
Analysis of Evolutionary Algorithms on Fitness Function with
Time-linkage Property (Hot-off-the-Press Track at GECCO 2021)

Weijie Zheng
Guangdong Provincial Key
Laboratory of Brain-inspired
Intelligent Computation

Department of Computer Science and
Engineering

Southern University of Science and
Technology

Shenzhen, China

Huanhuan Chen
School of Computer Science and

Technology
University of Science and Technology

of China
Hefei, China

Xin Yao
Guangdong Provincial Key
Laboratory of Brain-inspired
Intelligent Computation

Department of Computer Science and
Engineering

Southern University of Science and
Technology

Shenzhen, China

ABSTRACT
In real-world applications, many optimization problems have the
time-linkage property, that is, the objective function value relies on
the current solution as well as the historical solutions. Although the
rigorous theoretical analysis on evolutionary algorithms has rapidly
developed in the last two decades, it remains an open problem to
theoretically understand the behaviors of evolutionary algorithms
on time-linkage problems. This paper takes the first step towards
the rigorous analyses of evolutionary algorithms for time-linkage
functions. Based on the basic OneMax function, we propose a time-
linkage function where the first bit value of the last time step is
integrated but has a different preference from the current first bit.
We prove that with probability 1−o(1), randomized local search and
(1 + 1) EA cannot find the optimum, and with probability 1 − o(1),
(µ + 1) EA is able to reach the optimum.

This paper for the Hot-off-the-Press track at GECCO 2021 sum-
marizes the work “Analysis of Evolutionary Algorithms on Fitness
Function with Time-linkage Property” by W. Zheng, H. Chen, and
X. Yao, which has been accepted for publication in the IEEE Transac-
tions on Evolutionary Computation 2021 [19].
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SUMMARY OF OUR RESULTS
Evolutionary Algorithms (EAs), one category of stochastic opti-
mization algorithms that are inspired by the Darwinian principle
and natural selection, have been widely utilized in real-world appli-
cations. However, the theoretical understandings are far behind the
practical usage due to the difficulty of their mathematical analysis
caused by their stochastic and iterative nature. Rigorous analyses
can help to fundamentally understand EAs and ultimately design
efficient algorithms in practice. Despite the increasing attention
and insightful theoretical analyses in recent decades [1, 4, 7, 13, 21],
there remain many important open areas that have not been con-
sidered in the evolutionary theory community.

One kind of important open issues is about the time-linkage
problems. Time-linkage problems, firstly introduced by Bosman [2]
into the evolutionary computation community, are the optimization
problems where the objective function to be optimized relies not
only on the solutions of the current time but also the historical
ones. In other words, the current decisions also influence the future.
There are plenty of applications with the time-linkage property, see
more than 30 real-world (continuous and discrete) applications in
the survey of [15].

The time-linkage optimization problems can be tackled offline
or online according to different situations. If the problem pursues
an overall solution with sufficient time budget and time-linkage
dynamics can be integrated into a static objective function, then the
problem can be solved offline. However, in the theoretical under-
standing on the static problem [1, 4, 7, 13, 21], no static benchmark
function in the evolutionary theory community is time-linkage.

Another situation that real-world applications often encounter
is that the solution must be solved online as time goes by. This time-
linkage online problem is a dynamic optimization problem [15]. As
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pointed out in [15], the whole evolutionary community, not only
the evolutionary theory community, is lacking research on these
real-world problems. The dynamic problems analyzed so far in the
theory community majorly includes Dynamic OneMax [6], Mag-
nitude and Balance [17], Maze [9], Bi-stable problem [8], dynamic
linear functions [11], and the dynamic BinVal function [10] for dy-
namic pseudo-Boolean function, and dynamic combinatorial prob-
lems including the single-destination shortest path problem [12],
makespan scheduling [14], the vertex cover problem [16], subset
selection [18], graph coloring [3], etc. However, there is no theo-
retical analysis on dynamic time-linkage fitness functions, even no
dynamic time-linkage pseudo-Boolean functions is proposed for
the theoretical analysis.

In this work, we conduct the first step towards the understanding
of EAs on the time-linkage function. When solving a time-linkage
problem with EAs in an offline mode, the first thing faced by the
practitioners utilizing EAs is how to encode the solution. There are
obviously two straightforward encoding ways. Take the objective
function relying on solutions of two time steps as an example. One
way is to merely ignore the time-linkage dependency by solving a
non-time-linkage function with double problem size. The other way
is to consider the time-linkage dependency, encode the solution
with the original problem size, but store the solutions generated
in the previous time steps for the fitness evaluation. When solving
the time-linkage problem in an online mode, engineers need to
know before they conduct experiments whether the algorithm they
use can solve the problem or not. Hence, in this paper, we design
a time-linkage toy function based on OneMax to shed some light
on these questions. This function, called OneMax(0,1n ) where n
is the dimension size, is the sum of two components, one is the
OneMax fitness of the current n-dimensional solution, the other
one is the value of the first dimension in the previous solution but
multiplying the opposite of the dimension size. The design of this
function considers the situation when the current solution prefers
a different value from the previous solution, which could better
show the influence of different encodings. Also, it could be the core
element of some dynamic time-linkage functions and used in the
situation that each time step we only optimize the current state of
the online problem in a limited time, so that the analysis of this
function could also show some insights to the undiscovered theory
for the dynamic time-linkage functions.

For our results, we analyze the theoretical behaviors of random-
ized local search (RLS) and two most common benchmark EAs,
(1 + 1) EA and (µ + 1) EA, on OneMax(0,1n ). We show that with
probability 1−o(1), RLS and (1 + 1) EA cannot find the optimum of
OneMax(0,1n ) while the not small population size in (µ + 1) EA can
help it reach the optimum with probability 1 − o(1). We also show
that conditional on an event with probability 1 − o(1), the expected
runtime for (µ + 1) EA is O(nµ).

Discussion: Here we discuss the reason for the searching diffi-
culty of the (1 + 1) EA in a more intuitive way. For the problems
with no time-linkage property, most EAs use the global operators,
which ensures the reachability of each search point in the search
space, thus ensures the global convergence. One example for the
not convergent EA could be the binary differential evolution ana-
lyzed in [5, Sec. 3.1] since the stochastic dependence results in its
operators not global. For our case, it seems that the (1 + 1) EA uses

a global mutation operator. However, noting that the optimum is
defined in an (n + 1)-dimensional space while the search space is
n-dimensional, the mutation operator in the n-dimensional space is
not a global operator with respect to the (n + 1)-dimensional space,
thus could not ensure the global convergence. Besides, due to the
selection operator, the (1 + 1) EA will get stuck in some subspace
and our results show that it happens with 1 − o(1) probability. For
the (µ + 1) EA with the not small parent population size, our re-
sults show that with probability of 1−o(1), its maintained diversity
will prevent the stagnation cases taking over the whole population
before the optimum is reached.

Impact: This work makes the first attempt to the theoretical
analysis of the EAs on time-linkage problem. It has brought some
interesting results, like the theoretically positive support for the
non-elitist evolutionary algorithms [20]. More theoretical discus-
sions on more complicated and practical time-linkage problems
will be addressed in the future.
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