
Exact and Approximate USCP With Branch and Bound
Janez Radešček
Matjaž Depolli∗

janez.radescek@gmail.com
matjaz.depolli@ijs.si
Jožef Stefan Institute
Ljubljana, Slovenia

ABSTRACT
We propose a parallel solver for the unicost set covering problem
based on branch and bound approach. The main contributions of
this algorithm lay in its fast parallel execution and the ability to
work in approximate mode. We demonstrate the proposed approach
on the problem instances from GECCO 2021 unicost set covering
competition. To tackle the presented problem instances of varying
difficulty, we use an automatic tuning of the algorithm’s parameters.
The results show all the instances can be solved but the performance
remains weak on large instances.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
Combinatorial algorithms; • Mathematics of computing →
Trees.

KEYWORDS
USCP, set covering, branch and bound, parallel
ACM Reference Format:
Janez Radešček andMatjaž Depolli. 2021. Exact andApproximate USCPWith
Branch and Bound. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3463298

1 MOTIVATION AND APPROACH
The motivation for the experiment presented here stems in an
effort to develop a general framework for implementing parallel
branch and bound algorithms in C++. The framework originates
from the max-clique algorithm [4], and through the implementation
of Unicost Set Cover Problem (USCP), its generality should improve.
Furthermore, we are interested in expanding the framework to also
cover approximate solvers.

While a time limit to stop the algorithm mid-work is a valid
approach for converting the exact branch and bound algorithm
into approximate one, this approach often results in very poorly
explored search space and the returned solution may be arbitrarily
far from optimum. Therefore our efforts were focused on enhancing
exploration on the account of decreased local optimization.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3463298

Several enhancements to exploration were designed, yet after
the preliminary tests, only two most effective were implemented
to support the use of time limit. These two were used along with a
heuristic for setting their parameters and a method for enforcing
memory usage limit, to create an algorithm with a single parameter
(time limit) that is able to solve a broad range of problems.

2 UNICOST SET COVERING PROBLEM
USCP is a well known NP-complete problem with a long history [5].
While exact solutions can be obtained for small problem instance in
general, in real-life problems, often only an approximate solutions
will be obtainable within a reasonable time limit.

Given a finite set 𝑋 of size 𝑛 and a family 𝐹 = {𝑆𝑖 ⊆ 𝑋 } of
subsets of 𝑋 , also called candidates, USCP requires the smallest
family 𝐹𝑚𝑖𝑛 ⊆ 𝐹 be found, such that each element from 𝑋 belongs
to at least one set from 𝐹𝑚𝑖𝑛 . In other words, for the set 𝑋 and its
cover 𝐹 , find the smallest subcover 𝐹𝑚𝑖𝑛 .

3 EXACT ALGORITHM
The exact algorithm was developed anew, based on a branch and
bound principle, similar to existing algorithms [3]. Additional care
was taken to support parallel execution through multi-threaded,
adapting themethod from [4]. A branch is represented with states of
elements (covered or uncovered) and states of candidate sets (used,
unused or discarded). The algorithm starts with an empty cover. In
each call it sorts the remaining candidates in descending order by
the number of remaining elements that they cover, and then selects
the first one for further exploration, which is a method also used
in the greedy algorithm [2]. Unlike with the greedy algorithm, the
exact algorithm uses the selected candidate set to split a branch in
two and then explores both. The selected candidate set is marked as
used on one branch and as discarded on the other. The best solution
found so far is cached to bound the exploration - branches with
their lower bound higher than the number of used candidate sets
in the best solution are pruned.

The lower bound is the number of candidate sets already used
in addition to the number of candidate sets required to cover the
remaining uncovered elements under the assumption that all the
remaining candidate sets are disjoint on uncovered elements. Such
a conservative approach to calculating lower bounds ensures the
execution will not be pruned and can therefore be found, given
enough time. The associated price is a large search space to explore,
which makes it unrealistic for the algorithm to finish execution for
all but very small problem instances.

5

https://doi.org/10.1145/3449726.3463298
https://doi.org/10.1145/3449726.3463298


GECCO ’21 Companion, July 10–14, 2021, Lille, France Janez Radešček and Matjaž Depolli

4 APPROXIMATE ALGORITHM
In order to try to solve the run-time and memory consumption
problems we use three approaches to approximation.

The first considered approach is a limit in the number of sub-
branches allowed to be explored on each level of the search tree.
Only the first level of the search tree is explored in full, that is, the
first candidate set to be used in the cover, while an absolute limit
𝑥 is applied on all further levels. That means that only the best 𝑥
candidates, as selected by the greedy heuristic, will be tried on each
step of the incremental cover expansion.

The second approach is to reduce the problem size, solve the
reduced problem in either the exact or approximate mode - de-
pending on the problem size, and then extend the solution to the
original problem. We designed an algorithm in which the elements
are iteratively split into multiple disjoint sets to form reduced sub-
problems, while the union of their solutions represents the solution
to the whole problem. Each disjoint set of elements is created by a
heuristic; the uncovered elements are decimated until the fraction 𝑟
of them remain, in a way that is partly random but also tries to keep
the elements covered by a similar subset of candidate sets together.
The candidate sets to cover the subproblem are generated as all the
candidate sets that at least partly cover the subproblem element set.
Finally, the subproblem, which is of significantly lesser complexity
than the original problem, is solved. This procedure iterates until
the cover of the original problem is complete.

The last approach is to keep a timeout 𝑡 to interrupt the search if
it does not complete in time. Since the order of exploration is greedy,
the timeout acts as a means of adjusting between the greedy and
exhaustive exploration of space. The same holds even if the already
approximate algorithm is interrupted before it finishes, since it also
uses greedy approach to exploration. The difficult part in using
timeout is in tuning the approximate algorithm parameters in a
way that the algorithm will have explored a large portion of its
reduced search space when the timeout occurs.

The proposed approximate algorithm combines all approaches.
It dynamically selects undefined constants 𝑥 and 𝑟 , given 𝑡 and the
size of the problem. It uses functions of 𝑥 (𝑡) and 𝑟 (𝑡) that were
fitted to some of the preliminary testing results. In addition it uses
a memory usage reduction technique, to have the algorithm finish
instead of crash on the largest problem instances, although again
on the account of opportunistically pruning the search space when
additional branches cannot be stored in memory. Since memory
requirements are nearly linear with the number of threads, the
decision was made to disable parallel execution for problem sizes
above an empirically set threshold.

5 RESULTS
The presented algorithm has been implemented in C++ with the
use of standard libraries only. It was only tested on USCP part of
the problem instances from the Optimal Camera Placement Problem
(OCP) and the Unicost Set Covering Problem (USCP) [1]. The computer
used had dual 4-core 2.3 GHz Intel Xeon E5520 processors and 12 GB
of RAM. The preliminary results were obtained with the exact
algorithm, limited to 24 hours and to single-threaded execution,
and through experiments with varying approximation parameters
and time limits are presented in Table 1.

Table 1: Preliminary results

Problem Exec Cover
instance time [s] exact best

AC 01 10871 7 7
AC 02 31.5 4 4
AC 03 2.33 3 3
AC 04 DNF 5 5
AC 05 DNF 10 9
AC 06 DNF 15 14
AC 07 DNF 26 24
AC 08 DNF 38 36
AC 09 DNF 55 54
AC 10 DNF 23 23
AC 11 DNF 83 81
AC 12 DNF 173 171
AC 13 DNF 299 297
AC 14 DNF 441 441
AC 15 DNF 641 641
AC 16 DNF 1084 1084
AC 17 DNF 1675 1675
AC 18 DNF 2393 2393
AC 19 DNF 3203 3203
AC 20 4137
AC 21 5291
AC 22 6422
AC 23 7783
AC 24 9231
AC 25 10800
AC 26 12448
AC 27 14353
AC 28 16234
AC 29 18348
AC 30 20555
AC 31 22816
AC 32 25243
RW 01 DNF 867 864
RW 02 DNF 1011 1008

Problem Exec Cover
Instance time [s] size best

RW 03 DNF 985 980
RW 04 DNF 1118 1117
RW 05 DNF 1197 1193
RW 06 DNF 1232 1232
RW 07 DNF 1273 1273
RW 08 DNF 1373 1372
RW 09 DNF 1258 1256
RW 10 DNF 1347 1346
RW 11 DNF 421 418
RW 12 DNF 418 417
RW 13 DNF 1709 1706
RW 14 DNF 445 443
RW 15 DNF 456 453
RW 16 DNF 669 668
RW 17 DNF 690 689
RW 18 DNF 441 438
RW 19 DNF 470 468
RW 20 DNF 1873 1869
RW 21 DNF 2069 2069
RW 22 DNF 509 509
RW 23 DNF 546 543
RW 24 DNF 1132 1129
RW 25 DNF 1270 1269
RW 26 DNF 592 590
RW 27 DNF 656 653
RW 28 DNF 843 837
RW 29 DNF 982 979
RW 30 DNF 1421 1420
RW 31 DNF 1618 1615
RW 32 DNF 843 841
RW 33 DNF 960 956
RW 34 DNF 797 795
RW 35 DNF 885 883
RW 36 DNF 807 805

The exact algorithm was limited do single-threaded because its
memory requirements were found to be unsustainable because of
the large number of branches that have to be stored for backtracking.
The size of individual branch is a linear combination of the number
of candidate sets and the number of elements to cover, and the
maximum number of branches stored per thread is of the magnitude
equal or higher than the number of candidate sets in the optimal
solution.

The resulting execution time is listed for instances where the
algorithm finished by itself, while DNF is listed where it timed out.
Cover size and execution time are left blank for instances that
crashed due to running out of memory. Finally, the best cover size
from preliminary experimentation with approximate approaches
are listed in the last column. The results demonstrate how broad
the spectrum of problem instances is, and the difficulty of solving
them with the exact algorithm.

ACKNOWLEDGMENTS
The authors would like to acknowledge the financial support of the
Slovenian Research Agency research core funding No. P2-0095 and
research funding No. N2-0171.

REFERENCES
[1] Mathieu Brévilliers, Julien Lepagnot, and Lhassane Idoumghar. 2021. GECCO 2021

Competition on the Optimal Camera Placement Problem (OCP) and the Unicost Set
Covering Problem (USCP). http://www.mage.fst.uha.fr/brevilliers/gecco-2021-ocp-
uscp-competition/gecco_2021_ocp_uscp_competition.pdf

[2] V. Chvatal. [n.d.]. A Greedy Heuristic for the Set-Covering Problem. Mathematics
of Operations Research 4 ([n. d.]), 233–235. https://doi.org/10.1287/moor.4.3.233

[3] Emir Demirovic, Théo Le Calvar, N.Musliu, and K. Inoue. 2016. An Exact Algorithm
for Unicost Set Covering.

[4] Matjaž Depolli, Janez Konc, Kati Rozman, Roman Trobec, and Dušanka Janežič.
2013. Exact parallel maximum clique algorithm for general and protein graphs.
Journal of chemical information and modeling 53, 9 (2013), 2217–2228.

[5] T. Grossman and A. Wool. 1997. Computational experience with approximation
algorithms for the set covering problem. European Journal of Operational Research
101, 1 (1997), 81–92. https://doi.org/10.1016/s0377-2217(96)00161-0

6

http://www.mage.fst.uha.fr/brevilliers/gecco-2021-ocp-uscp-competition/gecco_2021_ocp_uscp_competition.pdf
http://www.mage.fst.uha.fr/brevilliers/gecco-2021-ocp-uscp-competition/gecco_2021_ocp_uscp_competition.pdf
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1016/s0377-2217(96)00161-0

	Abstract
	1 Motivation and Approach
	2 Unicost Set Covering Problem
	3 Exact Algorithm
	4 Approximate algorithm
	5 Results
	Acknowledgments
	References

