Theoretical Foundations of Evolutionary Computation for Beginners and Veterans

• Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from <u>Permissions@acm.org</u>.

GECCO '21 Companion, July 10–14, 2021, Lille, France © 2021 Association for Computing Machinery. ACM ISBN 978-1-4503-8351-6/21/07 \$15.00 https://doi.org/10.1145/3449726.3461407

<section-header><section-header><section-header><text><text><text><text>

NO FREE LUNCH

All search algorithms are equivalent when compared over all possible discrete functions.

Wolpert, Macready (1995) No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995) Fundamental Limitations on Search Algorithms: Springer Verlag LNCS 1000.

VARIATIONS ON NO FREE LUNCH Consider any algorithm A_i applied to function f_j . On (A_i, f_j) outputs the order in which A_i visits the elements in the codomain of f_j . For every pair of algorithms A_k and A_i and for any function f_j , there exist a function f_l such that $On(A_i, f_j) \equiv On(A_k, f_l)$ Consider a "BestFirst" local search with restarts. Consider a "WorstFirst" local search with restarts. For every j there exists an l such that $On(BestFirst, f_j) \equiv On(WorstFirst, f_l)$

	f(x _i)	=		Уj	
A1:	123		F1:	АВС	
A2:	1 3 2		F2:	АСВ	
A3:	2 1 3		F3:	ВАС	
A4:	2 3 1		F4:	ВСА	
A5:	3 1 2		F5 :	САВ	
A6:	321		F6 :	СВА	8

If algorithm A1 is better than A2 on $f_{\rm i}$

then A2 is better than A1 on $(P(f_{\rm i})$ – $f_{\rm i})$

	BINARY GRAV 000 0 011 1 011 3 010 4 100 4 111 6 101 100	
	Gray Matrix Degray Matrix	
3-bits	0 1 0 1 1 0 0 1 0 1 1	
	1 1 0 0 0 1 1 1 1 1	

GRA	y Coi	DES VI	ERSUS	5 BINA	ARY E	NCODI	INGS.		
R1: R2: R3:	000	001 001 001	010 011 010	011 010 011	100 110 101	101 111 100	110 101 111	111 100 110	
R4:	000	001	011	010	111	110	100	101	
R5:	000	001	010	011	100	101	110	111	
Gray A No where	coding Free I e L is t	gs form Lunch r the leng	a Grou result h gth of t	u p with olds ov he bit e	n an or er at m encodin	<i>bit</i> of 2 nost 2L g.	L or les functio	ss. ms,	19

HYPERPLANE SAMPLING:

Approximate Claim:

A GA will achieve near optimal hyperplane sampling to guide search toward globally competitive regions of the search space.

Two Problems:

$$P(H, t + intermediate) = P(H, t) \frac{f(H)}{f}$$

The population average changes every GENERATION. This equation only looks one GENERATION into the future, And ignores secondary interactions over time.

AN INFINITE POPULATION MODEL:

A permutation function, ρ , is defined as follows:

$$\rho_j < s_0, ..., s_{N-1} >^T = < s_{j \oplus 0}, ..., s_{j \oplus (N-1)} >^T$$

A general operator \mathcal{M} can now be defined over s which remaps $s^T M s$ to cover all strings in the search space.

$$\mathcal{M}(s) = \langle (\rho_0 \ s)^T M \rho_0 \ s, ..., (\rho_{N-1} \ s)^T M \rho_{N-1} \ s \rangle^T$$

AN INFINITE POPULATION MODEL:

SO WHAT?

WE LEARNED ABOUT THE DYNAMICS OF GENETIC ALGORITHMS. WE LEARNED THAT IS THE GA HAS IT OWN MODES OF FAILURE. DYNAMICS ARE MORE COMPLEX THAN "HYPERPLANE SAMPLING." BUT WE ALSO LEARNED SOME AMAZING THINGS TOO.

THE WALSH/DISCRETE FOURIER POLYNOMIAL
$\vec{w} = \frac{1}{2^L} \vec{J}^T M$
$ \begin{bmatrix} 4.5\\ -0.50\\ 0.25\\ 1.25\\ 0.00\\ 1.25\\ -1.25\\ 1.25\\ -1.25\\ 1.25\\ -1.25\\ \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 5\\ 7\\ 2\\ 4\\ 6\\ 1\\ 3\\ 8 \end{bmatrix}^T \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -$
The decomposition pattern M M M of the Walsh Matrix. M -M

THE WALSH/DISCRETE FOURIER POLY	NOMIAL
$\vec{w} = \frac{1}{2^L} \vec{J}^T M$	
$\begin{bmatrix} 4.5\\ -0.50\\ 0.25\\ 1.25\\ 0.00\\ -0.50\\ 0.25\\ -1.25\\ -1.25\\ -1.25\\ -1.25\\ \end{bmatrix} = \begin{bmatrix} 5\\ 7\\ 2\\ 4\\ 6\\ 1\\ 3\\ 8\\ \end{bmatrix}^T \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1 & -1 & -$	1 1 1 1 1 1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 M M M -M
AND, YES THERE IS A FAST DISCRETE FOURIER TRANSFORM with O(n log n) cor	nplexity.

ILE M	LATO			FOURI		NOMIAI
LE M	ALS	n/Disc	KEIE .	FOURI	ER FOLI	NOMIAL
x	w_i	$W(f_1)$	$W(f_2)$	$W(f_3)$	W(f(x))	
0000	w_0	0.875	0.875	0.875	2.625	
0001	w_1	-0.125	0	0.125	0	
0010	w_2	-0.125	-0.125	0.125	-0.125	
0011	w_3	-0.125	0	-0.125	-0.250	
0100	w_4	0.125	0.125	0	0.250	$f_{1} = (\neg \pi_{1} \setminus (\pi_{2} \setminus (\pi_{2})))$
0101	w_5	0.125	0	0	0.125	$J_1 = (\ x_2 \lor x_1 \lor x_0)$
0110	w_6	0.125	0.125	0	0.250	$f_2 = (x_3 \vee \neg x_2 \vee x_1)$
0111	w_7	0.125	0	0	0.125	
1000	w_8	0	-0.125	-0.125	-0.250	$f_3 = (x_3 \vee \neg x_1 \vee \neg x_0)$
1001	w_9	0	0	0.125	0.125	
1010	w_{10}	0	-0.125	0.125	0	
1011	w_{11}	0	0	-0.125	-0.125	
1100	w_{12}	0	0.125	0	0.125	
1101	w_{13}	0	0	0	0	
1110	w_{14}	0	0.125	0	0.125	
1111	w_{15}	0	0	0	0	

Constant Time Improving Moves

Assume we flip bit p to move from x to $y_p \in N(x).$ Construct a vector Score such that

$$\begin{aligned} Score(x, y_p) &= f(y_p) - f(x) \\ Score(x, y_p) &= -2 \left\{ \sum_{\forall b, \ p \subset b} -1^{b^T x} w_b(x) \right\} \end{aligned}$$

All Walsh coefficients whose signs will be changed by flipping bit p are collected into a single number $Score(x, y_p)$.

See Hoos and Stützle, Stochastic Local Search, 2005

A MAX-3SAT INSTANCE	
-19-8	
-198	
1-98	
-1 -9 -8	
-5 -4 -6	
-546	
-55-6	
5 - 4 6	
$2\ 1\ 7$	
2 -1 7	
-2 -1 7	
-2 -1 7	
368	
36-8	
3 -6 8	73
-36-8	_

A MAX-3SAT	INSTA	NCE	
-19-8	т		
-198	F		
1 -9 8	Т		
-1 -9 -8	Т		
-5 -4 -6	Т		
-546	Т		
-55-6	Т		
5 -4 6	Т		
$2\ 1\ 7$	Т		
2 - 17	Т		
-2 -1 7	Т		
-2 -1 7	Т		
368	Т		
36-8	Т		
3 -6 8	\mathbf{F}		14
-36-8	Т		

		NOD	
A MAX-3SAT	INSTA	NCE	
$\begin{array}{c} -1 \ 9 \ -8 \\ -1 \ 9 \ 8 \\ 1 \ -9 \ 8 \\ -1 \ -9 \ -8 \\ -5 \ -4 \ -6 \\ -5 \ 4 \ 6 \\ -5 \ 5 \ -6 \\ 5 \ -4 \ 6 \\ 2 \ 1 \ 7 \\ 2 \ -1 \ 7 \\ 2 \ -1 \ 7 \\ -2 \ -1 \ 7 \\ -2 \ -1 \ 7 \\ 3 \ 6 \ 8 \\ 3 \ 6 \ -8 \end{array}$	Τ F Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	Randomly flipping bits would be really silly.	
3 -6 8 -3 6 -8	F T		75

A MAX-3SAT	INSTA	NCE	
$\begin{array}{c} -1 \ 9 \ -8 \\ -1 \ 9 \ 8 \\ 1 \ -9 \ 8 \\ -1 \ -9 \ 8 \\ -5 \ -4 \ -6 \\ -5 \ 4 \ -6 \\ -5 \ 5 \ -6 \\ 5 \ -4 \ 6 \\ 2 \ 1 \ 7 \\ 2 \ -1 \ 7 \\ -2 \ -1 \ 7 \\ -2 \ -1 \ 7 \\ 3 \ 6 \ 8 \\ 3 \ 6 \ -8 \\ 3 \ -6 \ 8 \\ -3 \ 6 \ -8 \end{array}$	Τ F T T T T T T T T T T T T T T T T T T 	Randomly flipping bits would be really silly. Enumerative Local Search would be really silly.	76

A MAX-3SAT INSTANCE	A MAX-3SAT INSTANCE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 9 -8 -1 9 8 1 -9 8 -1 -9 -8 78

A MAX-3SAT INSTANCE	
-19-8 -198 1-98 -1-9-8	
x1 IFF x9 and \sim x8	
Construct the Truth Table and the DNF form	
Convert to CNF using DeMorgan's Rule:	
-19-8 -198 1-98 -1-9-8	79

IN MODERN COMBINATORIAL OPTIMIZATION, UNIFORM RANDOM MUTATION MAKES NO SENSE

IF WE WANT TO SOLVE REAL WORLD PROBLEMS UNIFORM RANDOM MUTATION MAKES NO SENSE

> IN MODERN BIOLOGY UNIFORM RANDOM MUTATION MAKES NO SENSE

${\bf CTAGTCGATTCGTAATCATCCGACGTACGTACTGAGTT}$

Neighbor-Dependent Mutation: "a cytosine followed by a guanine is about 10 times more mutable than a cytosine in any other dinucleotide."

CpG mutations account for 1/3 of genetic based diseases in humans.

Single Nucleotide Polymorphism is associated with "mutation hotspots" and the most common type of genetic variation.

Васк то И	K BOUNDEI	D FUNCTION	18	
a: 1 -0 6 b: 2 -1 6 c: -1 2 4 d: -4 1 14 e: -5 4 2	l: -6 10 13 m: 8 -3 6 n: 7 -12 -15 o: 9 11 14 p: -10 -2 17	q: -11 16 17 r: 12 -10 17 s: -13 -12 15 t: 14 -4 16 u: -9 14 16	v: -15 -7 -13 w: 16 -9 -11 x: 17 -5 -16 y: -3 -7 13 z: 0 6 -14	
				86

a: 1 -0 6 b: 2 -1 6	l: -6 10 13 m: 8 -3 6	q: -11 16 17 r: 12 -10 17	v: -15 -7 -13
c: -1 2 4	n: 7 -12 -15	s: -13 -12 15	x: 17 -5 -16
d: -4 1 14	o: 9 11 14	t: 14 -4 16	y: -3 -7 13
9: -5 4 2	p: -10 -2 17	u: -9 14 16	z: 0 6 -14
We co	ould consider a	MAX-3SAT pro	blem

WHAT ABO	ut Recom	IBINATION?		
$\begin{array}{c} f_a(1,0,6) \\ f_b(2,1,6) \\ f_c(1,2,4) \\ f_d(4,1,14) \\ f_e(5,4,2) \end{array}$	$\begin{array}{l} f_{l}(6,10,13) \\ f_{m}(8,3,6) \\ f_{n}(7,12,15) \\ f_{o}(9,11,14) \\ f_{p}(10,2,17) \end{array}$	$\begin{array}{l} f_q(11,16,17) \\ f_r(12,10,17) \\ f_s(13,12,15) \\ f_t(14,4,16) \\ f_u(9,14,16) \end{array}$	$\begin{array}{l} f_v(15,7,13) \\ f_w(16,9,11) \\ f_x(17,5,16) \\ f_y(3,7,13) \\ f_z(0,6,14) \end{array}$	
We could The	consider an N variables inf	K-Landspace or t	MK Landscape he same.	88

TRANSFORMS

• Assume our function is written in Multilinear Form (helpful, but not necessary)

$$f(x_1, ..., x_n) = \sum_{S \subseteq \mathbf{V}} c_S \prod_{j \in S} x_j$$

Where

 $\begin{array}{l} x_i \text{ is a Boolean Variable, } c_S \text{ is a weight (constant)} \\ S \text{ is a single variable} \\ \text{ or a subset of variables with nonlinear interactions} \\ \text{And } j \text{ indexes a variable in } S. \end{array}$

QUADRATIC PSEUDO BOOLEAN FUNCTIONS IN QUANTUM COMPUTING

Nike Dattani, ArXiv, September 2019

"Quadratization in Discrete Optimization and Quantum Mechanics"

Lists 40 new transforms, many published in the last 5 years.

Dattani et al. hold the record for quantum factoring of Semi Prime Numbers used in Encryption.

OR MORE $f_a(1,0,6)$ $f_b(2,1,6)$	$\begin{array}{c} \text{MOVES } A \\ f_{l}(6,10,13) \\ f_{m}(8,3,6) \\ f_{m}(8,3,6) \end{array}$	$\begin{array}{c} \text{HEAD?} \\ f_{q}(11,16,17) \\ f_{r}(12,10,17) \\ f_{r}(12,10,17) \end{array}$	$f_v(15,7,13)$ $f_w(16,9,11)$	
$\begin{array}{l} f_{c}(1,2,4) \\ f_{d}(4,1,14) \\ f_{e}(5,4,2) \end{array}$	$\begin{array}{l} f_n(7,12,15) \\ f_o(9,11,14) \\ f_p(10,2,17) \end{array}$	$\begin{array}{l} f_{\rm s}(13,12,15) \\ f_{\rm t}(14,4,16) \\ f_{\rm u}(9,14,16) \end{array}$	$\begin{array}{l} f_{\rm x}(17,5,16) \\ f_{\rm y}(3,7,13) \\ f_{\rm z}(0,6,14) \end{array}$	

R MO	RE M	OVES	AHEA	D?				
f (1 0 6	3) f.(3 10 13)	f (11	16 17)	f (15	7 1 2)		
$f_a(1,0,0)$	$f_{\rm m}$	(836)	$f_q(11)$	10,17	$f_{w}(10)$	9 1 1)		
$f_{c}(1.2.4)$	f_{n}	(0,0,0) (7.12.15)	$f_{*}(13)$	(.12.15)	$f_{*}(17)$	5.16		
f.(4.1.1	(4) f.(9.11.14)	f.(14	.4.16)	f. (3.7	.13)		
$f_{e}(5,4,2)$	2) f _p (10,2,17)	f _u (9,	14,16)	f _z (0,6	,14)		
0.6	0.14	10	12	14	16	1 14	2.4	
2,5	2,6	2,10	2,17	3.6	3,7	3,8	3,13	
4,5	4,14	4,16	5,16	5,17	6,8	6,10	6,13	
6,14	7,12	7,13	7,15	9,11	9,14	9,16	10,12	
10,13	10,17	11,14	11,16	11, 17	12,13	12,15	12, 17	
13,15	14.16	16,17						

What or mo	ABOU RE M	JT LO OVES	OKIN(AHEA	3 2 D?					
If the the n	numb umber	er of su of pair	ubfunc rs is lir	tions is iear.	s linea	ſ,			
0,6 2,5 4,5 6,14 10,13 13,15	$\begin{array}{c} 0,14\\ 2,6\\ 4,14\\ 7,12\\ 10,17\\ 14,16\end{array}$	1,0 2,10 4,16 7,13 11,14 16,17	1,2 2,17 5,16 7,15 11,16	1,4 3,6 5,17 9,11 11,17	1,6 3,7 6,8 9,14 12,13	1,14 3,8 6,10 9,16 12,15	2,43,136,1310,1212,17	133	

GOOD THEORY MUST ALSO BE GOOD SCIENCE

"Algorithm A1 runs in O(n²) time on Problem P2."

By itself, this is meaningless counting.

It is not a *theory* of anything.

Remember No Free Lunch? (Sharpened and Focused)

We would never accept this in empirical research, so why is is OK in theoretical work?

THE QUASI-LOCAL OPTIMA FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during

Gro	up 1:	v1,	v2,	v4,	v5,	v7,	v9	Parent 1 or Parent 2?
Gro	up 2:	v11,	v13,	v14,	v15,	v17,	v18	Parent 1 or Parent 2?
Gro	up 3:	v20,	v21,	v23,	v26,	v27,	v28	Parent 1 or Parent 2?
Gro	up 4:	v32,	v33,	v34,	v35,	v36,	v39	Parent 1 or Parent 2?
Part	ition C	rosso	ver r	etur	ns th	ne be	st of 2^	4 = 16 solutions. 170

		Sequ	ential				Ense	emble			
Instance	LI	KH	E	AX	LKH-	+EAX	MGA-	+EAX	Full E	nsemble	
	S.R	Time	S.R	Time	S.R	Time	S.R	Time	S.R	Time	
d2103	0/30	236	30/30	18	30/30	19	30/30	13	30/30	13	
u2319	30/30	5	3/30	96	30/30	4	7/30	86	30/30	4	
pr2392	30/30	4	30/30	37	30/30	3	30/30	23	30/30	3	
pcb3038	30/30	47	30/30	110	30/30	46	30/30	57	30/30	46	
fnl4461	30/30	92	30/30	273	30/30	90	30/30	210	30/30	91	
rl5915	0/30	337	30/30	154	30/30	152	30/30	95	30/30	95	
rl5934	30/30	80	11/30	161	30/30	79	30/30	94	30/30	79	
pla7397	30/30	283	0/30	NA	30/30	283	5/30	241	30/30	241	
rl11849	0/30	2600	30/30	853	30/30	849	30/30	556	30/30	556	
usa13509	0/30	3844	17/30	2078	17/30	2223	17/30	1549	23/30	1549	—
brd14051	0/30	6367	30/30	4093	30/30	3693	30/30	1673	30/30	1673	
d15112	30/30	5477	30/30	5936	30/30	4822	30/30	2646	30/30	2646	
d18512	30/30	7705	30/30	5383	30/30	4716	30/30	3204	30/30	3204	
pla33810	30/30	8334	30/30	5484	30/30	5695	30/30	3034	30/30	3034	
pla85900	30/30	12129	30/30	31318	30/30	12099	30/30	19969	30/30	12099	

