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No FrREE LUNCH

All search algorithms are equivalent when compared
over all possible discrete functions.

Wolpert, Macready (1995)
No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)
Fundamental Limitations on Search Algorithms: Springer Verlag LNCS 1000.

No FrReE LuncH BASICS

Consider f(x;) =y;

An Algorithm is modeled as a permutation
indicating the order in which new points in the

domain, x; are sampled.

Search behavior is also modeled as a permutation,
indicating the order in which values in the co-
domain, y;, are sampled. °
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VARIATIONS ON NO FREE LUNCH

Consider any algorithm A; applied to function f;.

On(A;, f;) outputs the order in which A; visits the elements in the codomain
of f;. For every pair of algorithms A and A; and for any function f;, there
exist a function f; such that

On(A;, f;) = On(Ag, fi)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.
For every j there exists an [ such that

On(BestFirst, f;) = On(WorstFirst, f;)

fx) = Y;

Al: 1 2 3 Fl: A BC
A2: 1 3 2 F2: ACB
A3: 213 F3: BAC
A4: 2 31 F4: B CA
A5: 312 F5: CA B
A6: 3 21 F6: C B A
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Sharpened No Free Lunch
fx)) = Yi

Let P(f}) denote the permutation of function f;

On(A1=123, F1=ABC) = On(A1=312, F4A=BCA)
On(A2=132, F6=CBA) On(A6=321, F5=BAC) General NFL holds

if an only if

- the set of function is closed under permutation (C.U.P.).
On(As, f;) = On(Ax, fi)

Whitley 2000, Functions as Permutations, PPSN.

If any 3 components are known, the fourth is determined! .
Schumacher, Whitley, Vose 2001. No Free Lunch and

° Problem Description Length. GECCO °

Theorem: Given a finite set of M unique codomain values,
NFL holds over a set of M! functions,
where every function has an average description length of

It’s a Zero Sum Game: OM log M).

Sketch of Proof. (Very similar to Sorting complexity).

If algorithm A1 is better than A2 on f; Construct a binary tree with functions located at the leaf nodes.
To uniquely label every function requires log(M!) bits.

Each label has average length O(M log M).

then A2 is better than Al on (P(fl) N f‘) Note: enumeration also has O(M log M) cost:
We have M unique evaluations,

and each evaluation requires log(M) bits.
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THE OBJECTION TO “NO FREE LUNCH”

Functions in the Permutation Closure
are mostly uncompressible if every codomain value is unique.

But if there N distinct evaluations,
where N is the number of variables,
the functions in the Permutation Closure might be compressible.

And we don’t always need a
permutation closure.

MuLrTiPLE LOoCAL OPTIMA:
THE LETHALS PROBLEM (1987).

A

000000 000111 111111

A simple TRUNCATED TWOMAX problem.
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MuLtIiPLE LOCAL OPTIMA:
THE LETHALS PROBLEM (1987).

000000 000111 111111

A simple TWOMAX problem.

My ALGORITHM Al HAS BETTER COMPLEXITY
THAN ALGORITHM A2 ON TRUNCATED TwWOMAX.

A simple TRUNCATED TWOMAX problem.

4

000000 000111 111111

Ha! A2 HAS BETTER COMPLEXITY THAN Al
ON THE PERMUTATION CLOSURE EXCLUDING
TRUNCATED TwoMax!

4/26/21



BEWARE OF COMPLEXITY COMPARISONS

G1 G2 G3
Ux=0 1 1 1 1 1 1 1 1 1
Ux=1 a a 3 3 3 2 2 ]
Ux=2 1 0 2 1 o 3 2 1 0 .
s o 1]o 1 2]o 1 2 3 The Permutation Closure for n=4
S 4 [60198 [24 120 8607216124 includes approximately 208
functions
a 65 (exactly 5005 functions
Ux=0 1 1 1 1 1 1 1 1 1 1 . . .
w1 |1 1 1 1 1|0 0o 0 o o including symmetries),
Ux=2 4 3 2 1 0 5 a4 3 2 1 .
wea o Ti T2 Talo a2 ts s not 29,227,900,000,000 functions
60 13201360196 | 4 | 6 |60 [120/60] 6 as you might mistakenly think.
G6 G7 G8
Ux=0 o [ [ [ [ [ olo o o ) o
Ux=1 4 a4 a4 3 3 3 3 2 2 2 2 2
Ux=2 2 1 ] [l 2 1 0|4 3 2 1 o
Ux=3 0 1 2 0 1 2 3 0 1 2 3 4
15 24 6 80 240 144 16 90 480 540 144 6
G9 G10
Ux=0 0 0 0 0 ] ] ] 0 0 0
Ux=1 1 1 1 1 1 o 0 0 o o
Ux=2 5 4 3 2 1 6 5 4 3 2
Ux=3 [ 1 2 3 4 [ 1 2 3 4
4 4 1

1S
"
8
®
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GRAY CODES VERSUS BINARY ENCODINGS.

R1: 000 001 010 011 100 101 110 111
R2: 000 001 011 010 110 111 101 100
R3: 000 001 010 011 101 100 111 110
R4: 000 001 011 010 111 110 100 101

R5: 000 001 010 011 100 101 110 111

Gray codings form a Group with an orbit of 2L or less.

A No Free Lunch result holds over at most 2L functions,
where L is the length of the bit encoding.
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GRAY CODES VERSUS BINARY ENCODINGS.

BINARY GRAY

NoupswWNKRO

Gray Matrix Degray Matrix
110 111
3-bits 011 011
001 001
11000 11111
) 01100 01111
Sbits 100110 00111
00011 00011
0000O0T1 00O0OT1

1. Sharpened No Free Lunch:
NFL holds if and only if

the set of function is closed under permutation
(C.U.P.).

2. Focused No Free Lunch: An example

No Free Lunch holds over at most 2L functions,
where L is the length of the bit encoding.
The set of 2L functions is NOT C.U.P.

WAIT: Isn’t this a contradiction?
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1. Sharpened No Free Lunch:
requires a permutation closure.

2. Focused No Free Lunch for Bit Representations:
does not require permutation closure.

WAIT: Isn’t this a contradiction?
Proofs have assumptions and conditions.
Sharpened NFL holds FORALL arbitrary search algorithms.

Focused NFL uses group theory to compare the orbits of two
SPECIFIC algorithms.

These are not the same, but if you are not alert,
you can draw extremely misguided conclusions.

FOoCUSED NO FREE LUNCH
FO l F2 l
F1 l F3 l
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FOCUSED NO FREE LUNCH

Can hold over just 2 functions,
And if one is compressible,
Both are compressible..

Theory can tell you what it true.
But Theory can also blind you to what is true.
Beware of: Assumptions
Existential proofs
and Universal proofs.

For example: “The Halting Problem”

Many “Complexity Results” are Existential. °

4/26/21



No FrReEE LUNCH 1s BLACK Box

Output

Input Black Box

Break the Black Box, Break No Free Lunch.

(This is almost always true.) e

THE SCHEMA THEOREM
Selection Only: P(H,t + intermediate) = P(H,t) %
An Exact Calculation:
P(H,t+1) = (1—pc)P(H, t)% +pe | P(H, t)%(l — losses) + gains

P(H,t+1) = P(H,t)w(l — pe losses) + pegains

f
A Common Version of the “Schema Theorem””:

PUH,+1) 2 P, 292 1= po 3801 - PO ) 242)] (1 = p)( ()
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0% and 1%

GENETIC
ALGORITHMS
R AND
, HYPERPLANE
' _ - SAMPLING
‘ . L[] | | JoHN HOLLAND

CHARACTERIZED
0*11 and 0°10 THE GA AS A
NEAR PERFECT
GLOBAL SAMPLING

" / METHOD. @
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HYPERPLANE SAMPLING:

Approximate Claim:

A GA will achieve near optimal hyperplane sampling to
guide search toward globally competitive regions of the search space.

Two Problems:

P(H,t + intermediate) = P(H, f)ﬁfy—)

The population average changes every GENERATION.
This equation only looks one GENERATION into the future,
And ignores secondary interactions over time. °

4/26/21



HYPERPLANE SAMPLING:

Approximate Claim:

A GA will achieve near optimal hyperplane sampling to
guide search toward globally competitive regions of the search space.

Two Problems:

0*11 and 0*10

Small populations do not
sample small hyperplanes.
w This inherently yields a
course grain sample, that
is changing over time.

0000
1000
0100
1100
0010
1010
otto
o
o000t
1001

AN INFINITE POPULATION GA MODEL (WHITLEY 1990):

An Executable Model
P(Z,t+1)= P(Z.!)%fz)(l — {P. losses}) + { P, gains.}
losses = pmf(lfll) P(111,t) + pmf(lfpl)l’(l()l.f)
+pn MP( 110,t) + 1#,2M1’(1)1 1,t).
f f
gains = 1;“,@1’(0()14 I)MP(M)O. t)
o1 f(“f,m) P(010, r)@l)(mu.f)ﬂ;,, @P(()l 1, r)f(lffm) P(100, 1)
£(001) f(110) £(001) £(010)

+1),2TP(()()1J) 7 P(110,t)+pr2 7 P(001,1) 7 P(010,t)
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HYPERPLANE SAMPLING:

Again, you need to be careful with THEORY.

Theoreticans are human like the rest of us,
And are just as prone to “hyping results” as anyone else.

What are the ASSUMPTIONS?
Are the results Universal or Existential?

Are the results being “stretched” beyond the proof.

0'11and 010

AN INFINITE POPULATION GA MODEL:

An Executable Model

. f(2) ) This model can be
P(Z,t+1)=P(Z,t 1 — {P. losses}) + {P. gains.
)= PZOTF (1= (P losses]) + {F geins.} executed to track
the GA behavior on
losses = ,1,”/“/“)1*(111.1) +pro Lt lfm)l’(lul.l) strings up to about
o o 10 to 20 bits.
'H)n/(i ) p(110,1) + pr L 01:0) 7 ) pon, ).
gains = ,;,.‘f(“m)1’([101.1)/“““) P(100,) .
! 4 We can easily
+pn ‘Ll}m)l’(Ul().I)fi(];m)l’(lm.l) ;p,.m}' ”1'(011.1)Lt"”ruon_n add mutation.
+,u,yf—“;”) /’(lKll.l)Ll/m) l’(ll(LI)+17:.:f(‘jE]”I‘((Nll.l)j(”/m) P(010,t)
Compute the probability of generating the string of all ZEROs, 0O °

Use XOR to remap the equation to every string in the search space.

4/26/21



AN INFINITE POPULATION MODEL:

Vose/Liepins: Crossover and Mutation Probabilities can be
expressed as a matrix.

1 —losses

SAME COMPUTATION

. Compute the probability
gains of generating
the string of all ZEROs, 0L

S3SSO[ — |

AN INFINITE POPULATION MODEL:

A permutation function, p, is defined as follows:

T T
Pi< 805y SN—1 > =< SjB0s -y SjB(N-1) >

A general operator M can now be defined over s which remaps s” Ms to
cover all strings in the search space.

T
M(s) =< (pos)TMpg 8,y (pn—-18) Mpn_1 5 >
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AN INFINITE POPULATION MODEL:

An Exact Calculation:

P(i,t+1) = P(i, t)%,l)(l — pe losses) + pegains
The Vose/Liepins Model:
si = P(Si,t) f(S:)/f

1)
7

P = (pi 5)" M (p; s) = P(i,t) (1 — pc losses) + pegains

Mutation and Crossover are in matrix M.

AN INFINITE POPULATION MODEL:

SO WHAT?

WE LEARNED ABOUT THE DYNAMICS OF GENETIC ALGORITHMS.
WE LEARNED THAT IS THE GA HAS IT OWN MODES OF FAILURE.

DYNAMICS ARE MORE COMPLEX THAN “HYPERPLANE SAMPLING.

BUT WE ALSO LEARNED SOME AMAZING THINGS TOO.

»
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AN INFINITE POPULATION GA MODEL:
An Executable Model

P(Z,t+1) = P(Z, t)@(l — {P. losses}) + {P, gains.}

losses = pjo

f(lf”)P(m t)+pmf(l/01)P(101 )

f(110)

o T p110, 1) 4y 1010 (0}1 )

P(011,1).

gains = i OMP(OOI t)MP(lOU 0

i (o/w) P(o10, :)f (190) 10, 14y, L)

+pi2 f(Ulﬂl)P(001 t)f(lm)

f(011) £(100)

POIL)=
)f(010)

P(100,1)

I (001)

P(110,t)+pra === P(001,t, P(010.t)

The Physic community, about 1993:
This equation is potentially (probably) chaotic

THE GENETIC ALGORITHM FRACTAL:

The blue triangle is the feasible population space.
The colors represent convergence speed.
The colors are inverted inside the feasible population space.
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The genetic algorithm fractal
J Juliany, MD Vose - Evolutionary Computation, 1994 - MIT Press

THE GENETIC ALGORITHM FRACTAL:

4/26/21
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THE GENETIC ALGORITHM FRACTAL:

"'-n,‘r ’_-_-__ﬂ"—c The dynamics appear to show
- that Evolutionary Algorithms
— can be influenced by attractors
Yy | that are OUTSIDE the
feasible population

representation space.

Note how the pattern outside
the feasible population
extends through the feasible

population.

LIMITATIONS OF THE
INFINITE POPULATION MODEL:

Another risk with theory:

Looking where you have a
mathematical flashlight.

Perhaps sometimes OK.

But Be Aware,
and Beware.

Uses fitness proportional selection, °
Because it is easy to model mathematically.
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LIMITATIONS OF THE
INFINITE POPULATION MODEL:

An Exact Calculation:

1@

P(i,t+1) = P(i, t)7(1 — pe losses) + pegains

The Vose/Liepins Model:
st = P(Si,t)f(S:)/f

pf“ = (pi s)TM(p; s) = P(i, t)%(l — pe losses) + pegains

Uses fitness proportional selection, @

Because it is easy to model mathematically.

ELEMENTARY LANDSCAPES:

A “Wave Equation” holds for
certain problem classes and operators:

Traveling Salesman Problem
Graph Coloring, Number Partitioning, ...
MAXSAT, NK-Landscapes, ...

all k-bounded pseudo-Boolean functions (thanks, Andrew Sutton).

o Lov Grover (1992) and Peter Stadler (1996) a

4/26/21
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THE WAVE EQUATION
FOR NEIGHBORHOODS

Average value

1
e {fw)} =g ygv;r) f@)
—ﬂm+§(§jf@—ﬂm)
yeN(z)

= f(2) + gAf(@)

= f(@)+ 5 (7~ 1(@)

Example: TSP under 2-opt

f(x) f(y) = f(z) — out +in

Y wi - f(z)

o Components: set of edge weights w; ;

o f(z) = sum of edge weights induced by tour
o There are n(n — 1)/2 — n weights not in tour x
o Average value of components out: %f(z)

o Average value of components in: ;255 (S w — f(x))
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THE WAVE EQUATION:
A SIMPLER EXPLANATION.

fz) = Z a subset of “components”
Starting from average...

y YEN (z)

avg {f(y)} = f(z) + avg {components in — components out}
EN(z)

FOR THE
TRAVELING SALESMAN PROBLEM

2 2
a8 (f0)) = 1@+ g (Y w - 1@) - 27@)

2 = 2
=f(z)+m ((n=1)/2f = f(z)) - Ef(ﬁ)

(n—-1) -
=f(z)+ m(f— f(x))

= @)+ 57~ f@)

4/26/21
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K-BOUNDED PSEUDO-BOOLEAN
FuNcCTIONS

m

f(x) = Z fi(x, mask)

i=1

1010111001100101010010111001

K-BOUNDED PSEUDO-BOOLEAN
FuNcTIioNS

m

f(x) = Z f; (x, mask)

1010111001100101010010111001

600

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

MAXSAT

NK Landscapes

Spin Glass Problems
Bit Representations

that are not K_bounded
can be transformed into K bounded functions.

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

m

f(x) = Z f; (x, mask)

i=1

101011100110010101001011100°1

Why is this important?

4/26/21
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K-BOUNDED PSEUDO-BOOLEAN
FuNcCTIONS

m
f(x) = Z fi (X, maski)

i=1

1010111001100101010010111001
flip

The location of Improving Moves can be computed on average in
constant time. Special versions of this are known from 1992.
A general proof is given by: Whitley et al. 2013 AAAIL

THE MULTILINEAR FORM

wo = f(000)

w; = f(001) - wy

Wa = f(OlO) - Wo

ws = f(011) - wo - Wy - Wp
wy = f(100) - wo

w; = f(101) - wo - Wy - W
we = f(110) - wo - Wy - We

f(x) = wo + WiX1 + WoXo + WyXg TW3X Xg +W5X1Xy + WeXaXy

601

CONSTRUCTING THE MULTILINEAR FORM.

£(000) = wo
£(001) = wo + wy
F(010) = wg + 1w
f(011) = wo + w1 + w2 + w3
£(100) = wp + wy There is only one

unknown at very step.

f(101) = wo + wy +wy +ws
£(110) = wo + wy + w2 + we
f(111) = wo + w1 + w2 + wy + w5 + we + wr

f(z3,22,21) =wo + w11 + Wazs + W3T 122

+ w43 + W5T3T1 + WeT3T2 + W7T3T2T

THE MULTILINEAR FORM

wo = £(000)
w; = £(001) - w,
Wo = f(OlO) - Wo
w3 =1(011) - wo - W; - Wy
Wy = f(lOO) - Wo
W5 = f(lOl) - Wp - Wy -Wp
Wg = f(llO) - Wp - Wy - Wy

f(x) = wo + Wix; + WaXe + WaXy +W3X1Xe +W5X1Xy + WeXoXy

The multilinear form can also tell us about
Nonlinear “LINKAGE” between bits in O(n?) time.

4/26/21
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How 10 SOLVE ONEMAX IN O(N) TIME BY SAMPLING

£(0000) = 0,wp =0
f(0001) =1,wy =1

Construct the linear terms
f(0010) = 1,we =1 of the multilinear form.
£(0100) = 1,wq =1
£(1000) = 1,wg =1

Test the hypothesis that the function is linear.

(g, 3,22, 21) = wo + w11 + waTs + wyrs + Weky

THE WALSH/DISCRETE FOURIER POLYNOMIAL

15 1o 1 1 1 1

1
-1 1 -1 1 -1 1 -1
1

5 1 1
—0.50 7 1 1 -1 1 -1
0.25 2 11 -1 -1 -1 -1 11 -1 -1
125 | 1|4 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
000 | 8|6 1111 -1 -1 -1 -1
~0.50 1 1 -1 1 -1 -1 1 -1 1
1.25 3 11 -1 -1 -1 -1 1 1
-1.25 8 1 -1 -1 1 -1 1 1 -1

The decomposition pattern M
of the Walsh Matrix. M

=

602

THE WALSH/DISCRETE FOURIER POLYNOMIAL

1 -

W=7 M

. - - oaTp
4.5 5 1 1 1 1 1 1 1 1
—0.50 7 1 -1 1 -1 1 -1 1 -1
0.25 2 1 1 -1 -1 1 1 -1 -1
125 [ 1 4 1 -1 -1 1 1 -1 -1 1
0.00 ) 6 1 1 1 1 -1 -1 -1 -1
—0.50 1 1 -1 I -1 -1 -1 1
1.25 3 1 1 -1 -1 -1 -1 1 1
L —1.25 L 8 1 -1 -1 1 -1 1 1 -1

THE WALSH/DISCRETE FOURIER POLYNOMIAL

-
= M

4.5 1 1 1

1
-1 1 -1 1 -1 1 -1
1

—0.50 -1 1

1

1
0.25 2 1 1 -1 -1 1 -1 -1 1 -1
1.25 _1 4 1 -1 -1 1 1 -1 -1 1 -1 -1
000 | 8|6 1 1 1 1 -1 -1 -1 -1
—0.50 1 1 -1 1 -1 -1 1 -1 1
1.25 3 1 1 -1 -1 -1 -1 1 1 M M
-1.25 8 1 -1 -1 1 -1 1 1 =1 M-M

AND, YES THERE IS A FAST DISCRETE
FOURIER TRANSFORM with O(n log n) complexity.

1
-1
-1

1

4/26/21
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THE WALSH/DISCRETE FOURIER POLYNOMIAL

z wi | W(fi) W(f2) W(fs) | W(f(z))
0000 | wo 0.875 0.875 0.875 2.625
0001 | wy —0.125 0 0.125 0
0010 | wa —0.125 —0.125 0.125 —0.125
0011 | w3 | —0.125 0 -0.125 —0.250
0100 | wy 0.125 0.125 0 0.250
0101 | ws 0.125 0 0 0.125
0110 | we 0.125 0.125 0 0.250
0111 | wr 0.125 0 0 0.125
1000 | wsg 0 -0.125 -0.125 —0.250
1001 | we 0 0 0.125 0.125
1010 | wio 0 -0.125 0.125 0
1011 | w11 0 0 —0.125 —0.125
1100 | wy2 0 0.125 0 0.125
1101 | wiz 0 0 0 0
1110 | wia 0 0.125 0 0.125
1111 | wys 0 0 0 0

fl = (_\.'1‘2 \ €T \% .’I?ﬂ)
f2 = (.I'_’; \ i) \Y% .’I,'])
f3 = (23 V w1V xp)

THE WALSH/DISCRETE FOURIER POLYNOMIAL

ah)i = {

i = {

Functions «v and /3 are defined on a schema, h:

0 if h[l] = *
1 if hfi)=0 or 1

0 if hli
1 if Afi

603

THE WALSH/DISCRETE FOURIER POLYNOMIAL

THEOREM:

For a k-bounded function,
if there are O(n) subfunctions (m=0(n)),
The Walsh polynomial is O(n) in size.

PROOF: by construction there are at most 2km coefficients

THE WALSH/DISCRETE FOURIER POLYNOMIAL

1) = G S 1@ = 3w, (30)

z€h jCa(h)

a(h) is a mask used to select 2°(") relevant coefficients.
3(h) extracts the 1 bits from the respective coefficients.
An odd number of 1 bits yields a negative sign.

Example: Let h = »%01* and compute f(h)

a(*%01%%) = 001100 and B(**01x%) = 000100

j € {000000, 000100, 001000, 001100}

S(+%01%%) = wp — wy + wg — wya.

4/26/21
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WE cAN cOMPUTE ONE HYPERPLANE AVERAGE IN
O(N) TIME FOR K-BOUNDED PROBLEMS.

For K-bounded problems,

we can exactly compute

the hyperplane averages that Holland
was trying to estimate!

This can yield the global optimum, BUT ONLY

IF there is no deception, or only low order deception.

THE ONLY CHALLENGING
K-bounded Problems Are DECEPTIVE.

(SAT Solvers have used this trick for decades!)

K-BOUNDED PSEUDO-BOOLEAN
FuNcTIioNS

m

f(x) = Z f; (x, mask)

1010111001100101010010111001

Each f; with k=3 has only 4 nonlinear coefficients

604

Gray Box Optimization:

From the Fourier/Walsh Polynomial we can compute the location of
improving moves on average in O(1) time

m

W(f(x) =Y W(fix))
i=1

The Walsh
Polynomial

Is zero L Ll

centered. [ 1 ||| ] | !

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

m

f(x) = Z f; (x, mask)

i=1

101011100110010101001011100°1

f(zs, e, 21) =wo + w11 + Wakg + W3T122

+ wax3 + WsT3T1 + WeT3T2 + WrL3T2X

4/26/21
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Gray Box Optimization:

f(@) = Ypwy + Yrwa + Vyws + Ypwy + Ypws + Yawe + Yrwr + Ppws
+ Yawr 2 + Ypwa 3 + Vpws 4 + Powia + Pews s + Yrws e
+ hawe 7 + Yaws 7 + Yewr g + Yows 4

+ aws 6,7 + Yawar s

(WARNING: I shortened the notation for compactness.)

CONSTANT TIME
IMPROVING MOVES

IMPROVING_MOVE_LIST: ys, y5

Score(yp,y1) = Score(z,y;)

Score(yp,y2) = Score(z,ys)

Score(y,,ys) = Score(z,ys) —2( Z wy(z))
Vb, (pA3)Chb

Score(y,,ys) = Score(z,ys

Score(y,,ys) = Score(z,ys

= Score(z,yr

( ) )

( ) )
Score(y,,ye) = Score(x,ys)

( ) )

( ) )—

= Score(z,ys) — 2( z wy())

Vb, (pA8)CH
Score(y,,y9) = Score(z,yg)

IMPROVING_MOVE_LIST: ys, y5

605

CONSTANT TIME
IMPROVING MOVES

Assume we flip bit p to move from z to y, € N(z). Construct a vector
Score such that

Score(z,yp) = f(yp) — f()

Score(z,y,) = —2 Z —1"Trwb(z)
b, pCb

All Walsh coefficients whose signs will be changed by flipping bit p are
collected into a single number Score(z,yp).

See Hoos and Stiitzle, Stochastic Local Search, 2005 e

CONSTANT TIME
IMPROVING MOVES

OTHER THEORETICAL RESULTS:

No difference in runtime cost
For BEST-FIRST, and NEXT-FIRST.

You can flip 2 or 3 or 10 bits at once, still in O(1) time.
(We will come back to this.)

4/26/21
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A MAX-3SAT INSTANCE

-19-8
-198
1-98
-1-9-8
-5-4-6
546
-55-6
5-46
217
2-17
2-17
2-17
368
36-8
3-68
-36-8

A MAX-3SAT INSTANCE

19-8
198
198
1-9-8
5-4-6
546
55-6
5-46
217
2-17
217
217
368
36-8
3-68
-36-8

Randomly flipping bits
would be really silly.

L
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A MAX-3SAT INSTANCE

-19-8
-198
1-98
-1-9-8
-5-4-6
546
-55-6
5-46
217
2-17
2-17
2-17
368
36-8
3-68
-36-8

HEHEEAAEEEEaassaHA

A MAX-3SAT INSTANCE

19-8
198
198
1-9-8
5-4-6
546
55 -6
5-46
217
2

PG EEEE GG

Randomly flipping bits
would be really silly.

Enumerative Local Search
would be really silly.

4/26/21
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A MAX-3SAT INSTANCE

19-8
198 F <<
1-98

1-9-8

5-4-6

546

55-6

5-46

217

217

2.17

2.17

368

36-8

368 F<<  Flip 8to-8?
36-8

A MAX-3SAT INSTANCE

-19-8
-198
1-98
-1-9-8

x1 IFF x9 and ~x8
Construct the Truth Table and the DNF form
Convert to CNF using DeMorgan’s Rule:
-19-8
-198

1-98
-1-9-8

607

A MAX-3SAT INSTANCE

-19-8
-198
1-98
-1-9-8

REAL WORLD
INDUSTRIAL

SAT PROBLEMS

FroM THE SAT COMPETITIONS

Typically have less
than 2N nonlinear terms
over N variables.

4/26/21
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IN MODERN COMBINATORIAL OPTIMIZATION,
UNIFORM RANDOM MUTATION
MAKES NO SENSE

IN MODERN COMBINATORIAL OPTIMIZATION,
UNIFORM RANDOM MUTATION
MAKES NO SENSE

IF WE WANT TO SOLVE REAL WORLD PROBLEMS
UNIFORM RANDOM MUTATION
MAKES NO SENSE

IN MODERN BIOLOGY
UNIFORM RANDOM MUTATION
MAKES NO SENSE

608

IN MODERN COMBINATORIAL OPTIMIZATION,
UNIFORM RANDOM MUTATION
MAKES NO SENSE

IF WE WANT TO SOLVE REAL WORLD PROBLEMS
UNIFORM RANDOM MUTATION
MAKES NO SENSE

How GENES ARE ENCODED
1S IMPORTANT

CTAGTCGATTCGTAATCATCCGACGTACGTACTGAGTT

Neighbor-Dependent Mutation: “a cytosine followed by a
guanine is about 10 times more mutable than a cytosine in any
other dinucleotide.”

CpG mutations account for 1/3
of genetic based diseases in humans.

Single Nucleotide Polymorphism is associated with “mutation
hotspots” and the most common type of genetic variation.

4/26/21
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LiMITING MUTATION IN DNA

There are ultraconserved segments of DNA that have survived
unchanged for 100 million years in vertebrates.

There are highly sophisticated error correction mechanisms.
Gene Duplication and Genetic Redundancy is common.

Most “mutations” have small effects or no effect.

WHAT ABOUT RECOMBINATION?

a:1-06 :-61013 q:-111617 v:-15-7-13
b:2-16 m:8-36 r:12-1017 w:16-9-11
c.-124 n:7-12-15 s:-13-1215 x:17-5-16
d:-4114 0:91114 t: 14 -4 16 y:-3-713
e:-542 p:-10-217 u:-91416 7:06-14

We could consider a MAX-3SAT problem

609

BACK 170 K BOUNDED FUNCTIONS

a:1-06 1:-61013 q-111617 v:-15-7-13
b:2-16 m:8-36 1:12-1017 w:16-9-11
c:-124 n:7-12-15 s:-13-1215 x:17-5-16
d:-4114 0:91114 t:14-416  y:-3-713
e:-542 p:-10-217 w:-91416 z:06-14
WHAT ABOUT RECOMBINATION?
£,(1,0,6)  £i(6,10,13) £,(11,16,17)  £.(15,7,13)
£(2,1,6)  fn(8,3,6) £(12,10,17)  £4(16,9,11)
£(1,2,4)  £.(7,12,15) £(13,12,15) £«(17,5,16)
f14,1,149)  £,9,11,14) f(14,4,16)  £,(3,7,13)
£.(5,4,2) £,(10,2,17) £.(9,14,16)  £,0,6,14)

We could consider an NK-Landspace or MK Landscape

The wvariables interactions are the same.

4/26/21
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The Variable Interaction Graph

THE RECOMBINATION GRAPH:
THE DECOMPOSED VIG.

® ©,

N
B
j@ ©

q,0,u,W,x,t abcde,pz Lm,n,r,s,v,y

When recombining the solutions Sp; = 000000000000000000 and
Spe = 111100011101110110, the vertices and edges associated with
shared variables 4, 5, 6, 10, 14, 17 are deleted to yield the
recombination graph.

Thanks to Renato Tinos

610

The Variable Interaction Graph

LOCAL OPTIMUM  P1: 000000000000000000 e
LOCAL OPTIMUM  P2: 111100011101110110

THE RECOMBINATION GRAPH:
THE DECOMPOSED VIG.

4

q,0,U, W, X, t

a,b,c,d e p,z Lm,n,rs, v,y

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 29 offspring. °

4/26/21
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THE RECOMBINATION GRAPH:
BE GREEDY

.

q,0, U, W, X, t a,b,c,d, e p,z L m,n, s v,y

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 24 offspring. °

THE RECOMBINATION GRAPH:
BE GREEDY

Which is Best?
P1 or P2?

s

q,0,u, W, X, t a,b,c,d e p,z L, m,n, s v,y

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 24 offspring. 0

THE RECOMBINATION GRAPH:

BE GREEDY
Which is Best? @ ©)
Which is Best? P1 or P2?
P1 oi P2? : “9
®),
©
© @

q,0,u, W, X, t a,b,c d, e p,z L,m,n,rs v,y
This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 249 offspring. e

THE RECOMBINATION GRAPH:

BE GREEDY
Which is Best?
P1 or P2?
Which is Best? (D
Which is Best? P1 or P2? ® ®
P1 or P2? ‘
m
@
q,0,U, W, X, t a,b,c,d, e p,z L, m,n,r,s,v,y
Partition Crossover deterministically returns e

the best of 29 offspring.

4/26/21
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Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded
pseudo-Boolean function f, if Parition Crossover is used to recombine
two parent solutions that are locally optimal, then the offspring must be
a local optima in the hyperplane subspace defined by the bits shared in
common by the two parents.

Example: if the parents 0000000000 and 1100011101
are locally optimal, then the best offspring
is locally optimal in the hyperplane subspace **000***0*.

DECOMPOSED EVALUATION
FOR MAXSAT

Crossover
returns the

Best of

21087 otfspring.

All offspring are
Local Optima
in this
subspace.

612

DECOMPOSED EVALUATION
FOR MAXSAT

atco_enc3_opt1_13_48

Air traffic controller shift scheduling problem: 1087 components.
PX returns the best of 21087 offsprings. N = 1.067.657

(Thanks to Wenxiang Chen)

“OPTIMAL RECOMBINATION
BY DYNAMIC PROGRAMMING”

These
subproblems
have a tree
decomposition
with low width.

atco_enc3_opt1_13_48 LABS_n088_goal008

Thanks to
Francisco Chicano.

SAT_instance_N=49 aaal10-ipcS

These subproblems can be solved by Dynamic Programming!

4/26/21
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PArTITION CROSSOVER
DETERMINISTICALLY
“TUNNELS” BETWEEN OPTIMA

recombine P1 and P2

We can remove randomness from Crossover

PART 2: TRANSFORMS

613

PARTITION CROSSOVER AND TSP

TRANSFORMS

0 SAT to MAXSAT

e For decades, SAT problems have been
converted into MAX-kSAT instances.

Modern SAT solvers expect a MAXSAT form.

» TRANSFORMS may also serve as REDUCTIONS
used to prove NP-Completeness.

4/26/21
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TRANSFORMS

o Transforms exist for all Pseudo-Boolean Functions

“All pseudo-Boolean optimization problems can be

reduced to the quadratic case.” Boros and Hammer

(2002):186

This assumes a polynomial evaluation function.

The transformed function is polynomial in size
relative to the original function.

TRANSFORMS CAN BE

Quasi-BLAcK Box (BuT NoT REALLY).

B — Black Box

2o nZ> o3

Black Box

The quadratic function is recovered by sampling in O(n2) time. @

614

TRANSFORMS CAN BE
QUASI-BLACK BOX (IF YOU INSIST).

Black Box

Z2mOom nZ > ma

THE MULTILINEAR FORM

wo = f(000)

w; =f(001) - wy

Wy = f(OlO) - Wo

w3 =1(011) - wo - W; - Wy
Wy = f(lOO) - Wo

W5 = f(lOl) - Wp - Wq - W;
Wg = f(llO) - Wp - Wy - Wy

f(x) = wo + WiX1 + WoXe + WyXy TW3X1Xg TW5X Xy + WeXeXy

4/26/21
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TRANSFORMS

0 Assume our function is
written in Multilinear Form (helpful, but not necessary)

flx1,.o0xy) = Z cs r[xj

ScvV  jes

Where

x; is a Boolean Variable, cgis a weight (constant)

S is a single variable
or a subset of variables with nonlinear interactions

And j indexes a variable in S.

LEADING ONES
AS A MULTILINEAR FORM

0 The n=4 case.

fx1,x2,x3,X4) = X1 + X1X2 + X1X2X3 + X1X2X3X4

o The Walsh Polynomial is EXPONENTIAL in Size!

615

LEaDING ONES
AS A MULTILINEAR FORM

0 The n=4 case.

f(x1,x2,x3,x4) = x1 + X1x2 + X1X2X3 + X1X2X3X4
0 A general example

f(011111111111111111)=0
f(100110011000111111) =1
f(111110000110001111) =5

LEaDING ONES
AS A MULTILINEAR FORM

o The n=4 case.
fx1,x2,x3,X4) = x1 + X1X2 + X1X2X3 + X1X2X3X4

0 In general for maximization.

f(x1,.xpn) = i lLIXj

i=1 j=1
o In general for minimization.
n i

f(xX1y.c0ixn) = n+Z—1 l_lxj

i=1 Jj=1

4/26/21
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THE Basic SUBSTITUTION:
1 VARIABLE REPLACES 2 VARIABLES

x1x2 = z iff x1x2 — 2x1z2 — 2x2z2 + 32 =0
x1x2 # z iff xyx2 — 2x12 — 2x22 + 32 > 0

SUBSTITUTION WITH PENALTY CONSTRAINTS
P(x1xp — 2x1z — 2x2z + 32)

P 1s THE suMm oF | Cs|

LEADING ONES IN GENERAL:

n-2

f(x,z)=n-—x1—2zn-2Xn+ Zfi(li, Zi1, Xi+1)
-1

filzis zic1s Xig1) = =zisXig + P(zic1 X101 - 2212101 - 22141 +324)

THE WALSH POLYNOMIAL IS LINEAR IN SIZE.

616

For LEADING ONES N=4, P=5

f(x1,x2,%3,x4) = 4 — X1 — X1X2 — X1X2X3 — X1X2X3X4

f(x1,x2,x3,x4,21) =4 — X1 — X1X2 — 21X3 — Z1X3X4

+ 5x1x2 — 10x121 — 10x221 + 1527

fx1.x2,Xx3,x4, 21, 22) =4 — X1 — X1X2 — Z1X3 — 22X4
+ 5x1x2 — 10x121 — 10x2z1 + 1521
+ 5z1x3 — 102122 — 10x322 + 1522

LEADING ONES IN GENERAL:
n-2

f(x,z)=n—x1—zn-2xn + Zfi(zi- Zi-1, Xi+1)
i-1

fi(zis zic1, Xis1) = ~zis1Xig + P(zi1 X101~ 2212101 22 X141 +32;)

One can optimize each subfunction z=1, z; =1, x;+; =1 to
obtain the global optimum in O(n) time.

You can use Local Search with Lookahead to solve the
Quadratized Leading Ones in O(n) time.

4/26/21
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LEADING ONES:
THE NEW VARIABLE INTERACTION GRAPH

RESULT:

Quadratic Leading Ones has a bounded tree width and is
solved by Dynamic Programming in O(n) time.

For LEADING ONES
N=4

Every penalized point in f(x,z) is greater that every point in f(x). @

617

LEADING ONES:
THE NEW VARIABLE INTERACTION GRAPH

The same Variable Interaction Graph holds for all
Hidden Permutations versions of Leading Ones.

x(1) is just replaced with x(r(i))

The same Variable Interaction Graph holds for all
Hidden Permutations versions of Leading Ones.

x(i) is just replaced with x(7(i))

GENERAL RESULT

THEOREM 1.. Let f(x) be a multilinear pseudo-Boolean function,
and let f(x, z) be a k-bounded pseudo-Boolean function produced by
replacing variables in f(x) with auxiliary variables in vector z. Index
the variables in z and let 2/ denote the first j variables in z. Ifzjs1
only replaces variables in x and z/ then:

Vx,3z: f(x,2) = f(x)

4/26/21
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4/26/21

A MORE RECENT A MORE RECENT
TRANSFORM: TRANSFORM:

x1 + x1x2 + x1x2x3 + x1x2x3x4 + x1x2x3x4%x5
Transforms to:

x1 + x1x2

x1yl + x2y1 + x3y1 -2y1

x1y2 + x2y2 + x3y2 + x4y2 -3y2 IBRVANAY i AN
x1y3 + x2y3 + x3y3 + x4y3 + xby3 -4y3

This transform can reveal submodular functions: @ This transform can reveal submodular functions: @
Leading Ones and Hidden Permutations are submodular Leading Ones and Hidden Permutations are submodular

TRANSFORMS FOR TRANSFORMS FOR

NEEDLE-IN-A-STACK NEEDLE-IN-A-STACK

Needle(x): return 100 if x = ??7272722722222229222292222222292722927 Needle(x): return 100 if x = 1100010001001110101010011010110

else return 0 else return 0
T /Qj }; © (/;:) }\
R /\ /
amd INININININ

i D ) ) 8 C D CD)
(0]
R @ Using the same Transform, it has the same Variable Interaction @
M Graph as LeadingOnes: it is now trivial to solve.

31
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THERE ARE NO QUADRATIC
NEEDLE-IN-A-STACK PROBLEMS!

Needle(x): return 100 if x =1100010001001110101010011010110
else return 0

We can NEVER hide a needle in a quadratic form, because we can
construct the multilinear form of the quadratic in O(n?) time.

WHAT ABOUT LOOKING 2 OR 3
OR 10 MOVES AHEAD?

With Thanks to Francisco Chicano

619

QUADRATIC
PSEUDO BOOLEAN FUNCTIONS
IN QUANTUM COMPUTING

Nike Dattani, ArXiv, September 2019
“Quadratization in Discrete Optimization and Quantum Mechanics”

Lists 40 new transforms, many published in the last 5 years.

Dattani et al. hold the record for quantum factoring of
Semi Prime Numbers used in Encryption. @

The Variable Interaction Graph

If two variables are not connected in the VIG,
there can be no improving move.

4/26/21
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WHAT ABOUT LOOKING 2
OR MORE MOVES AHEAD?

f(x) = Ypwy + Yrws + Vpws + Ypwy + Yaws + Ypwe + Yrwr + YPpws
+ Yrwi2 + w2 3 + Ypws g + Powr g + Yaws s + Yaws e
+ Ypwe,7 + YrWs 7 + Yrwr 8 + Yrws 4
+ Yews.6,7 + YaWa78

Assume you have taken all single bit flip improving moves.

What happens when you flip bits 5 and 8 at the same time?

WHAT ABOUT LOOKING 2
OR MORE MOVES AHEAD?

£,1,0,6) £(6,10,13) f£,(11,16,17) £(15,7,13)
£(2,1,6)  fn(8,3,6)  £(12,10,17) £.(16,9,11)
£(1,2,4)  £.(7,12,15) £(13,12,15) £(17,5,16)
£4,1,14)  £,9,11,14) £(14,4,16)  £,(3,7,13)
£(5,4,2)  £(10217 £.(9,14,16)  £0,6,14)
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WHAT ABOUT LOOKING 2
OR MORE MOVES AHEAD?

f(x) = Ypwy + Ypw2 + Vpwz + Yrws + Prws + Yews + Ypwr + PYrws
+ Yewr 2 + Yowa 3 + Vw3 g + Pewr 4 + Vows s + Yrws e
+ Yawe,7 + Yaws 7 + "/}.'17“77.5 + "/):1'“)8.4

+ Yews6,7 + Yrwars

Assume you have taken all single bit flip improving moves.
What happens when you flip bits 5 and 8 at the same time?

NOTHING. There are no nonlinear coefficients involving 5 and 8. @

WHAT ABOUT LOOKING 2
OR MORE MOVES AHEAD?

£(1,06) £(6,10,13) £,(11,16,17) £(15,7,13)
£(2,1,6)  £n(8,3,6)  £(12,10,17) £.(16,9,11)
£(1,2,4)  £.(7,12,15) £(13,12,15) £(17,5,16)
£1(4,1,14) £,9,11,14) £(14,4,16)  £,(3,7,13)
£5,4,2)  £(10,217 £.(9,14,16)  £(0,6,14)

0,6 0,14 1,0 1,2 1,4 1,6 1,14 24
2,5 2,6 2,10 2,17 3,6 3,7 3,8 3,13
4,5 4,14 4,16 5,16 517 6,8 6,10 6,13
6,14 7,12 7,13 7,15 9,11 9,14 9,16 10,12
10,13 10,17 11,14 11,16 11,17 12,13 12,15 12,17
13,15 14,16 16,17

4/26/21
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WHAT ABOUT LOOKING 2
OR MORE MOVES AHEAD?

If the number of subfunctions is linear,
the number of pairs is linear.

0,6 0,14 1,0 1,2 1,4 1,6 1,14
2,5 2,6 2,10 2,17 3,6 3,7 3,8
4,5 4,14 4,16 5,16 5,17 6,8 6,10
6,14 7,12 7,13 7,15 9,11 9,14 9,16
10,13 10,17 11,14 11,16 11,17 12,13 12,15
13,15 14,16 16,17

2,4
3,13
6,13
10,12
12,17

THE TROUBLE WITH “RUNTIME”

1. If P # NP, you cannot achieve a polynomial time bound
unless the function is in the class P.

“Searching
under the
Streetlight”

Unrealistic Assumptions
Lead to Meaningless Results,
No matter how complex the Math.

621

For K-bounded Pseudo Boolean Functions:

Random Mutation is Obsolete

We can compute the location of improving moves
in constant time, multiple steps ahead.

For problems like the TSP and Graph Coloring
(and many others)

Random Mutation is useless.

GOOD THEORY
MUST ALSO BE GOOD SCIENCE

“Algorithm A1 runs in O(n?) time on Problem P2.”
By itself, this is meaningless counting.

It is not a theory of anything.

4/26/21
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GOoOD THEORY
MUST ALSO BE GOOD SCIENCE

“Algorithm A1 runs in O(n2) time on Problem P2.”
By itself, this is meaningless counting.

It is not a theory of anything.

Remember No Free Lunch? (Sharpened and Focused)

We would never accept this in empirical research,
so why is is OK in theoretical work?

GIGA: GENE INVARIANT GENETIC ALGORITHM

Joe Culberson, 1992, 2993, 1995

All individuals have an equal chance to reproduce.

There is NO selection in the traditional sense.

Two parents produce 2 offspring, so that no “genes” are lost.
Mating is based on matching individuals with similar fitness.
NO BITS (Alleles) ARE EVER LOST.

It is impossible to lose diversity.

622

GIGA: GENE INVARIANT GENETIC ALGORITHM

Crossover versus Mutation: Fueling the Debate: TGA versus GIGA.
JC Culberson - ICGA, 1993 - webdocs.cs.ualberta.ca

The goal of this paper is to entice researchers in genetic algorithms to consider a paradigm
shift in the design and analysis of GAs. This shift is analogous to a shift from a focus on
evolution as a mechanism that provides incredibly ne-tuned adaptations to particular ...

Y¢ 99 Cited by 30 Related articles All 2 versions 9

Genetic invariance: A new paradigm for genetic algorithm design

J Culberson - 1992 - era.library.ualberta.ca

This paper presents some experimental results and analyses of the gene invariant genetic
algorithm (GIGA). Although a subclass of the class of genetic algorithms, this algorithm and
its variations rep a unique app with many i ing results. The primary ...

Y¢ 99 Citedby44 Related articles All 6 versions 9%

GIGA: GENE INVARIANT GENETIC ALGORITHM

000000000111111111 My Own Simple Twist:

111111111000000000 .
Sample a string,

Sample its complement.

GIGA: DOES NOT USES MUTATION.

4/26/21
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GIGA: GENE INVARIANT GENETIC ALGORITHM

Generation 1

Generation 2

111111111000000000 111111111001111111
000000000111111111 000000000110000000
111100000111110000 111100011000001111
000011111000001111 000011100111110000
010111010100110100 010111010100110011
101000101011001011 101000101011001100

GIGA: GENE INVARIANT GENETIC ALGORITHM

111111111001111111

111100011000001111 SELECTION

010111010100110011  gpeony e Sorings with

000011100111110000 So recombine adjacent
neighbors.

101000101011001100

000000000110000000

623

GIGA: GENE INVARIANT GENETIC ALGORITHM

111111111001111111
111100011000001111

010111010100110011
000011100111110000

101000101011001100
000000000110000000

SELECTION

Better Solutions move UP

Poorer Solutions down DOWN

BACK 10 THE TSP

Partition Crossover

deterministically returns

the best of 29 offspring.

4/26/21
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CREATE Tw0O OFFSPRING:

. o . . . . . .
. ) . . . .
. - . . 1 . .
p . P . I e . F— .
. . . .
. .

.

. . . . .
Graph Unioning the Parents. The AB-Cycles Child 1: the BEST Child 2: the WORST

eval(P1) 4 eval(P2) = eval(Chest) + eval(Cuyorst)

If you keep the best and worst child,
the population average never changes.

THE MIxING GA
(AN UpDATED ForM OF GIGA.)

Generations

]

lpra

P13

pe |pr By

b2 [py [paee [pse

|

P13 [P1a (P15

C aEm O oE mE B

PO | P1 | P12 P15

SHEHE

|P0 IPI |Pl |P! |Pl |P5 [N l?‘r IPB Pm|l'u ||’I2‘l’|3‘1‘|4 ‘ms‘

P9

Population

Thanks to Swetha Varadarajan!
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CREATE Two OrrsPrING: KEEP BOTH

. . . . . . . .
. . . . . .

. . . . .

. . . . . . .
. . . .

. .
. . . . . . . .
The AB-Cycles Child 1: the BEST Child 2: the WORST

Graph Unioning the Parents
eval(P1) + eval(P2) = eval(Chest) + eval(Cuyorst)

If you keep the best and worst child,
the population average never changes.

THERE IS NO SELECTION!

I'H"‘l‘ls"

s P f

o l""“ l"'” l’” ),,n

-

o e

P2 lm" lw" lps" |re" |m" |n“ ||~r' lpw” ‘Pu" ‘P:z" |m" |m" |r|s" ‘

Py | P | p1s

Population

Thanks to Swetha Varadarajan!
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THERE IS NO SELECTION!
EXCEPT MATING SELECTION.

{ e e e s e sy

e e o e e o e o e

.

Thanks to Swetha Varadarajan!

FirsT PoruraTioNn: ATT532

Thanks to Swetha Vardarajan @

EACH ROW IS A TOUR.
EACH COLOR IS A EDGE. and Gabriela Ochoa

625

FirsT PoruraTiON: ATT532

EACH ROW IS A LOCALLY OPTIMAL TOUR.
EACH COLOR IS A EDGE.

FirsT PoruraTiON: ATT532

BLACK edges are NOT part of the global optimum.

4/26/21
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FirsT PoruraTiON: ATT532

= -

O A y
T e Hu.wr.l.-.-

OLOR edges are edges also found in the global optimum.

FIRST POPULATION: SAME DATA, SORTED.

Local Optima are 70% composed of globally optimal edges!!

626

FirsT PoruraTiON: ATT532

':':l“-I- e

- = a1 T

Local Optima are 70% composed of globally optimal edges!!

FirsT PoruraTiON: ATT532

Proportion of Edges in Population - Sorted. Top 64 Individuals

Edge Global Edge Oer

4/26/21
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FirsT PoruraTiON: ATT532

Proportion of Edges in Population - Sorted. Top 64 Individuals

[ —. — .

Edge Glosal Edge Omer

If we select the 532 most frequent edges, about 85% are global.

FIRST POPULATION: LAST POPULATION:

627

FirsT PoruraTiON: ATT532

b= e

FIRST POPULATION: LAST POPULATION:

In this case, the edges in the population NEVER CHANGED.

Good
Tours
Go
18]

Bad
Tours
Go
DOWN
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FIRST GENERATION:

LAST GENERATION:

In this case, the edges in the population NEVER CHANGED.

Good
Tours
Go
UP

Bad
Tours
Go
DOWN

EAX: EDGE ASSEMBLY CROSSOVER.

(a) GEN=10 (b)) GEN=20  (c) GEN = 30
() GEN=50 () GEN=60 () GEN =70
(i) GEN = 90 (j) GEN =100 (k) GEN
(m) GEN =130 (n) GEN = 140 (o) GEN

Convergence of
EAX

(d) GEN = 40

It converges to the

Global Optimum

IF
It does not

(h) GEN = 80 prematurely

converge first.
EAX usually
drives out

(1) GEN = 120 non-global edges.

THANKS TO
Swetha
Varadarajan

(p) GEN = 160

628

EAX GENETIC ALGORITHM FOR THE TSP

Nagata and Kobayashi (2012)

A Powerful Genetic Algorithm Using Edge Assembly
Crossover for the Traveling Salesman Problem

INFORMS JOC

Probably the best off the shelf Inexact Solver for the TSP.
Highlights the power of crossover.

The only selection is Brood Selection.

A HyYBRID OF EAX, PARTITION CROSSOVER
AND THE MIXING GA (A FORM OF GIGA).

The algorithm can
now converge while

losing minima

-ll ] —

3

(@)G=9 (H)G=10 @G=20 ()G=29

diversity.
fHG=3 (9G=30 WGC=4 ()G=49 ()G=50
KG=5 ()G=60 M)G=69 mG=70 (0)G=T19
THANKS TO
Swetha
Varadarajan

PG=8 (G=8 (1)G=9 (G=9 (t)G=100
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Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover

Thanks to G. Ochoa and N. Veerapen.

These were
found using
Chained-LK.

But it could
have been
Lin
Kernighan
Helsgaun
(LKH).

PARTITION CROSSOVER AND TSP

629

PARTITION CROSSOVER AND TSP

Y

£ S

PARTITION CROSSOVER AND TSP

Group 3

Group 4
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THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during
recombination.

Group 1: vl, v2, v4, v5, v7, v9
Group 2: vl1, v13, v14,v15,v17,v18

Group 3: v20, v21, v23, v26, v27, v28

Group 4: v32, v33, v34, v35, v36, v39

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Group 1. Group 2. Group 3.  Group 4.

1111

0111 1011 1101 1110

00i1 0101 0110 1001 1010 1100

0001 0010 0100 1000

0000

630

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during
recombination.

Group 1:  vl, v2, v4, v5, v7, v9

Parent 1 or Parent 27

Group 2: vll, v13, v14,v15,v17,v18 Parent 1 or Parent 2?

Group 3:  v20, v21, v23, v26, v27, v28 Parent 1 or Parent 2?

Group 4: v32, v33, v34, v35, v36, v39 Parent 1 or Parent 2?

Partition Crossover returns the best of 244 = 16 solutions. @

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Group 1. Group 2. Group 3.  Group 4.

i ALL of these

o111 1011 1101 1110
In the

e o Hyperplane
0011 0101 0110 1001 1010 1100  Subspace.

0001 0010 0100 1000

0000

solutions are

LOCAL OPTIMA

4/26/21
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THESE TUNNELS ARE JUST THE TOPS or
LATTICES OF QUASI LOCAL OPTIMA.

i

onil 1011 101 1110

01 001 010 1001 1010 1100

0001 0010 0100 1000

0000

THEOREM: A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

PROOF BY CONSTRUCTION: Construct a traveling salesman
problem over N vertices such that it has two local optima, and these
two local optima decompose into N/c recombining components for
some constant c.

This results in a lattice of size 2N/¢

1
nn ;
o1l 1011 1101 1110
ol 1on wor o
0001 0101 0110 1001 1010 1100
IR

0001 0010 0100 1000 0001 0010 0100 1000

..... 0000

631

TaE BLACK DOTS ARE GLOBAL OPTIMA

un

ol 101 101 1110

il 001 00 1001 1010 1100

0001 0010 0100 1000

THEOREM: A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

The construction builds a chain of recombining components.

4/26/21
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AN ENSEMBLE OF SOLVERS

Sequential Ensemble
Instance LKH EAX LKH+EAX [MGA+EAX|Full Ensemble
S.R Time |S.R Time | S.R Time | SR Time| SR Time
d2103 0/30 236 |30/30 18 (30/30 19 [30/30 13 |[30/30 13
w2319 [30/30 5 |3/30 96 [30/30 4 [7/30 86 [30/30 4
pr2392  [30/30 30/30 37 [30/30 3 [30/30 23 [30/30 3
pcb3038 (30/30 30/30 110 |30/30 46 (30/30 57 [30/30 46
fnl4461 |30/30 30/30 273 |30/30 90 (30/30 210 |30/30 91
rl5915 0/30 30/30 154 |30/30 152 (30/30 95 [30/30 95
rl5934  [30/30 11/30 161 (30/30 79 (30/30 94 |[30/30 79
pla7397 (30/30 0/30 NA [30/30 283 |5/30 241 [30/30 241
rl11849 | 0/30 30/30 853 |30/30 849 [30/30 556 |30/30 556
usal3509 |0/30 17/30 2078 [17/30 2223 (17/30 1549 [23/30 1549 .
brd14051 | 0/30 30/30 4093 [30/30 3693 |30/30 1673 |30/30 1673
d15112  (30/30 30/30 5936 |30/30 4822 (30/30 2646 [30/30 2646
d18512  (30/30 30/30 3 130/30 4716 (30/30 3204 (30/30 3204
pla33810 |30/30 30/30 30/30 5695 {30/30 3034 {30/30 3034
pla85900 |30/30 30/30 31318 |30/30 12099 [30/30 19969(30/30 12099
AVERAGE| 20 3169 |24.06 3999 |20.13 2318 |25.03 2230 |29.53 1688 @

TueE JUMP FUNCTION.

© This is very nice example
ot problem that can illustrate
o the power of crossover.

Number of ones.

T. Jansen and I. Wegener (2002)
The Analysis of Evolutionary Algorithms: a proof that crossover
really can help. Algorithmic. Springer.

Tue JUMP FuNcTION.

It is a symmetric Unitation function.
It is basically ONEMAX with a MOAT.

(3 o
2900 Yo vadmul

Tue JUMP FuNcTION.

4/26/21
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TaE JUMP FUNCTION.

Unintelligent
Random Local Search

(N choose k) 2k

. X | N is the number of bits

k is the size of the gap.

N=128, k=1gN) =7
(N choose k) =94,525,795,200 (94 Billion)
(N choose k) 2k =12,099,301,785,600 (12 Trillion)

Tue JUMP FuNcTION.

How to really solve the JUMP Function.

Apply Systematic Local Search First.

The evaluation function can be rewritten
to evaluate in constant time.

JUMP-FAST-EVAL(old-string, bit-to-change, old-eval) — Eval of new-string.

JUMP-FAST-EVAL executes in constant time.

633

TueE JUMP FUNCTION.

Doer’s
“FAST GENETIC ALGORITHM”
(GECCO 2018).

It isn’t a genetic algorithm,
...... ‘ It is really just the (1+1)ES.
o . [ We downloaded
..... the publicly available code.

It ran for one week on a
N=1000, k = 10 problem
and didn’t converge.

Tue JUMP FuNcTION.

Apply Systematic Local Search First.

Population Size: 15

Local Search will converge to points
on the edge of the “Moat” in O(N) time.

4/26/21
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TaE JUMP FUNCTION.

DETERMINISTIC VOTING CROSSOVER
AKA: Occurrence Based Scanning Crossover (Eiben et al., PPSN 1994)
The child inherits the bit that most frequently appears in the parents.

Parent 1: 111111111111111111111111111111000000
Parent 2: 111111111000000111111111111111111111
Parent 3: 000111111111111111111111000111111111

Child: 1111111111111111111111111111111111111

Tue JUMP FuNcTION.

Lower Bound on Probability of Success for Voting Crossover

4

—

~=PROBABILITY
“~LOWER BOUND

Probability of Success

-
Our simple Local Search + Crossover GA

solves N = 1,000,000 (one million) and k = 20 (log(N))
in a fraction of a second.

Now THAT is a “Fast Genetic Algorithm.”
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TueE JUMP FUNCTION.

Lower Bound on Probability of Success for Voting Crossover

' |
™ f—s
i pra——
% ~#~LOWER BOUND
H
3.

- e e m e e e
We proved that

Systematic Local Search converges
to the edge of the Moat in O(N) time.
Then crossover JUMPS the Moat in O(N) time.

Total runtime: O(N).

THEORY anp PRACTICE.

Virtually NO THEORY in our
community asks what happens if you
apply local search first,

then apply crossover.

Most THEORY assumes
naive unintelligent local search.

Many “theory benchmarks” are so trivial
they are easily solved,
even by unintelligent local search.
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QUESTIONS?
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