
Learning Classifier Systems
From Principles to Modern Systems

Anthony Stein1 Masaya Nakata2

1 University of Hohenheim, Germany
anthony.stein@uni-hohenheim.de

2 Yokohama National University, Japan
nakata-masaya-tb@ynu.ac.jp

http://gecco-2021.sigevo.org/
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
GECCO '21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07…$15.00
https://doi.org/10.1145/3449726.3461414

Anthony Stein is a tenure track professor at the University of Hohenheim,
where he heads the Artificial Intelligence in Agricultural Engineering lab.
He received his bachelor's degree (B.Sc.) in Business Information
Systems from the University of Applied Sciences Augsburg in 2012. He
then moved on to the University of Augsburg for his master's degree
(M.Sc.) in computer science with a minor in information economics which
he received in 2014. Since November 2019, he also holds a doctorate (Dr.
rer. nat.) in computer science from the University of Augsburg. His
research is concerned with the application of AI methodology and
evolutionary machine learning algorithms to complex self-adaptive and
self-organizing (SASO) systems. Dr. Stein has been involved in the
organization of workshops on intelligent systems and evolutionary
machine learning. He serves as reviewer for international conferences and
journals, including ACM GECCO or IEEE T-EVC.

Masaya Nakata is an associate professor at Faculty of Engineering,
Yokohama National University, Japan. He received his Ph.D. degree in
informatics from the University of Electro-Communications, Japan, in
2016. He has been working on Evolutionary Rule-based Machine
Learning, Reinforcement Learning, Data mining, more specifically,
Learning Classifier System. His contributions have been published as
more than 10 journal papers and more than 20 conference papers, e.g.,
CEC, GECCO, PPSN. He was an organizing committee member of
International Workshop on Learning Classifier Systems 2015-2016, 2018-
2020 in GECCO conference.

Instructors

 A comprehensive introduction to the huge field of LCS

 A review of all existent applications of LCS

 A in-depth comparison of Michigan vs. Pittsburgh LCS

 A complete introduction to the theory behind LCS
 But, we indeed will have a first look 

What this tutorial is NOT!

 An attempt to get the audience in touch with LCS

 An illustrative introduction to make the LCS concept graspable

 A `simplification’ to gain an intuition about the overarching learning
framework which LCS provide

 A starting point to further dive into the broad field around LCS

 Therefore it is explicitly noted that…
• we restrict ourselves to Michigan-style LCS
• we see abstracted views of particular technical details
• at the end corresponding references for a `deeper dive’ are given

What this tutorial actually is

498

Course Agenda
 Introduction

• A Brief Definition
• Why LCS?
• Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell
• An Overview of Formal Theory Behind LCS
• Learning Optimality Theory

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

Course Agenda
 Introduction

• A Brief Definition
• Why LCS?
• Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell
• An Overview of Formal Theory Behind LCS
• Learning Optimality Theory

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

Learning Classifier Systems (LCS) comprise a family of flexible, evolutionary,
rule-based machine learning systems which involve a unique tandem of local
learning and global evolutionary optimization of the collective models’ localities.

Introduction
A Brief Definition of Learning Classifier Systems

 Flexible
• Applicability: Have proven successful in a vast variety of domains
• Extensibility: Define more a framework rather than a specific algorithm

 Evolutionary
• Steady-state Niche Genetic Algorithm (GA) at their heart
• Neo-Darwinian Survival-of-the-Fittest Principle: Selection, Recombination, Mutation

Operators
 Rule-based

• Knowledge is represented via IF(condition)-THEN(action) rules (aka `classifiers’)
• Divide-and-Conquer: Rules partition the problem space and solve it collectively

 Machine Learning
• Rules/Classifiers, i.e., their internal parameters are learnt via stochastic gradient-based

algorithms (Widrow-Hoff delta rule, Recursive Least Squares (RLS), etc.)
• Capable of Reinforcement Learning (RL), Supervised Learning (SL) and Unsupervised

Learning (UL) with only minor and straight-forward changes necessary
• Thus, applicable to Sequential Problems, Classification, Regression, Clustering

Introduction
Why Learning Classifier Systems? (1/3)
 Interpretability by design

• Knowledge represented by IF-THEN rules
• Allows for explicit injection of expert knowledge

 Complexity reduction by design
 Online adaptivity to dynamic learning environments
 Inherent pressures toward generalization
 Overarching framework

• Nearly any kind of ML algorithm can be integrated
 Comparative studies confirm competitive performance

 Rich body of problem domain and application work in over 40 years
of research!

499

Example Problem
Checkerboard Classification

𝑛 ൌ 2 dimensions
each within ሾ0,1ሿ

𝑛𝑑 ൌ 8 divisions
for each dimension
with alternating field
colors (black/white)

𝑥௤

Task:
Of which shade is the
field encompassing
the
query point 𝑥௤?

0 1

1

𝑥௤ ∈ 0,1 ଶ

Example Problem
Checkerboard Classification

Linearly separable?
 e.g., Linear Model, Perceptron

Non-linearly separable?
 e.g., Multi-layer Perceptron

Problem Space
Partitioning
 LCS!

Introduction
Why Learning Classifier Systems? (2/3)

Investigated Problem Domains
 Adaptive Control (continuous and episodic)
 Uncertain Environments (Noise, Partial Observability)
 Dynamic Environments (Concept Drift/Shift)
 Data Imbalance

• Class Imbalance
• Sparsity regarding payoff

 High Dimensionality / Scalability
• Exploration guidance via expert knowledge
• Transfer Learning approaches
• Dimensionality reduction via Autoencoders

 Complexity of underlying problem
• Heterogeneity, Epistasis
• Obliqueness, Curvature, Modality, etc.

Introduction
Why Learning Classifier Systems? (3/3)

Fields of Real World Application
 Gas-Pipeline Control
 Autonomous Robotics
 Robotic Kinematics
 Motion Control
 Genetics
 Biomedical Knowledge Discovery
 Medical Diagnosis
 Cognitive Modeling
 Traffic Control
 Smart Camera Networks
 Games
 … and many more!

500

 Learning Classifier System
(LCS)
 In retrospect, an odd name.
 There are many machine learning

systems that learn to classify but
are not LCS algorithms.

 E.g. Decision trees

 Also referred to as…
 Rule-Based Machine Learning

(RBML)
 Genetics Based Machine

Learning (GBML)
 Adaptive Agents
 Cognitive Systems
 Production Systems
 Classifier System (CS, CFS)

Introduction
Looking Back: History of LCS*

* Image adapted from [49]

* Adapted from Urbanowicz’s previous tutorials

 LCSs are one of the earliest artificial cognitive systems
– developed by John Holland (1978) [14].
 His work at the University of Michigan introduced and popularized the

genetic algorithm.

 Holland’s Vision: Cognitive System One (CS-1)
 Fundamental concept of classifier rules and matching.
 Combining a credit assignment scheme with rule discovery.
 Function on environment with infrequent payoff/reward.

 The early work was ambitious and broad. This has led to many paths being
taken to develop the concept over the following 40 years.

 CS-1 archetype would later become the basis for `Michigan-style’ LCSs.

1970’s

1980’s

1990’s

2000’s

2010’s

 Genetic algorithms and CS-1 emerge
 Research flourishes, but application success is

limited.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 LCS subtypes appear: Michigan-style vs. Pittsburgh-
style

 Holland adds reinforcement learning to his system.
 Term `Learning Classifier System’ adopted.
 Research follows Holland’s vision with limited success.
 Interest in LCS begins to fade.

 Pittsburgh-style algorithms introduced by Smith
in Learning Systems One (LS-1) [35]

 Booker suggests niche-acting GA (in [M]) [5]
 Holland introduces bucket brigade credit assignment [15]
 Interest in LCS begins to fade due to inherent algorithm complexity and failure

of systems to behave and perform reliably

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 REVOLUTION!
 Simplified LCS algorithm architecture with ZCS
 XCS is born: First reliable and more comprehensible

LCS
 First classification and robotics applications (real-world)

 Wilson revolutionizes LCS algorithms with accuracy-based rule fitness
in his XCS Classifier System (XCS) [60]

 Holmes applies LCS to problems in epidemiology [16]
 Stolzmann introduces Anticipatory Classifier Systems (ACS) [44]

 Frey & Slate present an LCS with predictive accuracy fitness rather than
payoff-based strength [11]

 Riolo introduces CFCS2, setting the scene for Q-learning like methods and
anticipatory LCSs [34]

 Wilson introduces simplified LCS architecture with his Zeroth-level Classifier
System (ZCS), a strength-based system [59]

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

501

1970’s

1980’s

1990’s

2000’s

2010’s

 LCS algorithm specializing in supervised learning and
data mining start appearing

 LCS scalability becomes a central research theme
 Increasing interest in epidemiological and bioinformatics
 Facet-wise theory and applications

 Wilson introduces XCS for function approximation (XCSF) [64]
 Kovacs explores a number of practical and theoretical LCS questions [21,22]
 Bernadó-Mansilla introduce sUpervised Classifier System (UCS) for

supervised learning [4]
 Bull explores LCS theory in simple systems [6]
 Bacardit introduces two Pitt-style LCS systems GAssist and BioHEL with

emphasis on data mining and improved scalability to larger datasets [1,2]
 Holmes introduces EpiXCS for epidemiological learning. Paired with the first

LCS graphical user interface to promote accessibility and ease of use [17]
 Butz introduces first online learning visualization for function approximation
 Lanzi & Loiacono explore computed actions

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

 Increased interest in supervised learning applications persists.
 Emphasis on solution interpretability and knowledge discovery.
 Scalability improving – 135-bit multiplexer solved!
 GPU interest for computational parallelization.
 Broadening research interest from American & European to

include Australasian & Asian.

 Franco & Bacardit explored GPU parallelization of LCS for scalability.

 Urbanowicz & Moore introduced statistical and visualization strategies for
knowledge discovery in an LCS [53]. Also explored use of `expert knowledge’
to efficiently guide GA [55], introduced attribute tracking for explicitly
characterizing heterogeneous patterns [54,57].

 Browne and Iqbal explore new concepts in reusing building blocks (i.e., code
fragments) . Solved the 135-bit multiplexer reusing building blocks from
simpler multiplexer problems [19].

 Bacardit successfully applied BioHEL to large-scale bioinformatics problems
also exploring visualization strategies for knowledge discovery [3].

 Urbanowicz introduced ExSTraCS for supervised learning [51,56]. Applied
ExSTraCS to solve the 135-bit multiplexer directly.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

1970’s

1980’s

1990’s

2000’s

2010’s

~40 years of LCS research has…
Clarified understanding.

Produced algorithmic descriptions.

Determined 'sweet spots' for run parameters.

Delivered understandable 'out of the box' code.

Demonstrated LCS algorithms to be…
Flexible

Widely applicable

Uniquely functional on particularly complex

problems.

Introduction
Looking Back: History of LCS*

* Adapted from Urbanowicz’s previous tutorials

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
• Building Blocks of LCS
• Putting it together: A generic LCS
• Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell
• An Overview of Formal Theory Behind LCS
• Learning Optimality Theory

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

502

Michigan-style LCS
Building Blocks of a Learning Classifier System

Classifier

Environment

Population
Credit Assignment

Genetic Algorithm

Classifier
Classifier

Action Selection

…
LCS or `Adaptive Agent’

Detector Effector
State 𝜎௧ Action 𝑎௧

Reward 𝑟௧

(Compaction)

Classifier 𝑐𝑙
 IF-THEN rule

• Condition c𝑙.𝐶
• Action 𝑐𝑙. 𝑎

 Condition 𝑐𝑙.𝐶 encodes
input subspace 𝑐𝑙.𝐶 ⊆ 𝑋

• Conditions of 𝑐𝑙′𝑠 are not disjoint!

 Rule strength 𝑐𝑙. 𝑠, e.g.,
• Predicted Payoff
• Prediction Accuracy

 Book-keeping parameters
• Experience
• Niche size
• Numerosity
• etc.

Michigan-style LCS
BBs of LCS: Classifier

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

IF-THEN Book-keepingQuality

* dot-notation denotes reference to parameters of specified classifier 𝑐𝑙

𝑐𝑙 ≔

(0,0) (1,0)

(0,1) (1,1)

`𝑏𝑙𝑢𝑒′

`Mario’ multi-class problem [41]

Ternary Encoded Condition
 Encodes schema within problem’s

input/state space
 For binary input spaces 𝔹௟

 One bit of input instance covered
by one symbol in the condition

 Symbol from ternary alphabet
Σ ൌ ሼ0,1, #ሽ

• `#’ serves as don’t care / wildcard

 Condition is concatenation of
symbols

• 𝐶 ≔ 𝑐ଵ, … , 𝑐௟ , 𝑐௜ ∈ ሼ0,1, #ሽ

 Condition also encodes
chromosome for the GA

 Example Problems:
• k-Multiplexer, Majority-On, Parity, etc.

Michigan-style LCS
BBs of LCS: Classifier’s Condition

0 1 0 1 0 1 0 1
0 1 0 1

0 1

𝑥ଷ
𝑥ଶ
𝑥ଵ

0

1

0
 1

 0

 1

 0

1

0

 1

 0

1

0

 1

𝑥 ଺ 𝑥 ହ 𝑥 ସ

𝑐𝑙ଵ.𝐶 ൌ 01#11#
𝑐𝑙ଶ.𝐶 ൌ ###0##

𝑐𝑙ଷ.𝐶 ൌ 110101
𝑙 ൌ 6

Interval-based Condition
 Encodes subspace within problem’s

input/state space
 Real-valued input spaces ℝௗ

 One dimension 𝑖 ൌ 1, … ,𝑑 of an input
instance is covered by one interval
predicate in 𝐶

• 𝑖-th interval predicate ሺ𝑙௜ ,𝑢௜ሻ
• Lower bound 𝑙௜, upper bound 𝑢௜
• Ordered vs. unordered Bound

 𝐶 is concatenation of intervals
• 𝐶 ≔ 𝑙ଵ,𝑢ଵ , … , 𝑙ௗ ,𝑢ௗ , 𝑙௜ ,𝑢௜ ∈ ℝ

 Each bound is one gene in chromosome
 Example inputs:

• Continuous values e.g., Traffic flows at
intersections, Sensory data

• Nominal (gender, blood group) or ordinal
features (age, salary, etc.)

Michigan-style LCS
BBs of LCS: Classifier’s Condition

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙.𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ

𝜎௧ ൌ (0.4, 0.75)

interval predicate

for 𝑖 ൌ 1

in
te

rv
al

pr
ed

ic
at

e

fo
r𝑖
ൌ

2

Detector
𝜎௧

503

Michigan-style LCS
BBs of LCS: Classifier’s Condition

Many more condition alphabets
 Hyperellipsoids (e.g., [9])

• Covariance Matrix representation
• Explicit geometric representation

 S-expressions / Code Fragments [19]

 Convex Hulls [27]

 Mixed Discrete-Continuous Attribute
List Knowledge Representation
(ALKR) [2]

 Neural Networks [7], etc.

Source: [19]

Source: [27]
Source: [2]

Discrete Actions
 Depends on the learning task

• Reinforcement Learning: Action
• Classification: Class/Endpoint
• Regression: No action needed!

 Examples:
• Robot navigation: Turn left, right, up, down
• Medical diagnosis: Tumor is benign or malignant
• Traffic light control: Signal plan A, B or C

 Large action spaces 𝐴
• Each rule maintains a single action
• Many rules needed for a complete mapping of

the state-action-space

 Continuous Actions
• Selection turns out difficult
• But: Approaches do exist

Michigan-style LCS
BBs of LCS: Classifier’s Action

Fig. licensed according to CC BY-SA-NC

Effector

𝑎௘௫௘௖

Population ሾ𝑃ሿ
 The set of all rules/classifiers
 Constitutes knowledge base
 Entirety of 𝑐𝑙 ∈ ሾ𝑃ሿ collectively

makes up the global model
 Contains many transient rules
 Contains 𝑛 ൑ 𝑁 classifiers

• 𝑁 is a critical hyperparameter
• Single classifier can subsume others
 numerosity 𝑐𝑙.𝑛𝑢𝑚

• Size of ሾ𝑃ሿ is limited s.t.
∑ 𝑐𝑙.𝑛𝑢𝑚 ൑ 𝑁௖௟∈ሾ௉ሿ

 ሾ𝑃ሿ usually starts `tabula rasa’
 Can be initialized a priori

• Randomly
• Expert Knowledge / Default rules

Michigan-style LCS
BBs of LCS: Population

Population ሾ𝑃ሿ
 The set of all rules/classifiers
 Constitutes knowledge base
 Entirety of 𝑐𝑙 ∈ ሾ𝑃ሿ collectively

makes up the global model
 Contains many transient rules
 Contains 𝑛 ൑ 𝑁 classifiers

• 𝑁 is a critical hyperparameter
• Single classifier can subsume others
 numerosity 𝑐𝑙.𝑛𝑢𝑚

• Size of ሾ𝑃ሿ is limited s.t.
∑ 𝑐𝑙.𝑛𝑢𝑚 ൑ 𝑁௖௟∈ሾ௉ሿ

 ሾ𝑃ሿ usually starts `tabula rasa’
 Can be initialized a priori

• Randomly
• Expert Knowledge / Default rules

Michigan-style LCS
BBs of LCS: Population

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

IF-THEN Book-keepingQuality

𝑐𝑙ଵ
𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

𝐶 𝑎 𝑠 𝑒𝑥𝑝 …

𝑐𝑙ଶ

𝑐𝑙௡

𝑐𝑙ଷ …

ሾ𝑃ሿ

504

Distillation of ሾ𝑃ሿ
 Not necessary for learning

success!
 Increases inference speed and

comprehensibility of model
 Removes transient rules from ሾ𝑃ሿ

• Smaller collection of `predictive‘ rules

 Different approaches, e.g.,
• Condensation [60]
• Greedy compaction [9]
• Quick Rule Filtering [47]

 Typically applied at the end of
learning or after convergence

 Up to ~90 % smaller size of ሾ𝑃ሿ
 But only marginal increase in

prediction error

Michigan-style LCS
BBs of LCS: Compaction

Action Selection
 The actual `inference’ step
 Chooses the action/prediction at each

time step / for each situation
 Aka Policy 𝜋: 𝑆 → 𝐴 (from RL domain)
 More generally referred to as

Performance Component
(1) Classifier Matching determines niche!
(2) Classifier Mixing collective solution!
(3) Action Selection
(4) Action Execution

 Handles Exploration vs. Exploitation
trade-off, e.g.,

• Interleaving random/greedy selection
• 𝜖-greedy policy
• Purely explore and exploit afterwards

Michigan-style LCS
BBs of LCS: Action Selection

* adapted from [39]

Credit Assignment
 Aka Reinforcement Component
 Learning comes into play
 Reward signal from environment

• Immediate reward  may be 0
• Delayed payoff  goal reached, 1000

 Single-step vs. Multi-step
 Correct / Incorrect Action Selection
 Reward / Punish
 Problem: Long action sequences
 Which classifiers to reinforce /

attenuate?
 Early `stage-setting’ classifiers
 Adapts selected classifiers’ learnable

parameters, i.e., strength 𝑐𝑙. 𝑠
 Updates book-keeping parameters

Michigan-style LCS
BBs of LCS: Credit Assignment

The early algorithm:
(Implicit) Bucket Brigade [15,59]

The modern approach:
Temporal Difference Learning

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ ൅ 𝛽ሺ𝑟௧ିଵ ൅ 𝛾max
௔

𝑠௔ െ 𝑐𝑙. 𝑠௧ିଵሻ

Immediate reward 𝑟௧ିଵ +
current max. strength  back-up

New estimate – old estimate  TD

* Classifiers 𝑐𝑙 that were in ሾ𝐴ሿ of the previous cycle are updated here!

𝑐𝑙. 𝑠௧ ൌ 𝑐𝑙. 𝑠௧ିଵ െ 𝛾𝑐𝑙. 𝑠௧ିଵ ൅
𝛾

|ሾ𝐴ሿ௧|
෍ 𝑐𝑙௝ . 𝑠௧

௖௟ೕ∈ሾ஺ሿ೟

Genetic Algorithm
 Aka Discovery Component
 Steady-state Niche GA
 Periodic execution
 Optimizes coverage of the input space
 Usually, only conditions are altered

• However, action mutation exists
 Fitness measure

• Strength 𝑐𝑙. 𝑠 in ZCS and older variants
• Relative accuracy 𝑐𝑙. 𝜅ᇱ in XCS and

descendants (XCSF, UCS, ExSTraCS)
 Hyperparameters

• Mutation rate 𝜇
• Crossover probability 𝜒
• Selection mechanism (Roulette-wheel

vs. Tournament)
• GA activation threshold 𝜃ீ஺

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Ternary Case

* adapted from [39]

505

Michigan-style LCS
BBs of LCS: Genetic Algorithm

Genetic Algorithm
 Still, steady-state niche GA
 Still, periodic execution
 Still, optimizes coverage of the input

space
 Same fitness measure
 Additional hyperparameter
 Mutation spread 𝑚଴

Real-valued case

𝑥ଵ

𝑥ଶ

0.0 0.5 1.0

1.0

0.5

𝑐𝑙௣௔௥ଵ.𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.55, 0.95ሻሿ

𝑐𝑙௣௔௥ଶ.𝐶 ൌ ሾሺ0.40, 0.80ሻ, ሺ0.30, 0.70ሻሿ
𝑐𝑙௢௙௙ଵ.𝐶 ൌ ሾሺ0.30, 0.70ሻ, ሺ0.30, 0.70ሻሿ

𝑐𝑙௢௙௙ଵ.𝐶 ൌ ሾሺ0.25, 0.70ሻ, ሺ0.30, 0.80ሻሿ

1st offspring after crossover:

1st offspring after mutation:

Michigan-style LCS
Putting all together
 Building blocks are the most basic components of LCS
 Each block can have more than one `color‘
 E.g., for credit assignment:

• Bucket Brigade Algorithm
• Profit Sharing Plan
• Implicit Bucket Brigade
• Q-Learning
• Widrow-Hoff (single-step)
• Linear Least Square
• Recursive Least Square

 Select the most promising block for your problem and put it together

  LCS provide a generic framework, not a single algorithm!

Michigan-style LCS
Putting all together: A Generic LCS

* adapted from [39]

 XCS Classifier System (XCS) [60]

 Due to Stewart W. Wilson
 `Classifier fitness based on accuracy‘
 Replaces strength 𝑐𝑙. 𝑠 with triplet

• Predicted payoff 𝑐𝑙.𝑝
• Prediction error 𝑐𝑙. 𝜖
• Fitness 𝑐𝑙.𝐹

 BBA credit assignment replaced with Q-learning-like update
 Applies niche instead of panmictic GA

• first on ሾ𝑀ሿ later on ሾ𝐴ሿ instead of ሾ𝑃ሿ
 Extension of the Zeroth-level Classifier System (ZCS) [59]

Michigan-style LCS
Bridging the Gap: Approaching XCS

506

Michigan-style LCS
XCS Classifier System: Overview

* adapted from [39]

Michigan-style LCS
XCS Classifier System: Overview

Environment

p ε F
#011 : 01 43 01 .99
11## : 00 32 13 .09
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92
1#01 : 10 24 17 .15

…

0011

#011 : 01 43 01 .99
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92

00 01 10 11
nil 42.5 nil 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 01 43 01 .99
001# : 01 27 24 .03

Reward

Covering

RL

Single Classifier

matching

Performance Component
Reinforcement Component
Discovery Component

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

XCS Classifier System
A quick main loop run-through

Discrete Checkerboard
 What is the situation 𝜎(𝑡)?
 The coordinates of the red boxed

field (10,11)
 Starting horizontally: 𝜎(𝑡)=1011
 What are the possible actions

𝑎∈𝐴?
 `black‘ = 1
 `white‘ = 0
 What payoff can be retrieved?
 1000 for correct action
 0 for wrong action

00

01

10 11

00

01

10

11

XCS Main Loop
Matching

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

Situation σ(t)
Population [P]

Match Set [M]

Single Classifier

matching

00

01

10 11

00

01

10

11

507

 At each timestep 𝑡 XCS retrieves a binary string on length 𝑛 ൅𝑚
 This string is denoted as 𝜎 𝑡 ∈ 0,1 ௡ା௠
 Example for discrete CBP (𝑛 ൌ 2, 𝑚 ൌ 2 bits per dimension)

and 𝑡 ൌ 1: 𝜎 1 ൌ 1011
 Each classifier maintains a condition 𝐶
 The conditions are encoded ternary, i.e. 𝐶 ∈ 0,1, # ௡ା௠

 The # symbol serves as wildcard or `don‘t care‘ operator
 Examples of conditions: (is matching 𝜎ሺ1)?)

• 1#11
• #011
• 01#1

XCS Main Loop
Matching

Matching is the process of
scanning the entire population ሾ𝑃ሿ
for classifiers with a condition that

is `fulfilled‘ by the situation 𝜎 𝑡

XCS Main Loop
Matching: A simple example

* adapted from [39]

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

Situation σ(t)
Population [P]

Match Set [M] Prediction Array

Single Classifier

matching

Offspring Classifiers

00

01

10 11

00

01

10

11

XCS Main Loop
System Prediction

The calculation of the system
prediction is the actual `inference‘
step! Here, the local models are

combined (`mixed‘) into a
collective target prediction!

 The system prediction 𝑃ሺ𝑎ሻ is a fitness-weighted sum of predictions
of all classifiers in ሾ𝑀ሿ advocating action 𝑎

𝑃 𝑎 ൌ
∑ 𝑐𝑙.𝐹 ∗ 𝑐𝑙. 𝑝௖௟∈ሾெሿ|௖௟.௔ୀ௔

∑ 𝑐𝑙.𝐹௖௟∈ሾெሿ|௖௟.௔ୀ௔

 Especially at this place, the separation of strength and accuracy
becomes apparent!

 For each possible action 𝑎 ∈ 𝐴 there exists one entry within the PA
 If a is not represented in ሾ𝑀ሿ, the PA entry is 𝑛𝑖𝑙

XCS Main Loop
System Prediction

508

XCS Main Loop
System Prediction: A simple example

* adapted from [39]

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 0 43 01 .99
101# : 0 27 24 .03

Reward
= 1000

RL

Single Classifier

matching

00

01

10 11

00

01

10

11

XCS Main Loop
Credit Assignment

 𝜖௝ ← 𝜖௝ ൅ 𝛽 𝑃 െ 𝑝௝ െ 𝜖௝
 𝑝௝ ← 𝑝௝ ൅ 𝛽ሺ𝑃 െ 𝑝௝ሻ

 𝐹௝ ← 𝐹௝ ൅ 𝛽 𝜅௝ᇱ െ 𝐹௝ , 𝜅௝ᇱ ൌ ௖௟ೕ.఑⋅௖௟ೕ.௡௨௠
∑ ௖௟೔.఑⋅௖௟೔.௡௨௠ ೎೗೔∈ሾಲሿ

, 𝜅௝ ൌ 𝛼 ఢೕ
ఢబ

ି௩

 𝛽 is the learning rate (typically set to 0.2)
 𝛼 (often set to 0.1) and 𝜈 (usually set to 5) control how strong

accuracy decreases when error is higher than 𝜖଴
 𝜖଴ defines the targeted error level of the system
 In single-step problems, 𝑃 is set to the immediate reward 𝑟௜௠௠
 Classifier parameters are updated by means of the Widrow-Hoff

(or delta) rule in combination with the moyenne adaptiv modifiée
(MAM) technique

cf. [Butz et al. 2004]

XCS Main Loop
Credit Assignment

XCS Main Loop
Covering

Environment

p ε F
#01# : 1 10 00 .01

1011

#01# : 1 10 00 .01 0 1
nil 10

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#01# : 1 10 00 .01

Reward
= 0

Covering

RL

matching

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

509

 Covering is the process of generating at least one novel classifier
that matches the current input 𝜎ሺ𝑡ሻ whenever:
• Match set ሾ𝑀ሿ is empty (i.e. no matching 𝑐𝑙 in [P])
• ሾ𝑀ሿ is poor, i.e. average fitness below a certain threshold
• ሾ𝑀ሿ contains less then 𝜃௠௡௔ distinct actions

 The condition of the covered classifier 𝑐𝑙௖௢௩ is initially set to the
current input

 Additionally, each bit is replaced by a # (for generalization
purposes) with probability 𝑃#

 The action is selected equiprobably between actions not present in
ሾ𝑀ሿ

 Values for 𝑝, 𝜖 and 𝐹 are set to predefined initial values
(typically 10.0, 0.0 and 0.01, respectively)

XCS Main Loop
Covering

XCS Main Loop
Covering

Environment

𝜎௧ ൌ 100110

Covering
𝑐𝑙௖௢௩ .𝐶 ൌ 1#0#10

𝑐𝑙௖௢௩ . 𝑎 ൌ randሺ𝐴 \ 𝐴௠௡௔ሻ
𝑐𝑙௖௢௩ . 𝑝 ൌ 𝑝௜௡௜ ൌ 10
𝑐𝑙௖௢௩ . 𝜖 ൌ 𝜖௜௡௜ ൌ 0

𝑐𝑙௖௢௩ .𝐹 ൌ 𝐹௜௡௜ ൌ 0.01

ሾ𝑃ሿ

ሾ𝑀ሿ

𝑐𝑙௖௢௩

if ሺ𝑚𝑛𝑎 ൏ 𝜃௠௡௔ሻ

൅

൅

if 𝑀 ൌൌ 0 OR 𝑚𝑛𝑎 ൏ 𝜃௠௡௔

Calculate PA

else else

Adjust 𝑚𝑛𝑎
and 𝐴௠௡௔

1 0 0 1 1 0

randሾ0,1ሻ ൑ 𝑃#

randሾ0,1ሻ ൐ 𝑃#

#

* adapted from [39]

Environment

p ε F
#011 : 0 43 01 .99
11## : 0 32 13 .09
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92
1#01 : 1 24 17 .15

…

1011

#011 : 0 43 01 .99
#0## : 1 14 05 .52
101# : 0 27 24 .03
#0#1 : 1 18 02 .92

0 1
42.5 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 0 43 01 .99
101# : 0 27 24 .03

Reward
= 1000

Covering

RL

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

00

01

10 11

00

01

10

11

XCS Main Loop
Genetic Algorithm

 One of the most essential parts of XCS is the incorporated steady-
state niche GA (steady-state: only a small fraction of the population
is replaced)

 It is triggered when the average time over all classifiers in ሾ𝐴ሿ since
the last GA invocation is greater than 𝜃ீ஺ (often set to 12)

• 𝑡 െ 𝑡𝑠ഥ ൐ 𝜃ீ஺, where 𝑡𝑠ഥ ൌ
∑ ௖௟.௧௦೎೗∈ሾಲሿ

|ሾ஺ሿ|

 The GA selects two parents from ሾ𝐴ሿ with a probability proportional
to their fitness values (roulette-wheel selection)

• The higher a classifier‘s fitness, the higher the selection chance

 The selected parents are copied to generate two offspring classifiers
𝑐𝑙௢௙௙ଵ , 𝑐𝑙௢௙௙ଶ

XCS Main Loop
Genetic Algorithm: Invocation and Selection

510

 The conditions of both 𝑐𝑙௢௙௙ are crossed with probability 𝜒 ൌ 0.8
(crossover operator)

• One-point crossover: Each offspring classifier‘s condition is split at a certain point and
switched with the other offspring classifier

• n-point crossover: more than one point is determined for switching
• Uniform crossover: Each value is switched with a certain probability (often 0.5)

 Afterward, each bit is flipped with probability 𝜇 ൌ 0.04 to one of the other
allowed alleles (mutation operator)

• E.g. 2nd bit is set to `1‘, mutation can flip this bit to `0‘ or `#‘

XCS Main Loop
Genetic Algorithm: Crossover and Mutation

Environment

p ε F
#011 : 01 43 01 .99
11## : 00 32 13 .09
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92
1#01 : 10 24 17 .15

…

0011

#011 : 01 43 01 .99
#0## : 11 14 05 .52
001# : 01 27 24 .03
#0#1 : 11 18 02 .92

00 01 10 11
nil 42.5 nil 16.6

GA

execute Action

Situation σ(t)
Population [P]

Match Set [M] Prediction Array Action Set [A]
Action
Selection
Regime

#011 : 01 43 01 .99
001# : 01 27 24 .03

Reward

Covering

RL

Single Classifier

matching

Offspring Classifiers

C
ov

er
ed

 C
la

ss
ifi

er
(s

)

Previous Action Set
[A]-1

+
max

discount 𝛾
delay = 1

XCS Main Loop
Sequential Problem Solving (Multi-step)

 𝑟 may or may not be retrieved in each step
 One has to distinguish immediate reward (𝑟௜௠௠) and total reward or

payoff 𝑟 at the end of a task (e.g. finally food was found)
 Update of classifier attributes is performed on the action set of the

previous timestep 𝑡 െ 1 (𝐴 ିଵ)
 The maximum system prediction 𝑃ሺ𝑎ሻ from the current PA is

discounted by a factor 𝛾 (usually 𝛾 ൌ 0.95)
 Additionally, the immediate reward gained for performing the action

in the previous state (of time step 𝑡 െ 1) 𝑟௧ିଵ௜௠௠ is added (may be 0)
 This delay allows to retrieve „information from the future“
 In single-step environments 𝑃 ൌ 𝑟௜௠௠

 In multi-step problems 𝑃 ൌ 𝑟௧ିଵ௜௠௠ ൅ 𝛾 ∗ max
ୟ

𝑃𝐴 𝑎

XCS Main Loop
Sequential Problem Solving (Multi-step)

 Single-step update of 𝑝:

𝑝௝ ← 𝑝௝ ൅ 𝛽 𝑃 െ 𝑝௝

 Substituting 𝑃 yields us the multi-step update formula
 Multi-step update of 𝑝:

𝑝௝ ← 𝑝௝ ൅ 𝛽ሺ𝑟௧ିଵ௜௠௠ ൅ 𝛾max
௔

𝑃𝐴ሺ𝑎ሻ െ 𝑝௝ሻ

 Do you know this update procedure from anywhere else?

𝑄ሺ𝑠,𝑎ሻ ← 𝑄ሺ𝑠,𝑎ሻ ൅ 𝛼ሾ𝑟 ൅ 𝛾max
௔

𝑄 𝑠ᇱ,𝑎 െ 𝑄 𝑠,𝑎 ሿ

XCS Main Loop
Sequential Problem Solving (Multi-step)

511

XCS Main Loop
Multi-step Credit Assignment: A sample calculation

𝐴 ିଵ 𝐶 𝑎 𝑝 ϵ 𝐹
𝑐𝑙ଵ 01# 01 700 200 0.8
𝑐𝑙ଷ 010 01 500 500 0.5

𝑃𝐴
00 01 10 11

720 nil 360 nil

max
௔∈஺

𝑃𝐴ሺ𝑎ሻ ൌ 720
𝑟௜௠௠ ൌ 1000+0.9 · 720 ൌ 648

discount by 𝛾 immediate reward

refine attributes using
Widrow-Hoff delta rule

e.g. 𝑝 of 𝑐𝑙ଵ:

𝑃 ൌ 1648

Environment

𝑐𝑙ଵ.𝑝 ← 700 ൅ 0.2 1000 ൅ 0.9 max 720,360 െ 700
𝑐𝑙ଵ.𝑝 ൌ 889.6

* adapted from [39]

Examples for multi-step environments:
 Animat scenarios:

• Agent is seeking food / gold / exit / etc.
• E.g., Woods or Maze scenarios

 Step-wise adjustment of a control variable:
• Pan, Tilt, Zoom in Smart Camera Networks
• Mountain Car
• Inverse Pendulum

 Movement decisions:
• `Move to beacon‘ minigame in StarCraft II LE

XCS Main Loop
Sequential Problem Solving (Multi-step)

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell (presented by Dr. Nakata)
• An Overview of Formal Theory Behind LCS
• Learning Optimality Theory

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 One disadvantage of LCS often mentioned is…

“[…] less formal understanding and a
relatively small body of theoretical work […]”

 We should put emphasis on “relatively”
 Sometimes experienced misconception that…

no theory would exists for LCS!

 This is not true!

XCS Theory in a Nutshell
Much formal work already done!

512

XCS Theory in a Nutshell
An Overview of Formal Theory Behind LCS

XCS Theory
Hyperparameter derivation
 Parameter bounds (Butz, Stalph)
 Optimal parameters (Nakata et al.)

Facetwise Theory
 Evolutionary Pressures (Butz et al.)
 Solution growth, sustenance
 Effective search

Formalizations (models)
 Simple LCSs (Goldberg, Bull)
 Probabilistic model

(Drugowitsch & Barry)

Learning problem analysis
 Imbalanced domains (Orriols-Puig et al.)
 Complexity of classification problems

(Bernadó-Mansilla et al.)

GA analysis in XCS
 Markov-chain analysis (Bull, Butz)
 Selection pressure (Butz, Orriols-Puig)
 Selection probability (Kovacs et al.)

Hypotheses
 Generalization Hypothesis (Wilson)
 Optimality Hypothesis (Kovacs)
 Theory on Strong Overgenerals (Kovacs)

Convergence and time bounds
 PAC learnability of k-DNF (Butz)
 Domino convergence model (Butz et al.)
 Convergence proofs under simplifications

(Drugowitsch, Wada)

*see [33] for a brief survey

 Facetwise Theory Approach (due to Goldberg [13])
• Proposed to analyze and understand GAs
• Partitioning of a system into its most relevant components
• Analysis in separation
• Afterward, combine and investigate interactions
• Answer questions: What?, How? and When?

 Facetwise LCS Theory (due to Butz et al. [8,10])
I. Design evolutionary pressures most effectively

– Fitness guidance, parameter estimation, generalization
II. Ensure solution growth and sustenance

– Population initialization, schema supply, growth and sustenance
III. Enable effective solution search

– Mutation, recombination, local vs. global structure
IV. Consider additional challenges in multi-step problems

– Effective policy, problem sampling, reward propagation

XCS Theory in a Nutshell
Facetwise Approach

XCS Theory in a Nutshell
Evolutionary Pressures (or `How it learns?’)

Source: [8]

 Main challenges (schema and covering)
• Covering Challenge

– Ensure coverage and GA application
– Prevent being trapped in a covering-deletion-cycle

• Schema Challenge
– Ensure that fitness pressure applies
– From both directions: over-general and over-specific classifiers
–

 Derived bounds:
• Covering bound
• Schema bound
• Reproductive opportunity bound
• Niche support bound
• Learning time bound

 PAC-learnability of k-DNF problem confirmed for XCS with those bounds!

XCS Theory in a Nutshell
Learning Bounds (or `When it learns?’)

െ logሺ1 െ 𝑃 𝑐𝑜𝑣. ሻ

െ log 1 െ 2 െ 𝜎 𝑃
2

௟ ൏ 𝑁

Covering bound, cf. [10]

Cover

Delete
ሾ𝑃ሿ

513

 Latest theoretical studies (Very few)
• Shift to provide practical insights from hypothetical insights

– Remove impractical assumptions
o E.g. infinite iteration, Wilson’s generalization hypothesis

– Capture the optimality of the XCS framework to maximize the performance
• Theoretical analysis for the “whole” behavior of XCS

– How rule-learning affect rule-evolution?
– Is there any “sweet spot” to achieve both the optimality of rule-learning and evolution?
– A lot of things that we should reveal a complexity of evolutionary rule-based learning

 Which optimality we have known so far?
• Optimality on Rule-learning (theoretically-validated) [31, 69]
• Optimality on Rule-evolution (hypothetical) [30]
• Dilemma between Rule-learning and Rule-evolution (theoretically-validated) [68]

Optimality Theory on XCS
Motivation

 Learning capacity: To estimate the true-worth of rules
• On classification tasks: confirmed [31, 69]
• XCS Learning Theory enables XCS to identify accurate rules in as few training

instances as possible

Optimality Theory on XCS
Optimality on Rule-learning

population match set System Prediction

Action
selection

input output

Action set

reward

Learn rule-
parametersGA Subsumption

GA-activation for
an interval time

 Search capacity: To generate accurate rules
• Non-deterministic, so hard to describe the optimality
• Can we still say deterministic optimality to search capacity?

Optimality Theory on XCS
Optimality on Rule-evolution

population match set System Prediction

Action
selection

input output

Action set

reward

Learn rule-
parametersGA Subsumption

GA-activation for
an interval time

 Unconfirmed main capacities of XCS
• To generate accurate rules
• To estimate the true-worth of rules  focus

 Learning optimality theory [31, 69]
• Optimality: theoretically guarantee that XCS correctly distinguish accurate rules from

inaccurate rules with the minimum training
• Benefit1: guideline to set the optimum parameter values of the XCS learning parameters
• Benefit2: you can get optimality on your LCS if your LCS employs the same learning

scheme as in XCS
• Restriction: applicable only to classification problems with binary reward scheme (so far)

Optimality on Rule-learning
Overview

514

 Easy step to get optimality on the XCS learning scheme 1/3

 Definition
• A classification task with binary reward scheme

– Correct class: a positive reward
– Incorrect class: a negative reward

• Accurate rules boundary:
– Accurate rules: 100% classification accuracy
– Inaccurate rules: < 100% classification accuracy

• In fact, we can control the quality of inaccurate rule with
– Set to a user’s defined value
– Accurate rules (redefined): having % - 100% classification accuracy
– Inaccurate rules: having <= % classification accuracy

Optimality on Rule-learning
Brief description 1/4

 Easy step to get optimality on the XCS learning scheme 1/3

 Goal
• Guarantee to identify reliably accurate rules correctly
• Is there any solutions of , to satisfy our conditions?

• We will answer the following questions

Optimality on Rule-learning
Brief description 2/4

of accurate
rules

of inaccurate
rules

controlled by
learning rate

: How many times should a rule be updated to be considered for accurate?

: How small a prediction error accurate rules must have?

: How much rate is adequate to update rules?

 Easy step to get optimality on the XCS learning scheme 1/2

 Step 1
• Define the quality of accurate rules with

 Step 2
• Calculate the minimum learning iteration given by

 Step 3
• Find solution (leaning rate) of the boundary condition by Newton’s method:

Optimality on Rule-learning
Brief description 3/4

 Easy step to get optimality on the XCS learning scheme 2/2

 Step 4
• Set error tolerance with the solution as:

 That’s all
• Determined , , are their optimum values to achieve the optimality on the XCS

learning scheme

Optimality on Rule-learning
Brief description 4/4

You can download an open source “theoretically-optimized XCS” at

http://www.nkt.ynu.ac.jp/en/download/

515

Optimality on Rule-learning
Graphical conclusion 1/3

Update time

Max pred. Error of accurate rules

Min Pred. Error of inaccurate rules

Possible prediction error of accurate
rules with different initial values

Optimality on Rule-learning
Graphical conclusion 2/3

Update time

Max pred. Error of accurate rules

Min Pred. Error of inaccurate rules

Possible prediction error
of inaccurate rules with
different initial values

Optimality on Rule-learning
Graphical conclusion 3/3

Update time

Pred. Error of accurate rules

Pred. Error of inaccurate rules

Target training times

Convergence speed
making boundary at

Pred. error value
at the boundary

Always satisfied

 The optimal parameter settings successfully captures the maximum F-
measure score

Optimality on Rule-learning
Impact 1/3

Start to identify

516

Optimality on Rule-learning
Impact 2/3

135-MUX: 4.4 E+40 possible inputs
2.6 E+64 possible rules

3x4-CMUX: multi-class problem37-RMUX: real-valued

37-MUX: Noisy problem
Optimum = 90% cla. acc.

 Benchmarks  Real-world data classification

Optimality on Rule-learning
Impact 3/3

Optimality on Rule-evolution
Motivation
 Unconfirmed main capacities of XCS

• To generate accurate rules  focus
• To identify accurate rules

 Optimality on Rule-evolution
• Hard to guarantee that XCS evolutionary generates accurate rules
• Instead, we here consider the maximize a probability to generate accurate rules
• How?

 Optimality hypothesis [30]
• XCS employs a steady-state GA: generates ONLY two offspring rules for each generation
• Very inefficient

 Difficulty to determine the optimal number of generated offspring
• The problematic cover-delete cycle occurs when increasing the number of

generated offspring

 How can XCS safely increase offspring while preventing the cover-
delete cycle?

N=3000 N=5000 N=10000

3 5 10

Optimality on Rule-evolution
Difficulty

517

Optimality on Rule-evolution
Optimality hypothesis
 Optimality hypothesis [30]

• XCS employs a steady-state GA: generates ONLY two offspring rules for each generation
• Hypothesis:

– “A probability to generate accurate rules can be maximized
when maximizing the number of offspring rules. Then, the
maximum number of offspring rules can be equal to the
number of inaccurate rules exist in the current population.”

 This suggests the optimal number of generated offspring can be
dynamically changed and it is corresponding to the number of inaccurate
rules existed in the population

 How to safely increase the number of generated solutions?
  How to safely delete unnecessary rules

Optimality on Rule-evolution
Algorithm
 Very easy to implement this optimality hypothesis

 Step 1
• Calculate and set the optimal parameter setting derived from the learning optimality theory

 Step 2
• Identify the inaccurate rules with the XCS learning scheme

 Step 3
• Replace inaccurate rules with newly-generated offspring rules

 That’s all

Optimality on Rule-evolution
Self-adaptation
 Optimality hypothesis works as self-adaption of the number of offspring

Many inaccurate rules  Generate offspring
for global search

XCS discovered optimal rules

Optimality on Rule-evolution
Impact 1/2
 Validation

N=3000 N=5000 N=10000

Default(two)
offspring

Manual
tuning

Optimality
hypothesis

518

Optimality on Rule-evolution
Impact 2/2
 Impact of Optimality hypothesis

135-MUX: 4.4 E+40 possible inputs
2.6 E+64 possible rules

Optimality Theory on XCS
Summary
 Seeking of the optimality of the XCS framework

• Optimality on Rule-learning:
– Partially done in 2017 & 2020 (for classification problems)
– Not yet for multiple reward scheme and for reinforcement learning task

– Provides a reasonable guideline to set the XCS learning parameters
– Easy to use (Get optimality in your XCS-based systems)
– Theoretically-reliable extensions, e.g. self-adaptation of learning parameters [70]

• Optimality on Rule-evolution:
– Yet restricted in hypothetical insight
– Hypothetical insight still work

 Join us
• Theoretical works gradually get attention….

– Potential to drastically improve the LCS performance
– I.e. bottom-up of evolutionary symbolic approach like LCS
– One of the “well theoretically-studied” evolutionary machine learning variants

• A lot of things that we should reveal
– For multi-step problems
– Wilson’s generalization hypothesis…

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell
 An Overview of Formal Theory Behind LCS
 Learning Optimality Theory

 Modern Systems
• XCSF: Piece-wise Online Function Approximation
• ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

 XCS for function approximation introduced by Wilson in 2002 [64]

• Supervised learning  Actions become obsolete; only dummy action 𝑎ௗ
• Online learning  Adapt model instance per instance

• Local learning  Classifiers partition the input space; divide-and-conquer

• Evolutionary Learning  Steady-state niche GA optimizes input space coverage

 Alternative view: Evolutionary Ensemble Learner
• XCS’ algorithmic structure as a general

online ensemble learning framework

• Classifiers as members of that ensemble

• No Boosting, no Bagging, more like Stacking

• Allows hybrid ensemble (cf. [26])

Modern Systems
XCSF: Piece-wise Online Function Approximation

519

Modern Systems
XCSF: Piece-wise Online Function Approximation

Schematic

𝑐𝑙ଵ: ሺ𝐶, 𝑎ௗ,𝑝, 𝜖,𝐹ሻ
𝑐𝑙ଶ: ሺ𝐶, 𝑎ௗ,𝑝, 𝜖,𝐹ሻ

…
𝑐𝑙ே: ሺ𝐶, 𝑎ௗ, 𝑝, 𝜖,𝐹ሻ

𝑓:𝑋 → ℝ,𝑥௧ ↦ 𝑦,𝑋 ⊆ ℝ௡𝑥௧ ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ

SP ⊆ ሾPሿ

𝑃 𝑎ௗ ൌ ∑ ௖௟.௣ · ௖௟.ி೎೗∈ሾಾሿ
∑ ௖௟.ி೎೗∈ሾಾሿ

PA
ሾMሿ

𝑟௜௠௠ ൌ 𝑦 ൌ 𝑓ሺ𝑥௧ሻ
COV RL

𝑐𝑙௖௢௩

𝑐𝑙௢௙௙
GA

Performance Component
Reinforcement Component
Discovery Component
Interpolation Component (IC)

𝑐𝑙ଷ
𝑐𝑙଺
𝑐𝑙ଵଽ
𝑐𝑙ଵଶ଻
…

𝑃ሺ𝑎ௗሻ

𝑐𝑙ଵ.𝐶
𝑐𝑙ଶ.𝐶

𝑐𝑙ே .𝐶

 Development of Classifier Prediction
 90’s: Wilson introduced ZCS and XCS as reinforcement learning algorithms

 Classifiers 𝑐𝑙 advocate specific action 𝑐𝑙. 𝑎 ∈ 𝐴 for certain subset of states 𝑥௜ ⊆ 𝑋

 Prediction attribute 𝑐𝑙. 𝑝 was defined to estimate the expected reward 𝔼ሾ𝑟|𝑥, 𝑎ሿ.

 2000: XCS recognized to be well applicable to supervised learning tasks (classification).

 since 2001: Not surprisingly, it was then also used to approximate functions (regression).

 Prediction 𝑐𝑙. 𝑝 was used as XCS’ output

 Eventually, modeled as function 𝑓 𝑥 ൌ 𝑤்𝑥 ൅ 𝑤଴ of the current input 𝑥 ∈ 𝑋

 Intuition
𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ.𝑝

𝑐𝑙ଶ.𝑝

𝑐𝑙ଷ.𝑝

𝑓ሺ𝑥ሻ

𝑥𝑐𝑙ଵ 𝑐𝑙ଶ 𝑐𝑙ଷ

𝑐𝑙ଵ.𝑤ሺ଴ሻ

𝑐𝑙ଶ.𝑤ሺ଴ሻ

𝑐𝑙ଷ.𝑤ሺ଴ሻ

𝑐𝑙ଵ.𝑤ሺଵሻ

Modern Systems
XCSF: Innovations to preceding XCS(R) (1/2)

 Competent update procedures (cf. Lanzi et al. [24])

• Linear Least Square
• Kalman Filter
• Gain Adaptation
• Recursive Least Square

 Various predictors
• Polynomial approximation [25]
• Evolution Strategy [48]
• Neural Network [23]
• Support Vector Regression [29]
• RBF-Interpolation [42]

 Guided Mutation [37]

• Inspired by Covariance Matrix Adaptation
• Store weights for matching samples
• Assign weight < 1 for instances with high error (and vice versa)
• Guide mutation towards positively weighted instances

Modern Systems
XCSF: Innovations to preceding XCSR (2/2)

Source:
Gradient descent,
Wikipedia

Source: [37]

 Robot Kinematics
• Filtering of sensory information [20]

• Locally linear forward kinematics [38]

 Continuous action spaces [63]

• Hierarchical XCSF architectures
• e.g., Continuous Actor-Critic approach

 Stacking Approach for Ensemble Forecasting [36]

• Use of hybrid forecasting techniques (ARIMA, Exp. Smooting, etc.)
• Locally learning the weights for combination of those
• Applied to different time series

Modern Systems
XCSF: Applications

Source: [20]

Source: [63]

Source: [36]

520

 First introduced by Urbanowicz and Moore in 2014 [56]

 Conceived to tackle large-scale, complex classification problems
 Equipped with mechanisms for post-hoc Knowledge Discovery
 Proved very successful in large multiplexer problems (135-bit!)
 Focus on LCS scalability in terms of:

• Increasing number of training instances (big data)
• Increase in problem dimensionality (relevant features)
• Increase in total number of features (curse of dimensionality)

 Open Source project (Python):
https://github.com/ryanurbs/ExSTraCS_2.0

 Visit hands-on session at IWLCS@GECCO!

Modern Systems
ExSTraCS: Large-scale Supervised Classification

[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters6

Deletion
10

Pre-Processing: Expert Knowledge Discovery

Post-Processing: Rule Compaction

Data Set1

[C][I] [C][I]

4

Subsumption
7

Attribute
Feedback

Expert
Knowledge

Attribute Tracking8

A

B

C

Training Instance

[PC]
Prediction

(* see [51,56])

Modern Systems
ExSTraCS: Overview

* Adapted from Urbanowicz’s previous tutorials

 Automatically calculate training data statistics:
• Number of attributes
• Number of instances
• Location of endpoint (class)

 Automatic shuffling to prevent bias

 Determines data characteristics:
• Location of categorical attributes
• Location of continuous attributes
• Determines min and max ranges
• Counts distinct values for each attribute within the training data

 Automatic selection of Rule-Specificity limit (RSL)

Modern Systems
ExSTraCS: Adaptive Data Management (ADM)

Pre-Processing:A

Source: [2]ALKR-style
encoding

 Expert provides weights to the features/attributes
 Weights determine `predictive value’
 Weights guide covering mechanism and GA

 Weights can be provided manually by expert user, or…
 … automatically by utilizing Relief-based attribute weighting

• RelieF, SURF, SURF*, MultiSURF
• New to ExSTraCS 2.0  Tuned-RelieF (TuRF)

 Introduces sort of automated feature selection
 But: without actual removal for knowledge discovery purposes!

Modern Systems
ExSTraCS: Using Expert Knowledge (EK)

Pre-Processing: Expert Knowledge Discovery

Expert
Knowledge

A

* see [51,55] for more details

521

 An extension to the LCS algorithm that allows
for the explicit characterization of heterogeneity,
and allows for the identification of
heterogeneous subject groups.

 Akin to long-term memory. Experiential
knowledge stored separately from the rule
population that is never lost.

 Relies on learning that is both incremental and
supervised.

 Stored knowledge may be fed back into LCS
during learning.

Modern Systems
ExSTraCS: Attribute Tracking und Feedback
(AT&F)

* Adapted from Urbanowicz’s previous tutorials

Attribute
Feedback Attribute Tracking8

* see [54,57] for more details

 Outputs up to 5 distinct output files
a) Final population of learned rules
b) Population metrics (train/test accuracy, etc.)
c) Attribute co-occurrence in final rules
d) Attribute tracking scores per instance
e) Summary of predictions for testing data,

including votes (for further use)

 Facilitate algorithm transparency and interpretability!

Modern Systems
ExSTraCS: Knowledge Discovery from Output

gray box

Post-Processing: Rule CompactionC

[PC]

* see [53,57] for more details

 TO SOLVE: 135-bit Multiplexer
• All 135 features are predictive in at least some subset of the dataset.
• Non-RBML approaches would need to include all 135 attributes together in a single model properly

capturing underlying epistasis and heterogeneity.

 Few ML algorithms can make the claim that they can solve even the 6 or 11-bit multiplexer
problems, let alone the 135-bit multiplexer.

* Images adapted from [Urbanowicz and Browne, 2017]

Modern Systems
ExSTraCS: Solving the 135-Multiplexer

* Adapted from Urbanowicz’s previous tutorials

Course Agenda
 Introduction

 A Brief Definition
 Why LCS?
 Looking Back: LCS History

 Michigan-style Learning Classifier Systems
 Building Blocks of LCS
 Putting it together: A generic LCS
 Bridging the Gap: Approaching XCS

 XCS Theory in a Nutshell
 An Overview of Formal Theory Behind LCS
 Learning Optimality Theory

 Modern Systems
 XCSF: Piece-wise Online Function Approximation
 ExSTraCS: Large-scale Supervised Classification

 Summary & Conclusions
• A Different Perspective
• Why LCS?
• Resources & Current Research

522

 Reconsider M-style LCS as an online ensemble learner
 Rules = ensemble members
 Each rule constitutes a local model / hypothesis
 Rules are experts of different problem niches mixture of experts
 `Goodness’ of each `expert’ determined instance-by-instance

without necessity to remember  one-pass (online) learning
 Modularity (recall building block intuition) allows for stacking

• Different models for local prediction (ANN, RBF, polynomials) and
fitness-weighted combination = stacked generalization

 Learning Classifier System not only about classification (alone)
• XCSF: Function Approximation = Regression
• XCS(R): Sequential Decision Making = Reinforcement Learning
• XCSC: Clustering = Unsupervised Learning

 XCSF  similarities to Locally Weighted Projection Regression
 XCS(R)  generalizing Q-learner

Summary & Conclusions
A Different (ML-centric) Perspective on LCS

 Flexibility (RL, SL) and modularity (building blocks)
 Interpretability by design (condition-action rules)
 Follow divide and conquer principle (mixture of experts)
 Capture complex associations (epistasis, heterogeneity)
 Evolution as central component allows adaptation to

change (concept drift)
 Overarching framework for general ML techniques

• LCS and Deep Learning do not mutually exclude!
• E.g., put DNNs to locally model a policy

 And finally…
• they are pretty cool, right? ;-)

Summary & Conclusions
So, again: Why LCS? (ex post)

 Interpretable ML through visualization and statistical knowledge discovery
from LCS rule sets (Urbanowicz et al. [57,71], Liu, Browne, Xue [72])

 XCS Theory (Nakata et al. [68-70]) and theoretical hyperparameter derivation
(Nakata et al. [30,31])

 Hierarchical LCS and multi-domain learning (Liu, Browne, Xue [28])
 Absumption for Classifier Specialization (Liu et al. [65], Wagner & Stein [78])
 Lexicase Selection for Supervised LCS (Aenugu & Spector [67], Wagner &

Stein [79])
 LCS with active learning (Stein et al. [41])
 Experience Replay & Interpolation in XCS (Stein et al. [66,40,42,43])
 XCS(F) for Automatic Software Testing (Rosenbauer et al. [75,76,77])
 Algebraic formalization of LCS (Pätzel and Hähner [32])
 Towards Deep Learning with LCS (Preen, Wilson, Bull [73,74])

 Most of them regularly attend GECCO, so don’t hesitate to get in touch!

Summary & Conclusions
Recent Research Directions (excerpt)

You feel triggered and want to learn for more?

Don’t miss the annual
International Workshop on

Learning Classifier Systems (IWLCS)
at GECCO

Thanks!

523

Thanks to Ryan J. Urbanowicz for the permission to reuse
parts of his previous tutorials on LCS.

Acknowledgements
 Additional Information:

 Keep up to date with the latest LCS research
 Get in contact with an LCS researcher
 Contribute to the LCS community research and discussions.

 GBML Central - http://gbml.org/

 LCS Researcher Webpages:
 Bacardit, Jaume - http://homepages.cs.ncl.ac.uk/jaume.bacardit/
 Browne, Will - http://ecs.victoria.ac.nz/Main/WillBrowne
 Bull, Larry - http://www.cems.uwe.ac.uk/~lbull/
 Holmes, John - https://www.med.upenn.edu/apps/faculty/index.php/g5455356/p19936
 Kovacs, Tim - http://www.cs.bris.ac.uk/home/kovacs/
 Lanzi, Pier Luca - http://www.pierlucalanzi.net/
 Nakata, Masaya - http://www.nkt.ynu.ac.jp/en/people/
 Stein, Anthony - https://ki-agrartechnik.uni-hohenheim.de/anthony-stein
 Urbanowicz, Ryan - http://www.ryanurbanowicz.com/
 Wilson, Stewart - https://www.eskimo.com/~wilson/

 International Workshop Learning Classifier Systems (IWLCS)
- held annually at GECCO

 Mailing List:: Yahoo Group: lcs-and-gbml[at]yahoogroups.com

Resources

* Adapted from Urbanowicz’s previous tutorials

 Scitkit-compatible LCS (scikit-eLCS) – in Python.
• https://github.com/robertfrankzhang/Scikit-eLCS
• A sklearn-compatible Python implementation of eLCS, a supervised learning variant of the Learning

Classifier System, based off of UCS.

 Educational LCS (eLCS) – in Python.
• https://github.com/ryanurbs/eLCS
• Simple Michigan-style LCS for learning how they work and how they are implemented.
• Code intended to be paired with first LCS introductory textbook by Urbanowicz/Browne.

 ExSTraCS 2.0 – Extended Supervised Learning LCS – in Python
• https://github.com/ryanurbs/ExSTraCS_2.0
• For prediction, classification, data mining, knowledge discovery in complex, noisy, epistatic, or

heterogeneous problems.

 BioHEL – Bioinformatics-oriented Hierarchical Evolutionary Learning – in C++
• http://ico2s.org/software/biohel.html
• GAssist also available through this link.

 XCSLib (XCS and XCSF) (by Lanzi in C++)
• http://xcslib.sourceforge.net/

 XCSF with function approximation visualization – in Java
• Martin Butz Chair website

Resources: Available Software

* Adapted from Urbanowicz’s previous tutorials

Selected Review Papers:
 Pätzel, David, Stein, Anthony, and Hähner, Jörg. “A Survey on Formal Theoretical Advances

Regarding XCS." Proc. of GECCO ‘19 Companion, July 2019, 1295-1302
 Bull, Larry. "A brief history of learning classifier systems: from CS-1 to XCS and its

variants." Evolutionary Intelligence (2015): 1-16.
 Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine

learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.
 Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction,

review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.
 Sigaud, Olivier, and Stewart W. Wilson. "Learning classifier systems: a survey." Soft Computing 11.11

(2007): 1065-1078.
 Holland, John H., et al. "What is a learning classifier system?." Learning Classifier Systems. Springer

Berlin Heidelberg, 2000. 3-32.
 Lanzi, Pier Luca, and Rick L. Riolo. "A roadmap to the last decade of learning classifier system

research (from 1989 to 1999)." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 33-61.

Books:
 Drugowitsch, J., (2008) Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.

Springer-Verlag.
 Bull, L., Bernado-Mansilla, E., Holmes, J. (Eds.) (2008) Learning Classifier Systems in Data Mining.

Springer
 Butz, M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS

analysis and design. Studies in Fuzziness and Soft Computing Series, Springer.
 Bull, L., Kovacs, T. (Eds.) (2005) Foundations of learning classifier systems. Springer.
 Kovacs, T. (2004) Strength or accuracy: Credit assignment in learning classifier systems. Springer.
 Butz, M. (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers.
 Lanzi, P.L., Stolzmann, W., Wilson, S., (Eds.) (2000). Learning classifier systems: From foundations to

applications (LNAI 1813). Springer.
 Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Resources: LCS Review Papers & Books

* Adapted from Urbanowicz’s previous tutorials

524

 New: Annual overview of conducted LCS research by the IWLCS organizers e.g.,
An overview of LCS research from IWLCS 2019 to 2020
(Pätzel, Stein, Nakata [80])

 Textbook: ‘Introduction to Learning Classifier Systems’
Springer, 2017 (Urbanowicz & Brown, 2017)

 LCS Introductory Chapter: ‘Reaction Learning’, Chapter 7.1 in book: ‘Organic
Computing – Technical Systems for Survival in the Real World’, Birkhäuser, 2017
(Stein, 2017)

 YouTube video on LCS:
 Learning Classifier Systems in a Nutshell
 Animated, narrated explanation of basic LCS concepts.
 https://www.youtube.com/watch?v=CRge_cZ2cJc

 LCS and Rule-Based Machine Learning Wikipedia Pages – recently updated and
revised. (https://en.wikipedia.org/wiki/Learning_classifier_system)

Resources: Most recent

* Adapted from Urbanowicz’s previous tutorials

 Figure sources: All figures that have not been created by the author or indicated otherwise are
free to use and taken from pixabay.com licensed according to the Pixaybay License

References
Figures

1) Bacardit, Jaume, et al. "Speeding-up Pittsburgh learning classifier systems: Modeling time and
accuracy." Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg, 2004.

2) Bacardit, Jaume, and Natalio Krasnogor. "A mixed discrete-continuous attribute list representation for
large scale classification domains." Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. ACM, 2009.

3) Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine
learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.

4) Bernadó-Mansilla, Ester, and Josep M. Garrell-Guiu. "Accuracy-based learning classifier systems:
models, analysis and applications to classification tasks."Evolutionary Computation 11.3 (2003): 209-238.

5) Booker, Lashon Bernard. "Intelligent behavior as an adaptation to the task environment, University of
Michigan." Ann Arbor, MI (1982).

6) Bull, Larry. "A simple accuracy-based learning classifier system." Learning Classifier Systems Group
Technical Report UWELCSG03-005, University of the West of England, Bristol, UK (2003).

7) Bull, Larry, and O’Hara, Toby. "Accuracy-based neuro and neuro-fuzzy classifier systems.“, GECCO 2002,
905-911, Morgan Kaufmann, 2002.

8) Butz, M.; Kovacs, T.; Lanzi, P. & Wilson, S., “Toward a Theory of Generalization and Learning in XCS”,
IEEE Transactions on Evolutionary Computation, 8 , 28-46, 2004

9) Butz, M.; Lanzi, P. & Wilson, S. “Function Approximation With XCS: Hyperellipsoidal Conditions,
Recursive Least Squares, and Compaction”, IEEE Transactions on Evolutionary Computation, 12 , 355-
376, 2008

10) Butz, M. V., “Rule-based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis
and Design”, Springer, 2005

11) Frey, Peter W., and David J. Slate. "Letter recognition using Holland-style adaptive classifiers." Machine
Learning 6.2 (1991): 161-182.

12) Goldberg, David E. "E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning." Reading: Addison-Wesley (1990).

References (1/7)
13) Goldberg, D. E., “Genetic Algorithms as a Computational Theory of Conceptual Design”, Rzevski, G. &

Adey, R. A. (Eds.), Applications of Artificial Intelligence in Engineering VI, Springer Netherlands, 1991 , 3-16
14) Holland, J., and J. Reitman. "Cognitive systems based on adaptive agents.”, Pattern-directed inference

systems (1978).
15) Holland, J. “Properties of the Bucket brigade.” In Proceedings of the 1st International Conference on Genetic

Algorithms, 1-7 (1985)
16) Holmes, John H. "A genetics-based machine learning approach to knowledge discovery in clinical

data." Proceedings of the AMIA Annual Fall Symposium. American Medical Informatics Association, 1996.
17) Holmes, John H., and Jennifer A. Sager. "The EpiXCS workbench: a tool for experimentation and

visualization." Learning Classifier Systems. Springer Berlin Heidelberg, 2007. 333-344.
18) Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. "Extending learning classifier system with cyclic

graphs for scalability on complex, large-scale boolean problems." Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013.

19) Iqbal, M.; Browne, W. N. & Zhang, M., “Reusing Building Blocks of Extracted Knowledge to Solve Complex,
Large-Scale Boolean Problems”, IEEE Transactions on Evolutionary Computation, 2014 , 18 , 465-480

20) Kneissler, J.; Stalph, P. O.; Drugowitsch, J. & Butz, M. V., “Filtering Sensory Information with XCSF:
Improving Learning Robustness and Robot Arm Control Performance”, Evolutionary Computation, 2014 ,
22, 139-158

21) Kovacs, Tim. "A comparison of strength and accuracy-based fitness in learning classifier systems." School
of Computer Science, University of Birmingham, Birmingham, UK (2002).

22) Kovacs, Tim. "What should a classifier system learn and how should we measure it?." Soft Computing 6.3-4
(2002): 171-182.

23) Lanzi, P. L. & Loiacono, D., “XCSF with Neural Prediction”, IEEE CEC, 2006 , 2270-2276
24) Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., “Generalization in the XCSF Classifier System:

Analysis, Improvement, and Extension”, Evol. Comput., MIT Press, 2007, 15, 133-168
25) Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., “Extending XCSF Beyond Linear

Approximation”, GECCO 2005, ACM, 2005, 1827-1834

References (2/7)

525

26) Lanzi, P. L.; Loiacono, D. & Zanini, M., “Evolving classifier ensembles with voting predictors”, IEEE CEC
2008, June 1-6, 2008, Hong Kong, China, 2008 , 3760-3767

27) Lanzi, P. L. & Wilson, S. W., “Using Convex Hulls to Represent Classifier Conditions”, GECCO 2006, ACM,
2006, 1481-1488

28) Liu, Y.; Xue, B. & Browne, W. N., “Visualisation and Optimisation of Learning Classifier Systems for Multiple
Domain Learning”, Simulated Evolution and Learning, Springer International Publishing, 2017, 448-461

29) Loiacono, D.; Marelli, A. & Lanzi, P. L., “Support vector regression for classifier prediction”, GECCO 2007,
2007, 1806-1813

30) Nakata, M.; Browne, W. N. & Hamagami, T., “Theoretical adaptation of multiple rule-generation in XCS”,
GECCO 2018, Kyoto, Japan, July 15-19, 2018 , 482-489

31) Nakata, M.; Browne, W. N.; Hamagami, T. & Takadama, K., “Theoretical XCS parameter settings of learning
accurate classifiers”, GECCO 2017, Berlin, Germany, July 15-19, 2017, 2017 , 473-480

32) Pätzel, D. & Hähner, J., “An Algebraic Description of XCS”, GECCO 2018 Companion, ACM, 2018, 1434-
1441

33) Pätzel, D.; Stein, A. & Hähner, J., “A Survey on Formal Theoretical Advances Regarding XCS”, GECCO’19
Companion, ACM, July 2019, 1295-1302

34) Riolo, Rick L. "Lookahead planning and latent learning in a classifier system."Proceedings of the first
international conference on simulation of adaptive behavior on From animals to animats. MIT Press, 1991.

35) Smith, Stephen Frederick. "A learning system based on genetic adaptive algorithms.“, Dissertation,
University of Pittsburgh, 1980.

36) Sommer, M.; Stein, A. & Hähner, J., “Local ensemble weighting in the context of time series forecasting
using XCSF”, IEEE SSCI, 2016

37) Stalph, P. O. & Butz, M. V., “Guided Evolution in XCSF”, GECCO 2012, ACM, 2012, 911-918
38) Stalph, P. O. & Butz, M. V., “Learning local linear Jacobians for flexible and adaptive robot arm control”,

GPEM, 2012, 13, 137-157
39) Stein, A., “Reaction Learning”, Ch. Basic Methods, In book: Organic Computing -- Technical Systems for

Survival in the Real World, Müller-Schloer, C. & Tomforde, S. (Eds.), Birkhäuser, 2017, 287-328

References (3/7)
40) Stein, A.; Eymüller, C.; Rauh, D.; Tomforde, S. & Hähner, J., “Interpolation-based Classifier Generation in

XCSF”, IEEE CEC, 2016 , 3990-3998
41) Stein, A.; Maier, R. & Hähner, J., “Toward Curious Learning Classifier Systems: Combining XCS with

Active Learning Concepts”, GECCO 2017 Companion, ACM, 2017, 1349-1356
42) Stein, A.; Menssen, S. & Hähner, J., “What About Interpolation? A Radial Basis Function Approach to

Classifier Prediction Modeling in XCSF”, GECCO 2018, ACM, 2018
43) Stein, A.; Rauh, D.; Tomforde, S. & Hähner, J., “Interpolation in the eXtended Classifier System: An

Architectural Perspective”, Journal of Systems Architecture, 75, 79-94, 2017
44) Stolzmann, Wolfgang. "An introduction to anticipatory classifier systems."Learning Classifier Systems.

Springer Berlin Heidelberg, 2000. 175-194.
45) Stone, Christopher, and Larry Bull. "For real! XCS with continuous-valued inputs." Evolutionary

Computation 11.3 (2003): 299-336.
46) Tamee, K.; Bull, L. & Pinngern, O., “Towards Clustering with XCS”, GECCO 2007, ACM, 2007, 1854-1860
47) Tan, J.; Moore, J. & Urbanowicz, R., “Rapid Rule Compaction Strategies for Global Knowledge Discovery

in a Supervised Learning Classifier System”, The 2018 Conference on Artificial Life: A Hybrid of the
European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and
Simulation of Living Systems (ALIFE), 2013, 110-117

48) Tran, T. H.; Sanza, C. & Duthen, Y., “Evolving prediction weights using evolution strategy”, GECCO 2008,
2009-2016, 2008

49) Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction, review,
and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.

50) Urbanowicz, Ryan J., and Will Browne. “An Introduction to Learning Classifier Systems”. Springer, 2017
51) Urbanowicz, Ryan J., and Jason H. Moore. "ExSTraCS 2.0: description and evaluation of a scalable

learning classifier system." Evolutionary Intelligence(2015): 1-28.
52) Urbanowicz, Ryan J., and Jason H. Moore. "The application of michigan-style learning classifier systems

to address genetic heterogeneity and epistasis in association studies." Proceedings of the 12th annual
conference on Genetic and evolutionary computation. ACM, 2010.

References (4/7)

53) Urbanowicz, Ryan J., Ambrose Granizo-Mackenzie, and Jason H. Moore. "An analysis pipeline with
statistical and visualization-guided knowledge discovery for michigan-style learning classifier
systems." Computational Intelligence Magazine, IEEE 7.4 (2012): 35-45.

54) Urbanowicz, Ryan, Ambrose Granizo-Mackenzie, and Jason Moore. "Instance-linked attribute tracking
and feedback for michigan-style supervised learning classifier systems." Proceedings of the 14th annual
conference on Genetic and evolutionary computation. ACM, 2012.

55) Urbanowicz, Ryan J., Delaney Granizo-Mackenzie, and Jason H. Moore. "Using expert knowledge to
guide covering and mutation in a michigan style learning classifier system to detect epistasis and
heterogeneity." PPSN XII. Springer Berlin Heidelberg, 2012. 266-275.

56) Urbanowicz, R. J.; Bertasius, G. & Moore, J. H., “An Extended Michigan-Style Learning Classifier System
for Flexible Supervised Learning, Classification, and Data Mining”, PPSN XIII, Springer International
Publishing, 2014, 211-221

57) Urbanowicz, R. J.; Lo, C.; Holmes, J. H. & Moore, J. H., “Attribute Tracking: Strategies Towards Improved
Detection and Characterization of Complex Associations”, GECCO 2018, ACM, 2018, 553-560

58) Urbanowicz, R. J. & Browne, W. N., “Introduction to Learning Classifier Systems”, Springer Publishing
Company, 2017

59) Wilson, Stewart W. "ZCS: A zeroth level classifier system." Evolutionary computation 2.1 (1994): 1-18.
60) Wilson, Stewart W. "Classifier fitness based on accuracy." Evolutionary computation 3.2 (1995): 149-175.
61) Wilson, Stewart W. "Get real! XCS with continuous-valued inputs." Learning Classifier Systems. Springer

Berlin Heidelberg, 2000. 209-219.
62) Wilson, Stewart W. "Classifiers that approximate functions." Natural Computing1.2-3 (2002): 211-234.
63) Wilson, S., “Three Architectures for Continuous Action”, Learning Classifier Systems, Springer Berlin

Heidelberg, 2007 , 4399 , 239-257
64) Wilson, S. W., “Classifiers that Approximate Functions”, Natural Computing, Kluwer Academic Publishers,

2002, 1, 211-234

References (5/7)
65) Liu, Y., Browne, W. N., Xue, B. “Absumption to Complement Subsumption in Learning Classifier

Systems”, Proc. of GECCO ‘19, ACM, July 2019, 410–418
66) Anthony Stein, Roland Maier, Lukas Rosenbauer, and Jörg Hähner. 2020. XCS classifier system with

experience replay. In Proc. of GECCO ‘20. ACM, New York, NY, USA, 404–413.
67) Aenugu, S., Spector, L. “Lexicase Selection in Learning Classifier Systems”, Proc. of GECCO ‘19, ACM,

July 2019, 356–364
68) Nakata, M., Browne. W. “How XCS Can Prevent Misdistinguishing Rule Accuracy: A Preliminary Study”,

Proc. of GECCO ’19 Companion, ACM, July 2019, 183-184
69) M. Nakata and W. N. Browne, "Learning Optimality Theory for Accuracy-Based Learning Classifier

Systems," in IEEE Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 61-74, Feb. 2021.
70) Motoki Horiuchi and Masaya Nakata. 2020. Self-adaptation of XCS learning parameters based on

learning theory. In: Proc. of GECCO ‘20. ACM, New York, NY, USA, 342–349.

References (6/7)

526

71) Zhang, R., Stolzenberg-Solomon, R., Lynch, S.M., & Urbanowicz, R. (2021). LCS-DIVE: An Automated
Rule-based Machine Learning Visualization Pipeline for Characterizing Complex Associations in
Classification.

72) Liu, Y., Browne, W.N. & Xue, B. Visualizations for rule-based machine learning. Nat Comput (2021).
73) Preen, R., & Bull, L. (2021). Deep Learning with a Classifier System: Initial Results. ArXiv,

abs/2103.01118.
74) Preen, R., Wilson, S., & Bull, L. (2019). Autoencoding with a Classifier System. arXiv: Neural and

Evolutionary Computing.
75) L. Rosenbauer, A. Stein, D. Pätzel and J. Hähner, "XCSF with Experience Replay for Automatic Test Case

Prioritization," 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020, pp. 1307-1314
76) Rosenbauer, L.; Stein, A.; Pätzel, D. and Hähner, J. (2020). XCSF for Automatic Test Case Prioritization.

In Proceedings of the 12th International Joint Conference on Computational Intelligence - Volume 1:
ECTA, pages 49-58.

77) Rosenbauer L., Pätzel D., Stein A., Hähner J. (2021) Transfer Learning for Automated Test Case
Prioritization Using XCSF. In: Castillo P.A., Jiménez Laredo J.L. (eds) Applications of Evolutionary
Computation. EvoApplications 2021. Lecture Notes in Computer Science, vol 12694. Springer, Cham.

78) Wagner A.R.M., Stein A. (2021) On the Effects of Absumption for XCS with Continuous-Valued Inputs. In:
Castillo P.A., Jiménez Laredo J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021.
Lecture Notes in Computer Science, vol 12694. Springer, Cham.

79) Wagner A. R. M., Stein A. (2021) Adopting Lexicase Selection for XCS with Continuous-valued Inputs. In:
Proc. of GECCO ‘21 Companion. ACM, accepted for presentation as poster, to appear.

80) David Pätzel, Anthony Stein, and Masaya Nakata. 2020. An overview of LCS research from IWLCS 2019
to 2020. In: Proc. of GECCO ’20 Companion. ACM, New York, NY, USA, 1782–1788.

References (7/7) – new since GECCO ‘20

527

