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Instructors
Daniel R. Tauritz is an Associate Professor in the Department of Computer 
Science and Software Engineering at Auburn University (AU), Interim 
Director and Chief Cyber AI Strategist of AU’s Auburn Cyber Research Center, 
Head of AU’s Biomimetic Artificial Intelligence (BioAI) Research Group, 
Director of AU’s Biomimetic National Security Artificial Intelligence (BONSAI) 
Laboratory, Guest Scientist at Los Alamos National Laboratory (LANL), and 
Director of the LANL/AU Cyber Security Sciences Institute. He received his 
Ph.D. in 2002 from Leiden University. His research interests include the 
design of hyper-heuristics and self-configuring evolutionary algorithms and 
the application of computational intelligence techniques in cyber security, 
critical infrastructure protection, and program understanding. 

John R. Woodward is a Lecturer at Queen Mary University of London, and is 
Head of the Operational Research Group, and previously for four years was a 
Lecturer with the University of Nottingham and also Stirling. He holds a BSc 
in Theoretical Physics, an MSc in Cognitive Science and a PhD in Computer 
Science, all from the University of Birmingham. His research interests 
include Automated Software Engineering, particularly Search Based 
Software Engineering, Artificial Intelligence/Machine Learning and in 
particular Genetic Programming. He has worked in industrial, military, 
educational and academic settings, and been employed by EDS, CERN and 
RAF and three UK Universities.

John R. Woodward, Daniel R. Tauritz

John’s perspective of hyper-
heuristics

John R. Woodward, Daniel R. Tauritz

Domain Barrier
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Conceptual Overview
Combinatorial problem e.g.  Travelling Salesman
Exhaustive search ->heuristic?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops. 

Travelling Salesman Instances

TSP algorithm

EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he 
will eat for a day. 
Teach a man to fish and he
will eat for a lifetime.

Scalable? General?
New domains for GP

John R. Woodward, Daniel R. Tauritz

One Man – One/Many Algorithm

Heuristic1

Heuristic2

Heuristic3

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design

John R. Woodward, Daniel R. Tauritz

3 May, 2021

Automatically 
designed heuristics
(this tutorial)

First year university course 
On Java, as part of a computer
Science degree

Increasing “complexity”

LARGE 
Software 
Engineering 
Projects

Genetic Programming
{+, -, *, /}
{AND, OR, NOT}

Janus 
Manager

● Management system 
for rehabilitation

● Stores client info
● A tool for 

○ Administration
○ Communication
○ Producing reports
○ Predicting 

outcomes

● ~40 Users
○ Specialists
○ Admin staff

● 1000+ clients
○ ~150 active

● The code
○ Python
○ 25,000+ LOC
○ 600+ functions
○ 300 Classes
○ Run as web service on Apache

Janus 
Manager
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Daily activity
● Users

○ Request data
○ Save data

● Janus Manager
○ Processes 

requests
○ Interacts with the 

database
○ Responds with 

output

Daily activity

● Procedures in place to 
catch exceptions and 
log:
○ Request
○ Input data
○ Type of exception
○ Location of 

exception
● Logs saved in file on 

server

Input: {‘name’:’John 
Dóe’,
’unemployed’:’34’,
’phone’:’555-123’,
‘home’:’Do not know’}
Type:
UnicodeDecodeError
Location:
(JanusManager.datapars
e.connect, 351)

Nightly activity
When last user logs out

1. Procedure 2.0 started
○ Sorts and filters the day’s 

exceptions
2. Procedure 3.0

○ Emulates input data, 
type, size and structure.

○ Produces test cases
3. Procedure 4.0

○ Genetic Improvement
○ Parallel process on the 

server
○ Outputs report for 

developer

Nightly activity
Procedure 3.0
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Improvement log

13

The story so far
● Janus Manager was developed in March 2016
● Since October 2016 has had GI running as a permanent service
● 22 Bugs reported

○ Variable name mixup - current_date vs. current_time
○ Range constants - For i in range(len(Var)+1):
○ And more ….

● 22 Bugs fixed
○ Whole process takes 20 minutes (on average)
○ Fix found within 10 generations

Current count is ~40

Daniel’s perspective of hyper-
heuristics

John R. Woodward, Daniel R. Tauritz

Real-World Challenges

• Researchers strive to make algorithms increasingly 
general-purpose

• But practitioners have very specific needs
• Designing custom algorithms tuned to particular 

problem instance distributions and/or computational 
architectures can be very time consuming

John R. Woodward, Daniel R. Tauritz
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Automated Design of Algorithms

• Addresses the need for custom algorithms
• But due to high computational complexity, only feasible for 

repeated problem solving
• Hyper-heuristics accomplish automated design of 

algorithms by searching program space

John R. Woodward, Daniel R. Tauritz

Hyper-heuristics

• Hyper-heuristics are a special type of meta-heuristic
– Step 1: Extract algorithmic primitives from existing 

algorithms
– Step 2: Search the space of programs defined by the 

extracted primitives

• While Genetic Programming (GP) is particularly well 
suited for executing Step 2, other meta-heuristics can 
be, and have been, employed

• The type of GP employed matters [24]

John R. Woodward, Daniel R. Tauritz

Type of GP Matters:
Experiment Description

• Implement five types of GP (tree GP, linear GP, 
canonical Cartesian GP, Stack GP, and Grammatical 
Evolution) in hyper-heuristics for evolving black-box 
search algorithms for solving 3-SAT

• Base hyper-heuristic fitness on the fitness of the 
best search algorithm generated at solving the 3-
SAT problem

• Compare relative effectiveness of each GP type as a 
hyper-heuristic

GP Individual Description

• Search algorithms are represented as an iterative algorithm 
that passes one or more set of variable assignments to the 
next iteration

• Genetic program represents a single program iteration
• Algorithm runs starting with a random initial population of 

solutions for 30 seconds
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3-SAT Problem

• A subset of the Boolean Satisfiability Problem (SAT)
• The goal is to select values for Boolean variables such that a 

given Boolean equation evaluates as true (is satisfied)
• Boolean equations are in 3-conjunctive normal form
• Example:

– (A ∨ B ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬B ∨ C V ¬D)
– Satisfied by ¬A, B, C, ¬D

• Fitness is the number of clauses satisfied by the best 
solution in the final population

Genetic Programming Nodes Used

• Last population, Random population
• Tournament selection, Fitness proportional selection, 

Truncation selection, Random selection
• Bitwise mutation, Greedy flip, Quick greedy flip, Stepwise 

adaption of weights, Novelty
• Union

Results
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Results [24]
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Results

• Generated algorithms mostly performed comparably well on 
training and test problems

• Tree and stack GP perform similarly well on this problem, as 
do linear and Cartesian GP

• Tree and stack GP perform significantly better on this 
problem than linear and Cartesian GP, which perform 
significantly better than grammatical evolution

Conclusions

• The choice of GP type makes a significant difference in the 
performance of the hyper-heuristic

• The size of the search space appears to be a major factor in 
the performance of the hyper-heuristic

Case Study 1: Evolving Multi-level 
Graph Partitioning Algorithms [28]

John R. Woodward, Daniel R. Tauritz

• Graph partitioning can be applied to several problems
– Parallel computation: minimize inter-process communication
– Network security: placing network traffic monitors at critical 

junctures
• In general, optimal graph partitioning is NP-hard
• Real-time applications require fast approximation 

heuristics

Graph Partitioning

John R. Woodward, Daniel R. Tauritz
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1. Approximate graph with 
sequence of smaller graphs

2. Quickly partition smallest 
graph

3. Use partition of smallest 
graph as an initial partition 
of the next smallest

4. Perform greedy search to 
improve the quality of the 
partition

5. Repeat steps 3 and 4 until 
partition is found for the 
original graph

Multi-level Graph Partitioning

John R. Woodward, Daniel R. Tauritz

Coarsening: Matching Contraction

John R. Woodward, Daniel R. Tauritz

Coarsening: Subgraph Contraction

John R. Woodward, Daniel R. Tauritz

• Multi-level partitioning of power-law graphs can be 
improved with specialized coarsening heuristics*

• Demonstrates the potential to customize an algorithm for 
graphs with particular characteristics

• Manually developing new heuristics can be expensive
• Process can be automated using hyper-heuristics

*A. Abou-Rjeili and G. Karypis, “Multilevel Algorithms for Partitioning 
Power-law Graphs,” in Proceedings of the 20th International Parallel 
and Distributed Processing Symposium (IPDPS’06), IEEE, Rhodes Island, 
Greece, 2006.

Optimizing Multi-level Partitioning

John R. Woodward, Daniel R. Tauritz
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• Extract functionality from existing graph partitioning 
techniques

• Use Genetic Programming (GP) to construct new algorithms

Hyper-heuristic Approach

John R. Woodward, Daniel R. Tauritz

• Evolve a population of graph partition algorithms
• Strongly typed parse tree representation
• Evolution targeted at specific type of graph (e.g., random graph 

model, computer network)
• Cost of partitions produced determines solution fitness 

(averaged over many graphs)

Methodology

John R. Woodward, Daniel R. Tauritz

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑃
෍ ෍ 𝑤௘ (𝑢, 𝑣)

 

௨,௩ |௣[௨]ஷ௣[௩]

 

௣∈௉

• Root node
– child node for each of: coarsening, partitioning, uncoarsening

• Coarsening
– Traditional matching schemes: random, heavy edge, light edge
– Globally greedy: considers all edges in graph sorted by some 

metric
– Locally greedy: randomly visits vertices, considers incident edges
– Edge metrics: weight, degree, or core number of incident vertices, 

or edge weight (can be combined using math operators)

Primitive Operations

John R. Woodward, Daniel R. Tauritz

• Edge metric
• Reverse ordering (maximize)
• Maximum vertex weight ratio
• Maximum contraction ratio

Globally and Locally Greedy Coarsening

John R. Woodward, Daniel R. Tauritz
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• Partitioning
– random, growth, greedy growth, spectral, Kernighan-Lin

• Uncoarsening
– KL refinement, greedy refinement

• Miscellaneous
– Constants: integers, ratios, booleans
– Random conditional: randomly true or false according to child 

probability value

Primitive Operations (cont.)

John R. Woodward, Daniel R. Tauritz

• Partition algorithms are evolved targeting:
– Erdös-Rényi random graphs
– Barabási-Albert random graphs
– Los Alamos National Laboratory (LANL) authentication graphs

Performance is compared against METIS partitioning software 
as well as spectral partitioning

Experiment

John R. Woodward, Daniel R. Tauritz

Method EER EBA ELANL METIS SP

EER 0.0 -0.06 -0.38 -0.06 -4.55

EBA -0.53 0.0 -0.12 -0.72 -0.92

ELANL -0.48 -0.10 0.0 -2.97 -3.90

Results

John R. Woodward, Daniel R. Tauritz

Barabási-Albert LANL network

Representative High Fitness Final Evolved Solution (EBA)

John R. Woodward, Daniel R. Tauritz
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• Multi-level partitioning algorithms can be tailored to 
specific graph types, including real-world networks

• These customized heuristics improve upon general purpose 
graph partitioning methods

• The design process can be automated using hyper-heuristics

Conclusion

John R. Woodward, Daniel R. Tauritz

Case Study 2: The Automated Design 
of Mutation Operators for 
Evolutionary Programming

John R. Woodward, Daniel R. Tauritz

Designing Mutation Operators for 
Evolutionary Programming [18]

1. Evolutionary programing optimizes 
functions by evolving a population of 
real-valued vectors (genotype).

2. Variation has been provided (manually) 
by probability distributions (Gaussian, 
Cauchy, Levy).

3. We are automatically generating 
probability distributions (using genetic 
programming).

4. Not from scratch, but from already well 
known distributions (Gaussian, Cauchy, 
Levy). We are “genetically improving 
probability distributions”. 

5. We are evolving mutation operators for 
a problem class (probability 
distributions over functions). 

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7) 
Before mutation 

Genotype is
(1.2,...,4.4,…,8.6) 
After mutation

John R. Woodward, Daniel R. Tauritz

(Fast) Evolutionary Programming

1. EP mutates with a Gaussian 
2. FEP mutates with a Cauchy
3. A generalization is mutate 

with a distribution D 
(generated with genetic 
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

John R. Woodward, Daniel R. Tauritz
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Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used 
in the literature.  Minimization
We use them as problem classes. 

John R. Woodward, Daniel R. Tauritz

Function Class 1
1. Machine learning needs to generalize. 
2. We generalize to function classes.
3. y = 𝑥ଶ  (a function)
4. y = 𝑎𝑥ଶ(parameterised function)
5. y = 𝑎𝑥ଶ, 𝑎 ~[1,2] (function class)
6. We do this for all benchmark functions. 
7. The mutation operators is evolved to fit the  

probability distribution of functions. 

John R. Woodward, Daniel R. Tauritz

Function Classes 2

John R. Woodward, Daniel R. Tauritz

Meta and Base Learning

• At the base level we are 
learning about a specific
function. 

• At the meta level we are 
learning about the 
problem class. 

• We are just doing 
“generate and test” at a 
higher level

• What is being passed with 
each blue arrow?

• Conventional EP 

EPFunction to 
optimize

Probability
Distribution
Generator

Function 
class

base level

Meta level

John R. Woodward, Daniel R. Tauritz
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Compare Signatures (Input-Output)
Evolutionary Programming
(𝑅௡𝑅)  𝑅௡

Input is a function 
mapping real-valued 
vectors of length n to a 
real-value. 
Output is a (near optimal) 
real-valued vector
(i.e. the solution to the 
problem instance)

Evolutionary Programming
Designer
[(𝑅௡𝑅)]  ((𝑅௡𝑅)  𝑅௡)

Input is a list of functions mapping 
real-valued vectors of length n to a 
real-value (i.e. sample problem 
instances from the problem class). 
Output is a (near optimal) (mutation 
operator for) Evolutionary 
Programming  
(i.e. the solution method to the 
problem class)

We are raising the level of generality at which we operate. 

John R. Woodward, Daniel R. Tauritz

Genetic Programming to Generate 
Probability Distributions

1. GP Function Set {+, -, *, %}
2. GP Terminal Set {N(0, random)}
N(0,1) is a normal distribution. 
For example a Cauchy distribution 
is generated by N(0,1)%N(0,1).
Hence the search space of 
probability distributions contains 
the two existing probability 
distributions used in EP but also 
novel probability distributions. 

CAUCHYGAUSSIAN

NOVEL 
PROBABILITY
DISTRIBUTIONS

SPACE OF 
PROBABILITY
DISTRIBUTIONS

John R. Woodward, Daniel R. Tauritz

Means and Standard Deviations

These results are good for two reasons. 
1. starting with a manually designed distributions (Gaussian). 
2. evolving distributions for each function class. 

John R. Woodward, Daniel R. Tauritz

T-tests

John R. Woodward, Daniel R. Tauritz
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Performance on Other Problem Classes

John R. Woodward, Daniel R. Tauritz

Case Study 3: The Automated Design 
of On-Line Bin Packing Algorithms

John R. Woodward, Daniel R. Tauritz

On-line Bin Packing Problem [9,11]

Items packed so far Sequence of pieces to be packed

• A sequence of items packed into as few a bins as possible.
• Bin size is 150 units, items uniformly distributed between 20-100.
• Different to the off-line bin packing problem where the set of items.
• The “best fit” heuristic, places the current item in the space it fits best 

(leaving least slack). 
• It has the property that this heuristic does not open a new bin unless it 

is forced to. 

150 = 
Bin
capacity

Range of 
Item size
20-100

Array of bins 

John R. Woodward, Daniel R. Tauritz

Genetic Programming 
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness

Fullness is 
irrelevant 
The space is 
important

Not obvious how to link 
Genetic Programming to 
combinatorial problems.
The GP tree is applied to each
bin with the current item and 
placed in the bin with
The maximum score

Terminals supplied to Genetic Programming
Initial representation {C, F, S}
Replaced with {E, S}, E=C-F

John R. Woodward, Daniel R. Tauritz
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How the heuristics are applied (skip)

90
120

70
30 45

70

85

30
60

-

+

FS

C

%

C

-15 -3.75 3 4.29 1.88

John R. Woodward, Daniel R. Tauritz

The Best Fit Heuristic

0 1
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3
0 40 5

0 6
0 70

2163
04
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28
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1
001
141
2814

2

-150

-100

-50

0

50

100

150

100-150
50-100

0-50
-50-0

-100--50
-150--100

Best fit = 1/(E-S). Point out features.
Pieces of size S, which fit well into the space remaining E, 
score well.
Best fit applied produces a set of points on the surface, 
The bin corresponding to the maximum score is picked.

Piece sizeemptiness

John R. Woodward, Daniel R. Tauritz

Our Best Heuristic

0

10

20

30

40

50

60

70

80

90

100

110

120
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140

15020 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.
Note that this is rotated, relative to previous slide. 

John R. Woodward, Daniel R. Tauritz

Robustness of Heuristics

= all legal results
= some illegal results

John R. Woodward, Daniel R. Tauritz
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Testing Heuristics on problems of much larger 
size than in training

Table I H trained100 H trained 250 H trained 500 

100 0.427768358 0.298749035 0.140986023 

1000 0.406790534 0.010006408 0.000350265 

10000 0.454063071 2.58E-07 9.65E-12 

100000 0.271828318 1.38E-25 2.78E-32 

Table shows p-values using the best fit heuristic, for heuristics trained on 
different size problems, when applied to different sized problems
1. As number of items trained on increases,  the probability decreases (see 

next slide). 
2. As the number of items packed increases,  the probability decreases (see 

next slide). 

John R. Woodward, Daniel R. Tauritz

Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances
• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100

evolved on 250

evolved on 500

Amount 
evolved 
heuristics 
beat 
best fit by. 

Number of pieces
packed so far.

John R. Woodward, Daniel R. Tauritz

Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem 

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a 

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100

evolved on 250

evolved on 500

Amount 
evolved 
heuristics 
beat 
best fit by. 

Zoom in
of previous 
slide

John R. Woodward, Daniel R. Tauritz

Step by Step Guide to Automatic Design of 
Algorithms [8, 12]

1. Study the literature for existing heuristics for your 
chosen domain (manually designed heuristics). 

2. Build an algorithmic framework or template which 
expresses the known heuristics. 

3. Let metaheuristics (e.g., Genetic Programming) 
search for variations on the theme.

4. Train and test on problem instances drawn from 
the same probability distribution (like machine 
learning). Constructing an optimizer is machine 
learning (this approach prevents “cheating”).

John R. Woodward, Daniel R. Tauritz
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A Brief History (Example Applications) [5]

1. Image Recognition – Roberts Mark
2. Travelling Salesman Problem – Keller Robert
3. Boolean Satisfiability – Holger Hoos, Fukunaga, Bader-El-Den, 

Alex Bertels & Daniel Tauritz
4. Data Mining – Gisele L. Pappa, Alex A. Freitas
5. Decision Tree - Gisele L. Pappa et al
6. Crossover Operators – Oltean et al,  Brian Goldman and Daniel 

Tauritz
7. Selection Heuristics – Woodward & Swan, Matthew Martin & 

Daniel Tauritz
8. Bin Packing 1,2,3 dimension (on and off line)  Edmund Burke 

et. al. & Riccardo Poli et al 
9. Bug Location – Shin Yoo
10. Job Shop Scheduling – Mengjie Zhang
11. Black Box Search Algorithms – Daniel Tauritz et al
12. Graph Algorithms – Aaron Pope & Daniel Tauritz

John R. Woodward, Daniel R. Tauritz

A Paradigm Shift?

conventional approach  new approach

Algorithm
s investigated/unit tim

e

One person
proposes one 
algorithm
and tests it
in isolation.

One person proposes a
family of  algorithms
and tests them
in the context of 
a problem class. 

• Previously one person proposes one algorithm
• Now one person proposes a set of algorithms
• Analogous to “industrial revolution” from hand 

made to machine made. Automatic Design. 

Human cost (INFLATION) machine cost MOORE’S LAW

John R. Woodward, Daniel R. Tauritz

Conclusions

1. Heuristic are trained to fit a problem class, so are 
designed in context (like evolution). Let’s close 
the feedback loop! Problem instances live in 
classes. 

2. We can design algorithms on small problem 
instances and scale them apply them to large
problem instances (TSP, child multiplication). 

John R. Woodward, Daniel R. Tauritz

SUMMARY

1. We can automatically design algorithms that 
consistently outperform human designed algorithms 
(on various domains). 

2. The “best” heuristics depends on the set of problem 
instances. (feedback)

3. Resulting algorithm is part man-made part machine-
made (synergy) 

4. not evolving from scratch like Genetic Programming, 
5. improve existing algorithms and adapt them to the new 

problem instances. 
6. Algorithms are reusable, “solutions” aren’t. (e.g. tsp 

algorithm vs route)

John R. Woodward, Daniel R. Tauritz
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Case Study 4: The Automated Design 
of Black Box Search Algorithms [21, 23, 

25]

John R. Woodward, Daniel R. Tauritz

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

Approach

John R. Woodward, Daniel R. Tauritz

Our 
Solution

Initialization

Check for 
Termination

Terminate

Iterated 
Function

John R. Woodward, Daniel R. Tauritz

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

• High-level primitives

Our Solution

John R. Woodward, Daniel R. Tauritz
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• Iterated function

• Sets of solutions

• Function returns 
a set of solutions 
accessible to the 
next iteration

Parse Tree

John R. Woodward, Daniel R. Tauritz

Primitive Types

• Variation Primitives

• Selection Primitives

• Set Primitives

• Evaluation Primitive

• Terminal Primitives

John R. Woodward, Daniel R. Tauritz

Variation Primitives

• Bit-flip Mutation
– rate

• Uniform Recombination
– count

• Diagonal Recombination
– n

John R. Woodward, Daniel R. Tauritz

Selection Primitives

• Truncation Selection
– count

• K-Tournament Selection
– k
– count

• Random Sub-set Selection
– count

John R. Woodward, Daniel R. Tauritz
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Set-Operation Primitives

• Make Set
– name

• Persistent 
Sets
– name

• Union

John R. Woodward, Daniel R. Tauritz

• Evaluates the nodes passed in

• Allows multiple operations and accurate selections within 
an iteration

– Allows for deception

Evaluation Primitive

John R. Woodward, Daniel R. Tauritz

Terminal Primitives

• Random Individuals
– count

• `Last’ Set

• Persistent Sets
– name

John R. Woodward, Daniel R. Tauritz

Meta-Genetic Program

Create Valid 
Population

Generate 
Children

Evaluate 
Children

Select 
Survivors

Check
Termination

John R. Woodward, Daniel R. Tauritz
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BBSA Evaluation

C re ate  Val id  
P o p u latio n

Ge n e rat
e  

C h i ld re n

Evalu ate  
C h i ld re n

Se le ct 
Su rvivo r

s

Ge n e rate  
C h i ld re n

John R. Woodward, Daniel R. Tauritz

• Evaluations

• Iterations

• Operations

• Convergence

Termination Conditions

John R. Woodward, Daniel R. Tauritz

• Deceptive Trap Problem

Proof of Concept Testing

0

1

2

3

4

5

-1 1 3 5

Fi
tn

es
s

# of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

John R. Woodward, Daniel R. Tauritz

• Evolved Problem Configuration
– Bit-length = 100
– Trap Size = 5

• Verification Problem Configurations
– Bit-length = 100, Trap Size = 5
– Bit-length = 200, Trap Size = 5
– Bit-length = 105, Trap Size = 7
– Bit-length = 210, Trap Size = 7

Proof of Concept Testing (cont.)

John R. Woodward, Daniel R. Tauritz
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Results

60% Success 
Rate

John R. Woodward, Daniel R. Tauritz

Results: 
Bit-Length = 100

Trap Size = 5

John R. Woodward, Daniel R. Tauritz

Results: 
Bit-Length = 200

Trap Size = 5

John R. Woodward, Daniel R. Tauritz

Results: 
Bit-Length = 105

Trap Size = 7

John R. Woodward, Daniel R. Tauritz
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Results: 
Bit-Length = 210

Trap Size = 7

John R. Woodward, Daniel R. Tauritz

BBSA1

BBSA2

BBSA3
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BBSA1
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BBSA2
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BBSA3

John R. Woodward, Daniel R. Tauritz

BBSA2

John R. Woodward, Daniel R. Tauritz

Over-Specialization

Trained Problem 
Configuration

Alternate 
Problem 

Configuration

John R. Woodward, Daniel R. Tauritz

Case Study 5: Evolving Random Graph 
Generators: A Case for Increased 

Algorithmic Primitive Granularity [27]

John R. Woodward, Daniel R. Tauritz
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Random Graphs

• Graphs are a powerful modeling tool
– Computer and social networks
– Transportation and power grids

• Algorithms designed for graphs
– Community detection and graph partitioning
– Network routing and intrusion detection

• Random graphs provide test data
• Prediction using random graphs

– Spread of disease
– Deployment of wireless sensors

Traditional Random Graph Models

• Erdös-Rényi

• Barabási-Albert

Automated Random Graph Model Design

• Random graph model needs to accurately reflect 
intended concept

• Model selection can be automated, but relies on 
having a good solution available

• Developing an accurate model for a new 
application can be difficult

Can the model design process be automated to 
produce an accurate graph model given examples?

Hyper-heuristic Approach

• Extract functionality from existing graph generation 
techniques

• Use Genetic Programming (GP) to construct new random 
graph algorithms
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Previous Attempts at Evolving Random Graph 
Generators

• Assumes “growth” model, adding one node at a time
• Does well at reproducing traditional models
• Not demonstrated to do well at generating real complex 

networks
• Limits the search space of possible solutions

Increased Algorithmic Primitive Granularity

• Remove the assumed “growth” structure
• More flexible lower-level primitive set
• Benefit: Can represent a larger variety of algorithms
• Drawback: Larger search space, increasing complexity

Methodology

• NSGA-II evolves population of random graph models
• Strongly typed parse tree representation
• Centrality distributions used to evaluate solution
• quality (degree, betweenness, PageRank)

Primitive Operations
Terminals
• Graph elements: nodes, edges
• Graph properties: average degree, size, order
• Constants: integers, probabilities, Booleans, user inputs
• No-op terminators

Functions
• Basic programming constructs: for, while, if-else
• Data structures: lists of values, nodes, or edges, list
• combining/selection/sorting
• Math and logic operators: add, multiply, <, ==, AND, OR
• Graph operators: add edges, add subgraph, rewire edges
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Example Evolved Random Graph Generator Reproducing Erdös-Rényi

Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047

Betweenness 0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

Reproducing Random Community Graphs
Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055

Betweenness 0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

Actual Graph Low-GP High-
GP

Evolved Random Collaboration Network 
Generator
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Conclusion

• Traditional random graph models do not always 
produce appropriate representations of certain 
concepts

• Accurate random graph model design can be 
automated using genetic programming

• More flexible set of low-level primitive 
operations increases resulting model accuracy

• Increase in a priori evolution time is amortized 
over repeated use of the evolved solutions

Some Final Thoughts

Challenges in Hyper-heuristics

• Hyper-heuristics are very computationally 
expensive (use Asynchronous Parallel GP [26,30])

• What is the best primitive granularity? (see next 
slide; also see [41])

• How to automate decomposition and 
recomposition of primitives?

• How to automate primitive extraction?
• How does hyper-heuristic performance scale for 

increasing primitive space size? (see [25,27])

Primitive Granularity
PrimitivesAlgorithm

Full BBSAs
i.e., EA, SA, SAHC, 
etc.

Selective Hyper-
heuristics

Our Hyper-heuristic

Turing Complete 
Set of Primitives

Generative Hyper-
heuristics

High-level BBSA 
operations
i.e., Truncation 
Selection, Bit-Flip 
Mutation, etc.

Low-level BBSA 
operations
i.e., If Converged 
Statements, For loops, 
etc.

Genetic Programming
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End of File 

• Thank you for listening !!!
• We are glad to take any 

– comments (+,-)
– suggestions/criticisms
Please email us any missing references!
John Woodward (https://www.eecs.qmul.ac.uk/~jwoodward/)
Daniel Tauritz (https://bonsai.auburn.edu/dtauritz/)
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