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ABSTRACT
The initial population in evolutionary algorithms (EAs) should form
a representative sample of all possible solutions (the search space).
While large populations accurately approximate the distribution of
possible solutions, small populations tend to incorporate a sampling
error. A low sampling error at initialization is necessary (but not
sufficient) for a reliable search since a low sampling error reduces
the overall random variations in a random sample. For this reason,
we have recently presented a model to determine a minimum initial
population size so that the sampling error is lower than a thresh-
old, given a confidence level. Our model allows practitioners of,
for example, genetic programming (GP) and other EA variants to
estimate a reasonable initial population size.
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1 INTRODUCTION
In optimization, evaluating all solutions for a problem instance
(complete enumeration) is often too difficult, expensive, or time-
consuming. Therefore, population-based heuristic search methods
like EAs start with a small sample taken from the set of all solutions
and improve these solutions.When using a sample, there are usually
differences between the properties of the statistical population and
the information obtained from the sample. These differences are
called errors. Non-systematic errors, describing random variations
caused by observing only a subset of the statistical population are
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called sampling errors. The expected amount of sampling error can
be reduced by using larger samples.

Sampling errors are a problem in evolutionary algorithms (EAs),
leading to unreliable search results due to random variations (e.g.,
[1–3, 6]). Reducing the sampling error to a low amount is especially
relevant for estimation of distribution algorithms (EDAs), where
standard variation operators such as crossover and mutation are
replaced by model building and sampling from the learned model.
In EDAs, early sampling errors are learned by the model and, as a
consequence, finding favorable solutions can be difficult. Therefore,
we argue that an initial EA population should form a representative
sample of the statistical population of possible solutions and that
the sampling error in the initial EA population should be low.

To address the problem of sampling error in EA populations,
we present a model that estimates the minimum size of an EA
population that is required for a sampling error to be below a
certain value that can be specified a priori by an EA user. Our
suggested approach [8] consists of two steps:

(1) Identify relevant properties: the sampling error is measured
with respect to a relevant property; differences of the frequen-
cies in the sample in comparison to the statistical population
of such a property define the size of the sampling error. Thus,
a decision is needed on what is a relevant property.

(2) Determine a lower bound for the population size: the Cochran
formula is used to estimate a lower bound for the size of the
population. The model allows EA practitioners to estimate
a minimum initial population size in such a way that the
sampling error is lower than a threshold.

2 IDENTIFY RELEVANT PROPERTIES
Sampling error is a problem in evolutionary algorithms (EAs), lead-
ing to unreliable search results due to random variations. The prob-
lem has been discussed in the genetic algorithm (GA) literature. For
example, Goldberg et al. [6] note that small initial populations in a
genetic algorithm (GA) can be problematic when relevant building
blocks1 (BBs) are not represented by the sample. However, at the
beginning of a search run, it is not known if a BB is relevant or
not. Therefore, it is argued that the initial GA population should be
large enough to ensure that at least one copy of each BB is present
in the initial population.

Following the GA literature, papers about population sizing in
GP focus on BB supply. In the context of GP, BBs describe rela-
tionships between nodes in GP parse trees. BBs in GP were usually
defined as subtrees of a GP parse tree by many authors. For example,
GP subtrees can be described by using n-grams of ancestors. An
n-gram of ancestors in a GP parse tree is the sequence of the values
1BBs are defined by [5] as “short, low-order, and highly fit schemata”. A schema
is a similarity template describing a subset of solutions within a population with
similarities at certain positions of the genotype [5].
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represented by a node i and its n − 1 ancestor nodes on the same
branch (parent, grandparent, greatgrandparent, etc.) [7]. Previous
work finds that n-grams of ancestors represent relevant relation-
ships between nodes of a GP parse tree. The difference between the
expected and the observed frequencies of n-grams in a sample is
the sampling error in initial GP populations.

3 DETERMINE A LOWER BOUND FOR THE
POPULATION SIZE

The Cochran formula [4] is a standard method in statistics to esti-
mate a minimum sample size N for a large statistical population.
The Cochran formula needs an estimate of the relative frequency
p of the property that is evaluated (e.g., the relative frequency of
an n-gram of ancestors). In general, it is a problem to estimate p.
In our case, the expected relative frequency can either be modeled
(for an example, refer to [8]) or approximated. To approximate the
frequencies, we suggest to initialize a large population without eval-
uating fitness values and measuring the frequency of the relevant
property. We assume that p is normally distributed [4].

Furthermore, we need to choose an acceptable confidence level.
For this, the Cochran formula uses z-scores of a normal distribution.
For example, if a confidence level of 95% is chosen, the correspond-
ing z-score is 1.96. Last, we define a desired margin r of the relative
statistical error e , so that e ≤ r , where e is the absolute difference
between the expected frequency p and the measured frequency p′
relative to p

e =
|p′ − p |

p
.

The Cochran formula [4] is

N =
z2 (1 − p)

r2p
,

where p is the expected frequency, r is a margin of the relative error,
and the confidence level is determined by a z-score.

Thus, if we take a sample of size N , the value of p will be in the
interval

[p (1 − r ),p (1 + r )]

with a probability equal to the confidence level. For example, we
decide to use a confidence level of 95% (z = 1.96) and it is known
that p = 7% of a statistical population have the respective property;
the desired level of precision is r = 10%. Then, using Eq. (3), we
estimateN = 5103.84. As a result, if we take a random sample of size
N , with a probability of 0.95 we measure p with 0.063 ≤ p ≤ 0.077
(P (0.063 ≤ p ≤ 0.077) = 0.95).

The decision for a confidence level and a relative error is, to
some extent, arbitrary [4]. Values widely used in the literature and
also recommended by [4] are a confidence level of at least 95%
(z ≥ 1.96) and a relative error of not more than 5%. Estimated
sample sizes calculated by using these values have a high precision
and a high confidence. Given the expected frequency of a property
(e.g., an n-gram), as the value for p, we can estimate the size of an
EA population.

So far, we are only able to estimate the necessary EA population
size for one statistical item, i.e., a specific value of the property (e.g.,
one specific n-gram). However, a relevant property typically can

have several different values. For such a case, Cochran recommends
to first identify the most important statistical items and afterwards
estimate the sample size separately for each of these items. Then,
Cochran’s pragmatic recommendation is to simply select the largest
estimate for a sample size of any of the items [4].

4 DISCUSSION AND CONCLUSION
We presented an application of Cochrans formula to determine a
minimum size of an initial EA population, given a desired degree of
sampling error and a confidence level. For the example of GP, we
make our code publicly available in the form of a GP population
size calculator, so that users of GP can calculate the lower bound
for GP population sizes themselves.2

Of course, EA search is not only influenced by the initial popula-
tion but also by other factors. In particular, we cannot guarantee
a certain solution quality with our model since competing BBs or
expressions for some specific problem domain are not considered.
Thus, future studies need to extend our model, taking variation and
selection into account (temporal models). Furthermore, combining
our initialization model and an adaptive population size approach
would be promising.
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2The calculator can be found at https://gitlab.rlp.net/schweim/sampling-error-in-GP/
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