
Hyper-heuristics Tutorial
Daniel R. Tauritz (dtauritz@acm.org)

Head of Biomimetic Artificial Intelligence Research Group, Auburn University

John Woodward (J.Woodward@qmul.ac.uk)
Head of Operational Research Group, Queen Mary University of London

https://gecco-2021.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).

GECCO '21 Companion, July 10-14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07…$15.00
https://doi.org/10.1145/3449726.3461418

Instructors
Daniel R. Tauritz is an Associate Professor in the Department of Computer
Science and Software Engineering at Auburn University (AU), Interim
Director and Chief Cyber AI Strategist of AU’s Auburn Cyber Research Center,
Head of AU’s Biomimetic Artificial Intelligence (BioAI) Research Group,
Director of AU’s Biomimetic National Security Artificial Intelligence (BONSAI)
Laboratory, Guest Scientist at Los Alamos National Laboratory (LANL), and
Director of the LANL/AU Cyber Security Sciences Institute. He received his
Ph.D. in 2002 from Leiden University. His research interests include the
design of hyper-heuristics and self-configuring evolutionary algorithms and
the application of computational intelligence techniques in cyber security,
critical infrastructure protection, and program understanding.

John R. Woodward is a Lecturer at Queen Mary University of London, and is
Head of the Operational Research Group, and previously for four years was a
Lecturer with the University of Nottingham and also Stirling. He holds a BSc
in Theoretical Physics, an MSc in Cognitive Science and a PhD in Computer
Science, all from the University of Birmingham. His research interests
include Automated Software Engineering, particularly Search Based
Software Engineering, Artificial Intelligence/Machine Learning and in
particular Genetic Programming. He has worked in industrial, military,
educational and academic settings, and been employed by EDS, CERN and
RAF and three UK Universities.

John R. Woodward, Daniel R. Tauritz

John’s perspective of hyper-
heuristics

John R. Woodward, Daniel R. Tauritz

Domain Barrier

528

Conceptual Overview
Combinatorial problem e.g. Travelling Salesman
Exhaustive search ->heuristic?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops.

Travelling Salesman Instances

TSP algorithm

EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he
will eat for a day.
Teach a man to fish and he
will eat for a lifetime.

Scalable? General?
New domains for GP

John R. Woodward, Daniel R. Tauritz

One Man – One/Many Algorithm

Heuristic1

Heuristic2

Heuristic3

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design

John R. Woodward, Daniel R. Tauritz

3 May, 2021

Automatically
designed heuristics
(this tutorial)

First year university course
On Java, as part of a computer
Science degree

Increasing “complexity”

LARGE
Software
Engineering
Projects

Genetic Programming
{+, -, *, /}
{AND, OR, NOT}

Janus
Manager

● Management system
for rehabilitation

● Stores client info
● A tool for

○ Administration
○ Communication
○ Producing reports
○ Predicting

outcomes

● ~40 Users
○ Specialists
○ Admin staff

● 1000+ clients
○ ~150 active

● The code
○ Python
○ 25,000+ LOC
○ 600+ functions
○ 300 Classes
○ Run as web service on Apache

Janus
Manager

529

Daily activity
● Users

○ Request data
○ Save data

● Janus Manager
○ Processes

requests
○ Interacts with the

database
○ Responds with

output

Daily activity

● Procedures in place to
catch exceptions and
log:
○ Request
○ Input data
○ Type of exception
○ Location of

exception
● Logs saved in file on

server

Input: {‘name’:’John
Dóe’,
’unemployed’:’34’,
’phone’:’555-123’,
‘home’:’Do not know’}
Type:
UnicodeDecodeError
Location:
(JanusManager.datapars
e.connect, 351)

Nightly activity
When last user logs out

1. Procedure 2.0 started
○ Sorts and filters the day’s

exceptions
2. Procedure 3.0

○ Emulates input data,
type, size and structure.

○ Produces test cases
3. Procedure 4.0

○ Genetic Improvement
○ Parallel process on the

server
○ Outputs report for

developer

Nightly activity
Procedure 3.0

530

Improvement log

13

The story so far
● Janus Manager was developed in March 2016
● Since October 2016 has had GI running as a permanent service
● 22 Bugs reported

○ Variable name mixup - current_date vs. current_time
○ Range constants - For i in range(len(Var)+1):
○ And more ….

● 22 Bugs fixed
○ Whole process takes 20 minutes (on average)
○ Fix found within 10 generations

Current count is ~40

Daniel’s perspective of hyper-
heuristics

John R. Woodward, Daniel R. Tauritz

Real-World Challenges

• Researchers strive to make algorithms increasingly
general-purpose

• But practitioners have very specific needs
• Designing custom algorithms tuned to particular

problem instance distributions and/or computational
architectures can be very time consuming

John R. Woodward, Daniel R. Tauritz

531

Automated Design of Algorithms

• Addresses the need for custom algorithms
• But due to high computational complexity, only feasible for

repeated problem solving
• Hyper-heuristics accomplish automated design of

algorithms by searching program space

John R. Woodward, Daniel R. Tauritz

Hyper-heuristics

• Hyper-heuristics are a special type of meta-heuristic
– Step 1: Extract algorithmic primitives from existing

algorithms
– Step 2: Search the space of programs defined by the

extracted primitives

• While Genetic Programming (GP) is particularly well
suited for executing Step 2, other meta-heuristics can
be, and have been, employed

• The type of GP employed matters [24]

John R. Woodward, Daniel R. Tauritz

Type of GP Matters:
Experiment Description

• Implement five types of GP (tree GP, linear GP,
canonical Cartesian GP, Stack GP, and Grammatical
Evolution) in hyper-heuristics for evolving black-box
search algorithms for solving 3-SAT

• Base hyper-heuristic fitness on the fitness of the
best search algorithm generated at solving the 3-
SAT problem

• Compare relative effectiveness of each GP type as a
hyper-heuristic

GP Individual Description

• Search algorithms are represented as an iterative algorithm
that passes one or more set of variable assignments to the
next iteration

• Genetic program represents a single program iteration
• Algorithm runs starting with a random initial population of

solutions for 30 seconds

532

3-SAT Problem

• A subset of the Boolean Satisfiability Problem (SAT)
• The goal is to select values for Boolean variables such that a

given Boolean equation evaluates as true (is satisfied)
• Boolean equations are in 3-conjunctive normal form
• Example:

– (A ∨ B ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬B ∨ C V ¬D)
– Satisfied by ¬A, B, C, ¬D

• Fitness is the number of clauses satisfied by the best
solution in the final population

Genetic Programming Nodes Used

• Last population, Random population
• Tournament selection, Fitness proportional selection,

Truncation selection, Random selection
• Bitwise mutation, Greedy flip, Quick greedy flip, Stepwise

adaption of weights, Novelty
• Union

Results

1800

1850

1900

1950

2000

N
um

be
r o

f C
la

us
es

 S
at

is
fie

d

Results [24]

533

Results

• Generated algorithms mostly performed comparably well on
training and test problems

• Tree and stack GP perform similarly well on this problem, as
do linear and Cartesian GP

• Tree and stack GP perform significantly better on this
problem than linear and Cartesian GP, which perform
significantly better than grammatical evolution

Conclusions

• The choice of GP type makes a significant difference in the
performance of the hyper-heuristic

• The size of the search space appears to be a major factor in
the performance of the hyper-heuristic

Case Study 1: Evolving Multi-level
Graph Partitioning Algorithms [28]

John R. Woodward, Daniel R. Tauritz

• Graph partitioning can be applied to several problems
– Parallel computation: minimize inter-process communication
– Network security: placing network traffic monitors at critical

junctures
• In general, optimal graph partitioning is NP-hard
• Real-time applications require fast approximation

heuristics

Graph Partitioning

John R. Woodward, Daniel R. Tauritz

534

1. Approximate graph with
sequence of smaller graphs

2. Quickly partition smallest
graph

3. Use partition of smallest
graph as an initial partition
of the next smallest

4. Perform greedy search to
improve the quality of the
partition

5. Repeat steps 3 and 4 until
partition is found for the
original graph

Multi-level Graph Partitioning

John R. Woodward, Daniel R. Tauritz

Coarsening: Matching Contraction

John R. Woodward, Daniel R. Tauritz

Coarsening: Subgraph Contraction

John R. Woodward, Daniel R. Tauritz

• Multi-level partitioning of power-law graphs can be
improved with specialized coarsening heuristics*

• Demonstrates the potential to customize an algorithm for
graphs with particular characteristics

• Manually developing new heuristics can be expensive
• Process can be automated using hyper-heuristics

*A. Abou-Rjeili and G. Karypis, “Multilevel Algorithms for Partitioning
Power-law Graphs,” in Proceedings of the 20th International Parallel
and Distributed Processing Symposium (IPDPS’06), IEEE, Rhodes Island,
Greece, 2006.

Optimizing Multi-level Partitioning

John R. Woodward, Daniel R. Tauritz

535

• Extract functionality from existing graph partitioning
techniques

• Use Genetic Programming (GP) to construct new algorithms

Hyper-heuristic Approach

John R. Woodward, Daniel R. Tauritz

• Evolve a population of graph partition algorithms
• Strongly typed parse tree representation
• Evolution targeted at specific type of graph (e.g., random graph

model, computer network)
• Cost of partitions produced determines solution fitness

(averaged over many graphs)

Methodology

John R. Woodward, Daniel R. Tauritz

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑃
෍ ෍ 𝑤௘ (𝑢, 𝑣)

௨,௩ |௣[௨]ஷ௣[௩]

௣∈௉

• Root node
– child node for each of: coarsening, partitioning, uncoarsening

• Coarsening
– Traditional matching schemes: random, heavy edge, light edge
– Globally greedy: considers all edges in graph sorted by some

metric
– Locally greedy: randomly visits vertices, considers incident edges
– Edge metrics: weight, degree, or core number of incident vertices,

or edge weight (can be combined using math operators)

Primitive Operations

John R. Woodward, Daniel R. Tauritz

• Edge metric
• Reverse ordering (maximize)
• Maximum vertex weight ratio
• Maximum contraction ratio

Globally and Locally Greedy Coarsening

John R. Woodward, Daniel R. Tauritz

536

• Partitioning
– random, growth, greedy growth, spectral, Kernighan-Lin

• Uncoarsening
– KL refinement, greedy refinement

• Miscellaneous
– Constants: integers, ratios, booleans
– Random conditional: randomly true or false according to child

probability value

Primitive Operations (cont.)

John R. Woodward, Daniel R. Tauritz

• Partition algorithms are evolved targeting:
– Erdös-Rényi random graphs
– Barabási-Albert random graphs
– Los Alamos National Laboratory (LANL) authentication graphs

Performance is compared against METIS partitioning software
as well as spectral partitioning

Experiment

John R. Woodward, Daniel R. Tauritz

Method EER EBA ELANL METIS SP

EER 0.0 -0.06 -0.38 -0.06 -4.55

EBA -0.53 0.0 -0.12 -0.72 -0.92

ELANL -0.48 -0.10 0.0 -2.97 -3.90

Results

John R. Woodward, Daniel R. Tauritz

Barabási-Albert LANL network

Representative High Fitness Final Evolved Solution (EBA)

John R. Woodward, Daniel R. Tauritz

537

• Multi-level partitioning algorithms can be tailored to
specific graph types, including real-world networks

• These customized heuristics improve upon general purpose
graph partitioning methods

• The design process can be automated using hyper-heuristics

Conclusion

John R. Woodward, Daniel R. Tauritz

Case Study 2: The Automated Design
of Mutation Operators for
Evolutionary Programming

John R. Woodward, Daniel R. Tauritz

Designing Mutation Operators for
Evolutionary Programming [18]

1. Evolutionary programing optimizes
functions by evolving a population of
real-valued vectors (genotype).

2. Variation has been provided (manually)
by probability distributions (Gaussian,
Cauchy, Levy).

3. We are automatically generating
probability distributions (using genetic
programming).

4. Not from scratch, but from already well
known distributions (Gaussian, Cauchy,
Levy). We are “genetically improving
probability distributions”.

5. We are evolving mutation operators for
a problem class (probability
distributions over functions).

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7)
Before mutation

Genotype is
(1.2,...,4.4,…,8.6)
After mutation

John R. Woodward, Daniel R. Tauritz

(Fast) Evolutionary Programming

1. EP mutates with a Gaussian
2. FEP mutates with a Cauchy
3. A generalization is mutate

with a distribution D
(generated with genetic
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

John R. Woodward, Daniel R. Tauritz

538

Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used
in the literature. Minimization
We use them as problem classes.

John R. Woodward, Daniel R. Tauritz

Function Class 1
1. Machine learning needs to generalize.
2. We generalize to function classes.
3. y = 𝑥ଶ (a function)
4. y = 𝑎𝑥ଶ(parameterised function)
5. y = 𝑎𝑥ଶ, 𝑎 ~[1,2] (function class)
6. We do this for all benchmark functions.
7. The mutation operators is evolved to fit the

probability distribution of functions.

John R. Woodward, Daniel R. Tauritz

Function Classes 2

John R. Woodward, Daniel R. Tauritz

Meta and Base Learning

• At the base level we are
learning about a specific
function.

• At the meta level we are
learning about the
problem class.

• We are just doing
“generate and test” at a
higher level

• What is being passed with
each blue arrow?

• Conventional EP

EPFunction to
optimize

Probability
Distribution
Generator

Function
class

base level

Meta level

John R. Woodward, Daniel R. Tauritz

539

Compare Signatures (Input-Output)
Evolutionary Programming
(𝑅௡𝑅)  𝑅௡

Input is a function
mapping real-valued
vectors of length n to a
real-value.
Output is a (near optimal)
real-valued vector
(i.e. the solution to the
problem instance)

Evolutionary Programming
Designer
[(𝑅௡𝑅)]  ((𝑅௡𝑅)  𝑅௡)

Input is a list of functions mapping
real-valued vectors of length n to a
real-value (i.e. sample problem
instances from the problem class).
Output is a (near optimal) (mutation
operator for) Evolutionary
Programming
(i.e. the solution method to the
problem class)

We are raising the level of generality at which we operate.

John R. Woodward, Daniel R. Tauritz

Genetic Programming to Generate
Probability Distributions

1. GP Function Set {+, -, *, %}
2. GP Terminal Set {N(0, random)}
N(0,1) is a normal distribution.
For example a Cauchy distribution
is generated by N(0,1)%N(0,1).
Hence the search space of
probability distributions contains
the two existing probability
distributions used in EP but also
novel probability distributions.

CAUCHYGAUSSIAN

NOVEL
PROBABILITY
DISTRIBUTIONS

SPACE OF
PROBABILITY
DISTRIBUTIONS

John R. Woodward, Daniel R. Tauritz

Means and Standard Deviations

These results are good for two reasons.
1. starting with a manually designed distributions (Gaussian).
2. evolving distributions for each function class.

John R. Woodward, Daniel R. Tauritz

T-tests

John R. Woodward, Daniel R. Tauritz

540

Performance on Other Problem Classes

John R. Woodward, Daniel R. Tauritz

Case Study 3: The Automated Design
of On-Line Bin Packing Algorithms

John R. Woodward, Daniel R. Tauritz

On-line Bin Packing Problem [9,11]

Items packed so far Sequence of pieces to be packed

• A sequence of items packed into as few a bins as possible.
• Bin size is 150 units, items uniformly distributed between 20-100.
• Different to the off-line bin packing problem where the set of items.
• The “best fit” heuristic, places the current item in the space it fits best

(leaving least slack).
• It has the property that this heuristic does not open a new bin unless it

is forced to.

150 =
Bin
capacity

Range of
Item size
20-100

Array of bins

John R. Woodward, Daniel R. Tauritz

Genetic Programming
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness

Fullness is
irrelevant
The space is
important

Not obvious how to link
Genetic Programming to
combinatorial problems.
The GP tree is applied to each
bin with the current item and
placed in the bin with
The maximum score

Terminals supplied to Genetic Programming
Initial representation {C, F, S}
Replaced with {E, S}, E=C-F

John R. Woodward, Daniel R. Tauritz

541

How the heuristics are applied (skip)

90
120

70
30 45

70

85

30
60

-

+

FS

C

%

C

-15 -3.75 3 4.29 1.88

John R. Woodward, Daniel R. Tauritz

The Best Fit Heuristic

0 1
0 20

3
0 40 5

0 6
0 70

2163
04
45
87
28
6

1
001
141
2814

2

-150

-100

-50

0

50

100

150

100-150
50-100

0-50
-50-0

-100--50
-150--100

Best fit = 1/(E-S). Point out features.
Pieces of size S, which fit well into the space remaining E,
score well.
Best fit applied produces a set of points on the surface,
The bin corresponding to the maximum score is picked.

Piece sizeemptiness

John R. Woodward, Daniel R. Tauritz

Our Best Heuristic

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

15020 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.
Note that this is rotated, relative to previous slide.

John R. Woodward, Daniel R. Tauritz

Robustness of Heuristics

= all legal results
= some illegal results

John R. Woodward, Daniel R. Tauritz

542

Testing Heuristics on problems of much larger
size than in training

Table I H trained100 H trained 250 H trained 500

100 0.427768358 0.298749035 0.140986023

1000 0.406790534 0.010006408 0.000350265

10000 0.454063071 2.58E-07 9.65E-12

100000 0.271828318 1.38E-25 2.78E-32

Table shows p-values using the best fit heuristic, for heuristics trained on
different size problems, when applied to different sized problems
1. As number of items trained on increases, the probability decreases (see

next slide).
2. As the number of items packed increases, the probability decreases (see

next slide).

John R. Woodward, Daniel R. Tauritz

Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances
• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100

evolved on 250

evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Number of pieces
packed so far.

John R. Woodward, Daniel R. Tauritz

Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100

evolved on 250

evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Zoom in
of previous
slide

John R. Woodward, Daniel R. Tauritz

Step by Step Guide to Automatic Design of
Algorithms [8, 12]

1. Study the literature for existing heuristics for your
chosen domain (manually designed heuristics).

2. Build an algorithmic framework or template which
expresses the known heuristics.

3. Let metaheuristics (e.g., Genetic Programming)
search for variations on the theme.

4. Train and test on problem instances drawn from
the same probability distribution (like machine
learning). Constructing an optimizer is machine
learning (this approach prevents “cheating”).

John R. Woodward, Daniel R. Tauritz

543

A Brief History (Example Applications) [5]

1. Image Recognition – Roberts Mark
2. Travelling Salesman Problem – Keller Robert
3. Boolean Satisfiability – Holger Hoos, Fukunaga, Bader-El-Den,

Alex Bertels & Daniel Tauritz
4. Data Mining – Gisele L. Pappa, Alex A. Freitas
5. Decision Tree - Gisele L. Pappa et al
6. Crossover Operators – Oltean et al, Brian Goldman and Daniel

Tauritz
7. Selection Heuristics – Woodward & Swan, Matthew Martin &

Daniel Tauritz
8. Bin Packing 1,2,3 dimension (on and off line) Edmund Burke

et. al. & Riccardo Poli et al
9. Bug Location – Shin Yoo
10. Job Shop Scheduling – Mengjie Zhang
11. Black Box Search Algorithms – Daniel Tauritz et al
12. Graph Algorithms – Aaron Pope & Daniel Tauritz

John R. Woodward, Daniel R. Tauritz

A Paradigm Shift?

conventional approach new approach

Algorithm
s investigated/unit tim

e

One person
proposes one
algorithm
and tests it
in isolation.

One person proposes a
family of algorithms
and tests them
in the context of
a problem class.

• Previously one person proposes one algorithm
• Now one person proposes a set of algorithms
• Analogous to “industrial revolution” from hand

made to machine made. Automatic Design.

Human cost (INFLATION) machine cost MOORE’S LAW

John R. Woodward, Daniel R. Tauritz

Conclusions

1. Heuristic are trained to fit a problem class, so are
designed in context (like evolution). Let’s close
the feedback loop! Problem instances live in
classes.

2. We can design algorithms on small problem
instances and scale them apply them to large
problem instances (TSP, child multiplication).

John R. Woodward, Daniel R. Tauritz

SUMMARY

1. We can automatically design algorithms that
consistently outperform human designed algorithms
(on various domains).

2. The “best” heuristics depends on the set of problem
instances. (feedback)

3. Resulting algorithm is part man-made part machine-
made (synergy)

4. not evolving from scratch like Genetic Programming,
5. improve existing algorithms and adapt them to the new

problem instances.
6. Algorithms are reusable, “solutions” aren’t. (e.g. tsp

algorithm vs route)

John R. Woodward, Daniel R. Tauritz

544

Case Study 4: The Automated Design
of Black Box Search Algorithms [21, 23,

25]

John R. Woodward, Daniel R. Tauritz

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

Approach

John R. Woodward, Daniel R. Tauritz

Our
Solution

Initialization

Check for
Termination

Terminate

Iterated
Function

John R. Woodward, Daniel R. Tauritz

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

• High-level primitives

Our Solution

John R. Woodward, Daniel R. Tauritz

545

• Iterated function

• Sets of solutions

• Function returns
a set of solutions
accessible to the
next iteration

Parse Tree

John R. Woodward, Daniel R. Tauritz

Primitive Types

• Variation Primitives

• Selection Primitives

• Set Primitives

• Evaluation Primitive

• Terminal Primitives

John R. Woodward, Daniel R. Tauritz

Variation Primitives

• Bit-flip Mutation
– rate

• Uniform Recombination
– count

• Diagonal Recombination
– n

John R. Woodward, Daniel R. Tauritz

Selection Primitives

• Truncation Selection
– count

• K-Tournament Selection
– k
– count

• Random Sub-set Selection
– count

John R. Woodward, Daniel R. Tauritz

546

Set-Operation Primitives

• Make Set
– name

• Persistent
Sets
– name

• Union

John R. Woodward, Daniel R. Tauritz

• Evaluates the nodes passed in

• Allows multiple operations and accurate selections within
an iteration

– Allows for deception

Evaluation Primitive

John R. Woodward, Daniel R. Tauritz

Terminal Primitives

• Random Individuals
– count

• `Last’ Set

• Persistent Sets
– name

John R. Woodward, Daniel R. Tauritz

Meta-Genetic Program

Create Valid
Population

Generate
Children

Evaluate
Children

Select
Survivors

Check
Termination

John R. Woodward, Daniel R. Tauritz

547

BBSA Evaluation

C re ate Val id
P o p u latio n

Ge n e rat
e

C h i ld re n

Evalu ate
C h i ld re n

Se le ct
Su rvivo r

s

Ge n e rate
C h i ld re n

John R. Woodward, Daniel R. Tauritz

• Evaluations

• Iterations

• Operations

• Convergence

Termination Conditions

John R. Woodward, Daniel R. Tauritz

• Deceptive Trap Problem

Proof of Concept Testing

0

1

2

3

4

5

-1 1 3 5

Fi
tn

es
s

of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

John R. Woodward, Daniel R. Tauritz

• Evolved Problem Configuration
– Bit-length = 100
– Trap Size = 5

• Verification Problem Configurations
– Bit-length = 100, Trap Size = 5
– Bit-length = 200, Trap Size = 5
– Bit-length = 105, Trap Size = 7
– Bit-length = 210, Trap Size = 7

Proof of Concept Testing (cont.)

John R. Woodward, Daniel R. Tauritz

548

Results

60% Success
Rate

John R. Woodward, Daniel R. Tauritz

Results:
Bit-Length = 100

Trap Size = 5

John R. Woodward, Daniel R. Tauritz

Results:
Bit-Length = 200

Trap Size = 5

John R. Woodward, Daniel R. Tauritz

Results:
Bit-Length = 105

Trap Size = 7

John R. Woodward, Daniel R. Tauritz

549

Results:
Bit-Length = 210

Trap Size = 7

John R. Woodward, Daniel R. Tauritz

BBSA1

BBSA2

BBSA3

John R. Woodward, Daniel R. Tauritz

BBSA1

John R. Woodward, Daniel R. Tauritz

BBSA2

John R. Woodward, Daniel R. Tauritz

550

BBSA3

John R. Woodward, Daniel R. Tauritz

BBSA2

John R. Woodward, Daniel R. Tauritz

Over-Specialization

Trained Problem
Configuration

Alternate
Problem

Configuration

John R. Woodward, Daniel R. Tauritz

Case Study 5: Evolving Random Graph
Generators: A Case for Increased

Algorithmic Primitive Granularity [27]

John R. Woodward, Daniel R. Tauritz

551

Random Graphs

• Graphs are a powerful modeling tool
– Computer and social networks
– Transportation and power grids

• Algorithms designed for graphs
– Community detection and graph partitioning
– Network routing and intrusion detection

• Random graphs provide test data
• Prediction using random graphs

– Spread of disease
– Deployment of wireless sensors

Traditional Random Graph Models

• Erdös-Rényi

• Barabási-Albert

Automated Random Graph Model Design

• Random graph model needs to accurately reflect
intended concept

• Model selection can be automated, but relies on
having a good solution available

• Developing an accurate model for a new
application can be difficult

Can the model design process be automated to
produce an accurate graph model given examples?

Hyper-heuristic Approach

• Extract functionality from existing graph generation
techniques

• Use Genetic Programming (GP) to construct new random
graph algorithms

552

Previous Attempts at Evolving Random Graph
Generators

• Assumes “growth” model, adding one node at a time
• Does well at reproducing traditional models
• Not demonstrated to do well at generating real complex

networks
• Limits the search space of possible solutions

Increased Algorithmic Primitive Granularity

• Remove the assumed “growth” structure
• More flexible lower-level primitive set
• Benefit: Can represent a larger variety of algorithms
• Drawback: Larger search space, increasing complexity

Methodology

• NSGA-II evolves population of random graph models
• Strongly typed parse tree representation
• Centrality distributions used to evaluate solution
• quality (degree, betweenness, PageRank)

Primitive Operations
Terminals
• Graph elements: nodes, edges
• Graph properties: average degree, size, order
• Constants: integers, probabilities, Booleans, user inputs
• No-op terminators

Functions
• Basic programming constructs: for, while, if-else
• Data structures: lists of values, nodes, or edges, list
• combining/selection/sorting
• Math and logic operators: add, multiply, <, ==, AND, OR
• Graph operators: add edges, add subgraph, rewire edges

553

Example Evolved Random Graph Generator Reproducing Erdös-Rényi

Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047

Betweenness 0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

Reproducing Random Community Graphs
Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055

Betweenness 0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

Actual Graph Low-GP High-
GP

Evolved Random Collaboration Network
Generator

554

Conclusion

• Traditional random graph models do not always
produce appropriate representations of certain
concepts

• Accurate random graph model design can be
automated using genetic programming

• More flexible set of low-level primitive
operations increases resulting model accuracy

• Increase in a priori evolution time is amortized
over repeated use of the evolved solutions

Some Final Thoughts

Challenges in Hyper-heuristics

• Hyper-heuristics are very computationally
expensive (use Asynchronous Parallel GP [26,30])

• What is the best primitive granularity? (see next
slide; also see [41])

• How to automate decomposition and
recomposition of primitives?

• How to automate primitive extraction?
• How does hyper-heuristic performance scale for

increasing primitive space size? (see [25,27])

Primitive Granularity
PrimitivesAlgorithm

Full BBSAs
i.e., EA, SA, SAHC,
etc.

Selective Hyper-
heuristics

Our Hyper-heuristic

Turing Complete
Set of Primitives

Generative Hyper-
heuristics

High-level BBSA
operations
i.e., Truncation
Selection, Bit-Flip
Mutation, etc.

Low-level BBSA
operations
i.e., If Converged
Statements, For loops,
etc.

Genetic Programming

555

End of File 

• Thank you for listening !!!
• We are glad to take any

– comments (+,-)
– suggestions/criticisms
Please email us any missing references!
John Woodward (https://www.eecs.qmul.ac.uk/~jwoodward/)
Daniel Tauritz (https://bonsai.auburn.edu/dtauritz/)

John R. Woodward, Daniel R. Tauritz

References 1
1. John Woodward. Computable and Incomputable Search Algorithms and Functions. IEEE International Conference on

Intelligent Computing and Intelligent Systems (IEEE ICIS 2009), pp. 871-875, 2009.
2. John Woodward. The Necessity of Meta Bias in Search Algorithms. International Conference on Computational

Intelligence and Software Engineering (CiSE), pp. 1-4, 2010.
3. John Woodward & Ruibin Bai. Why Evolution is not a Good Paradigm for Program Induction: A Critique of Genetic

Programming. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 593-
600, 2009.

4. Jerry Swan, John Woodward, Ender Ozcan, Graham Kendall, Edmund Burke. Searching the Hyper-heuristic Design
Space. Cognitive Computation, 6:66-73, 2014.

5. Gisele L. Pappa, Gabriela Ochoa, Matthew R. Hyde, Alex A. Freitas, John Woodward, Jerry Swan. Contrasting meta-
learning and hyper-heuristic research. Genetic Programming and Evolvable Machines, 15:3-35, 2014.

6. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automating the Packing Heuristic Design
Process with Genetic Programming. Evolutionary Computation, 20(1):63-89, 2012.

7. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John Woodward. A Genetic Programming Hyper-Heuristic
Approach for Evolving Two Dimensional Strip Packing Heuristics. IEEE Transactions on Evolutionary Computation,
14(6):942-958, 2010.

8. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan and John R. Woodward. Exploring
Hyper-heuristic Methodologies with Genetic Programming, Computational Intelligence: Collaboration, Fusion and
Emergence, In C. Mumford and L. Jain (eds.), Intelligent Systems Reference Library, Springer, pp. 177-201, 2009.

9. Edmund K. Burke, Matthew Hyde, Graham Kendall and John R. Woodward. The Scalability of Evolved On Line Bin
Packing Heuristics. In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2530-2537, 2007.

10. R. Poli, John R. Woodward, and Edmund K. Burke. A Histogram-matching Approach to the Evolution of Bin-packing
Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3500-3507, 2007.

11. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automatic Heuristic Generation with
Genetic Programming: Evolving a Jack-of-all-Trades or a Master of One, In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1559-1565, 2007.

John R. Woodward, Daniel R. Tauritz

References 2
12. John R. Woodward and Jerry Swan. Template Method Hyper-heuristics, Metaheuristic Design Patterns (MetaDeeP)

workshop, GECCO Comp’14, pp. 1437-1438, 2014.
13. Saemundur O. Haraldsson and John R. Woodward, Automated Design of Algorithms and Genetic Improvement:

Contrast and Commonalities, 4th Workshop on Automatic Design of Algorithms (ECADA), GECCO Comp ‘14, pp. 1373-
1380, 2014.

14. John R. Woodward, Simon P. Martin and Jerry Swan. Benchmarks That Matter For Genetic Programming, 4th
Workshop on Evolutionary Computation for the Automated Design of Algorithms (ECADA), GECCO Comp ‘14, pp.
1397-1404, 2014.

15. John R. Woodward and Jerry Swan. The Automatic Generation of Mutation Operators for Genetic Algorithms, 2nd
Workshop on Evolutionary Computation for the Automated Design of Algorithms (ECADA), GECCO Comp’ 12, pp. 67-
74, 2012.

16. John R. Woodward and Jerry Swan. Automatically Designing Selection Heuristics. 1st Workshop on Evolutionary
Computation for Designing Generic Algorithms, pp. 583-590, 2011.

17. Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John Woodward. A
Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics, pp. 449-468, International Series in
Operations Research & Management Science, M. Gendreau and J-Y Potvin (Eds.), Springer, 2010.

18. Libin Hong and John Woodward and Jingpeng Li and Ender Ozcan. Automated Design of Probability Distributions as
Mutation Operators for Evolutionary Programming Using Genetic Programming. Proceedings of the 16th European
Conference on Genetic Programming (EuroGP 2013), volume 7831, pp. 85-96, 2013.

19. Ekaterina A. Smorodkina and Daniel R. Tauritz. Toward Automating EA Configuration: the Parent Selection Stage. In
Proceedings of CEC 2007 - IEEE Congress on Evolutionary Computation, pp. 63-70, 2007.

20. Brian W. Goldman and Daniel R. Tauritz. Self-Configuring Crossover. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO '11), pp. 575-582, 2011.

21. Matthew A. Martin and Daniel R. Tauritz. Evolving Black-Box Search Algorithms Employing Genetic Programming. In
Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO '13), pp.
1497-1504, 2013.

John R. Woodward, Daniel R. Tauritz

References 3
22. Nathaniel R. Kamrath, Brian W. Goldman and Daniel R. Tauritz. Using Supportive Coevolution to Evolve Self-

Configuring Crossover. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO '13), pp. 1489-1496, 2013.

23. Matthew A. Martin and Daniel R. Tauritz. A Problem Configuration Study of the Robustness of a Black-Box Search
Algorithm Hyper-Heuristic. In Proceedings of the 16th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO '14), pp. 1389-1396, 2014.

24. Sean Harris, Travis Bueter, and Daniel R. Tauritz. A Comparison of Genetic Programming Variants for Hyper-Heuristics.
In Proceedings of the 17th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO '15),
pp. 1043-1050, 2015.

25. Matthew A. Martin and Daniel R. Tauritz. Hyper-Heuristics: A Study On Increasing Primitive-Space. In Proceedings
of the 17th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO '15), pp. 1051-1058,
2015.

26. Alex R. Bertels and Daniel R. Tauritz. Why Asynchronous Parallel Evolution is the Future of Hyper-heuristics: A CDCL
SAT Solver Case Study. In Proceedings of the 18th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO `16), pp. 1359-1365, 2016.

27. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Random Graph Generators: A Case for Increased
Algorithmic Primitive Granularity. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence
(IEEE SSCI 2016), 2016.

28. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Multi-level Graph Partitioning Algorithms. In
Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 2016.

29. Islam Elnabarawy, Daniel R. Tauritz, Donald C. Wunsch. Evolutionary Computation for the Automated Design of
Category Functions for Fuzzy ART: An Initial Exploration. In Proceedings of the 19th Annual Conference Companion
on Genetic and Evolutionary Computation (GECCO’17), pp. 1133-1140, 2017.

30. Adam Harter, Daniel R. Tauritz, William M. Siever. Asynchronous Parallel Cartesian Genetic Programming. In
Proceedings of the 19th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’17), pp.
1820-1824, 2017.

John R. Woodward, Daniel R. Tauritz

556

References 4
31. Marketa Illetskova, Alex R. Bertels, Joshua M. Tuggle, Adam Harter, Samuel Richter, Daniel R. Tauritz, Samuel Mulder,

Denis Bueno, Michelle Leger and William M. Siever. Improving Performance of CDCL SAT Solvers by Automated
Design of Variable Selection Heuristics. In Proceedings of the 2017 IEEE Symposium Series on Computational
Intelligence (SSCI 2017), 2017.

32. John R. Woodward, Jerry Swan, "Why classifying search algorithms is essential", Progress in Informatics and
Computing (PIC) 2010 IEEE International Conference on, vol. 1, pp. 285-289, 2010.

33. Samuel N. Richter and Daniel R. Tauritz. The Automated Design of Probabilistic Selection Methods for Evolutionary
Algorithms. In Proceedings of the 20th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO 2018), pp. 1545-1552, 2018.

34. Aaron Scott Pope, Robert Morning, Daniel R. Tauritz, and Alexander D. Kent. Automated Design of Network Security
Metrics. In Proceedings of the 20th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO 2018), pp. 1680-1687, 2018.

38. John R. Woodward and Ruibin Bai. Canonical representation genetic programming. In Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 585-592, 2009.

39. Saemundur O. Haraldsson, John R. Woodward, Alexander EI Brownlee, and Kristin Siggeirsdottir. Fixing bugs in your
sleep: How genetic improvement became an overnight success. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 1513-1520, 2017.

40. Aaron Scott Pope, Daniel R. Tauritz, and Melissa Turcotte. Automated Design of Tailored Link Prediction Heuristics for
Applications in Enterprise Network Security. In Proceedings of the 21st Annual Conference Companion on Genetic
and Evolutionary Computation (GECCO ’19), pp. 1634–1642, 2019.

41. Adam Harter, Aaron Scott Pope, Daniel R. Tauritz, and Chris Rawlings. Empirical Evidence of the Effectiveness of
Primitive Granularity Control for Hyper-Heuristics. In Proceedings of the 21st Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’19), pp. 1478–1486, 2019.

42. Aaron Scott Pope, Daniel R. Tauritz, and Chris Rawlings. Automated Design of Random Dynamic Graph Models. In
Proceedings of the 21st Annual Conference Companion on Genetic and Evolutionary Computation (GECCO ’19), pp.
1504–1512, 2019.

43. Samuel N. Richter, Michael G. Schoen, and Daniel R. Tauritz. Evolving Mean-Update Selection Methods for CMA-ES. In
Proceedings of the 21st Annual Conference Companion on Genetic and Evolutionary Computation (GECCO ’19), pp.
1513–1517, 2019.

John R. Woodward, Daniel R. Tauritz

References 5
44. Aaron Scott Pope and Daniel R. Tauritz. Automated Design of Multi-Level Network Partitioning Heuristics Employing

Self-Adaptive Primitive Granularity Control. In Proceedings of the 22nd Annual Conference on Genetic and
Evolutionary Computation (GECCO ’20), 1168–1176, Cancún, Mexico, July 8-12, 2020.

45. Braden N. Tisdale, Aaron Scott Pope, and Daniel R. Tauritz. Dynamic Primitive Granularity Control: An Exploration of
Unique Design Considerations. In Proceedings of the 22nd Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO ’20), pages 1906– 1914, Cancún, Mexico, July 8-12, 2020.

46. Nathaniel R. Kamrath, Aaron Scott Pope, and Daniel R. Tauritz. The Automated Design of Local Optimizers for
Memetic Algorithms Employing Supportive Coevolution. In Proceedings of the 22nd Annual Conference Companion
on Genetic and Evolutionary Computation (GECCO ’20), pages 1889–1897, Cancún, Mexico, July 8-12, 2020.

John R. Woodward, Daniel R. Tauritz

557

