

80
• E.g. image captioning: 

• Start with a state-of-the art design: Show&Tell
• Search in the space of similar elements
• 5% improvement
• A prototype service on the web

• Best-performing AI defies human notions of symmetry and 
patterns of organization

• AI designing AI: could we automate it?

39

1. Improve over naïve baseline
20% or more with little effort

2. Improve state of the art
With more expertise & compute

3. Minimize network resources
Train and run networks faster

4. Extend small datasets
Multitasking with related datasets

ENN:Evolutionary AutoML

Current AutoML: Hyperparameter optimization
Evolutionary AutoML: Architectures and modules as well

40

1 and 2: Improve Performance

40

• Domain: Wikipedia Toxic Comment 
Identification
• Why: Toxicity is bad for business
• Data: 160K labeled comments
• Challenge: highly diverse 

vocabulary, style, and length

• Layer Types: Conv1D, LSTM, GRU

• LEAF Results:
• With minimal compute: Improves 

over naïve Keras baseline
• With more compute: Improves over 

other AutoML methods
• With more compute: Improves over 

SOTA hand-designed model.
• LEAF Hyperparameter Search on 

final architecture gives a final boost
• Similar results on Age Estimation

(Miikkulainen et al. GECCO-21)

33

47
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Evolution adds complexity only if needed
• Favors minimal solutions
• Over evolution a range of sizes explored
• Approximation of the Pareto front

Small networks found that perform well
• Minimization with little cost
• E.g. 0.38% drop with 1/12th of the size

Adding a size objective will explore more

ENN:
3. Minimize Network Resources

33

42

• Sequential, GRUs after 2 pooling layers
Tradeoff Network: Generation 28

Min Network: 
Generation 0

Max

Example Performance/Size Tradeoffs

43

4. Extend Small Datasets

44

Harnessing Multiple Datasets through Multitasking

34,43
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Multitasking Benchmarks

State-of-the-art in two ML benchmarks:

• Omniglot multialphabet character recognition
• Improved state-of-the-art 31%
• Demo: evolution.ml/demos/omnidraw

• CelebA multiattribute face classification
• Improved state-of-the-art 0.75%
• Demo: evolution.ml/demos/celebmatch

Improves learning in each task
• Even when little data available

34

42

III. Emergence of Intelligence

Body

Brain

I Origins of intelligence: Embodied optimization
I Body-Brain Coevolution28,29,68

I Body: Blocks, muscles, joints, sensors
I Brain: A neural network (with general nodes)
I Evolved together in a physical simulation

I Encapsulation, Pandemodium, Syllabus
46/60

Encapsulation

I Once evolved, a trigger node is added
I DEMO

47/60

Pandemonium

I Conflicting behaviors: Highest trigger wins
I DEMO

48/60
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Syllabus

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I Constructed by hand; body and brain evolved together
I DEMOS

49/60

Turn to Light

I First level of complexity
I Selecting between alternative primitives

50/60

Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives

51/60

Strike

I Alternative behavior primitive

52/60
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Attack

I Second level of complexity (beyond Sims and others)

53/60

Turn from Light

I Alternative first-level behavior

54/60

Retreat

I Alternative second-level behavior

55/60

Fight or Flight

I Third level of complexity

56/60
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Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)63

I Possible to construct innovative, situated behavior

57/60

Constructing Intelligent Systems

I Believable, complex behavior in embedded
environments
I Open-ended “arms race”54

I Similar to self-play e.g. in AlphaGo Zero
I Complexity beyond human ability to design it

I If we can build open ended environments, we
should be able to build more complex solutions
I Co-evolve environments and behaviors?

(e.g. POET81, EUREQA62)

58/60

Conclusion

I AI extending from prediction to creativity
I i.e. from modeling to optimization
I i.e. from Deep Learning to Evolution/RL

I Evolutionary optimization of neural networks can
I Discover novel and strategic behavior
I Discover useful complexity for Deep Learning
I Gain insight into origins of intelligence

59/60

Further Material

I www.cs.utexas.edu/users/risto/talks/enn-tutorial
I Slides and references
I Demos
I A step-by-step neuroevolution exercise (evolving behavior

in the NERO game)

I http://nn.cs.utexas.edu/?miikkulainen:encyclopedia20-new
I A short summary of neuroevolution

I www.nature.com/articles/s42256-018-0006-z
I Nature Machine Intelligence survey on Neuroevolution

I arxiv.org/abs/1902.09635
I Proposal for NAS benchmark

60/60
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