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5

NO FREE LUNCH

6

VARIATIONS ON NO FREE LUNCH

Consider   f(xi) = yj

An Algorithm is modeled as a permutation
indicating the order in which new points in the
domain, xi, are sampled.

Search behavior is also modeled as a permutation,  
indicating the order in which values in the co-
domain, yi, are sampled.

7

NO FREE LUNCH BASICS f(xi)        =            yj
----------------------------------------------------------------------------

8
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f(xi)        =            yj

----------------------------------------------------------------------------

On( A1 = 1 2 3,   F1 = A B C)     =    On( A1 = 3 1 2,   F4 = B C A) 
On( A2 = 1 3 2,   F6 = C B A)     =    On( A6 = 3 2 1,   F5 = B A C)

9

If any 3 components are known,  the fourth is determined!

Sharpened No Free Lunch

Let P(fi) denote the permutation of function fi

General NFL holds 

if an only if 

the set of function is closed under permutation (C.U.P.).

Whitley 2000,  Functions as Permutations,   PPSN.

Schumacher,  Whitley, Vose 2001.   No Free Lunch and 
Problem Description Length.    GECCO

10

It’s a Zero Sum Game:

If algorithm A1 is better than A2 on fi

then A2 is better than A1 on (P(fi) – fi)

11

Theorem:   Given a finite set of M unique codomain values,  
NFL holds over a set of M! functions, 
where every function has an average description length of 
O(M log M).

Sketch of Proof.  (Very similar to Sorting complexity).
Construct a binary tree with functions located at the leaf nodes.    
To uniquely label every function requires log(M!) bits.   
Each label has average length O(M log M).

Note:  enumeration also has O(M log M) cost:
We have M unique evaluations, 
and each evaluation requires log(M) bits.

12
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THE OBJECTION TO “NO FREE LUNCH”

Functions in the Permutation Closure 
are mostly uncompressible if every codomain value is unique.

But if there N distinct evaluations,  
where N is the number of variables,
the functions in the  Permutation Closure might be compressible.

And we don’t always need a 
permutation closure.

13

MULTIPLE LOCAL OPTIMA:
THE LETHALS PROBLEM (1987).

14

000000 111111000111

A simple TWOMAX problem.

MULTIPLE LOCAL OPTIMA:
THE LETHALS PROBLEM (1987).

15

000000 111111000111

A simple TRUNCATED TWOMAX problem.

MY ALGORITHM A1 HAS BETTER COMPLEXITY
THAN ALGORITHM A2 ON TRUNCATED TWOMAX.

16

000000 111111000111

A simple TRUNCATED TWOMAX problem.

HA!    A2 HAS BETTER COMPLEXITY THAN A1 
ON THE PERMUTATION CLOSURE EXCLUDING
TRUNCATED TWOMAX!
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17

BEWARE OF COMPLEXITY COMPARISONS

The Permutation Closure for n=4
includes approximately 208 
functions 
(exactly 5005 functions
including symmetries), 
not 29,227,900,000,000 functions
as you might mistakenly think.

18

GRAY CODES VERSUS BINARY ENCODINGS.

19

GRAY CODES VERSUS BINARY ENCODINGS.

Gray codings form a Groupwith an orbit of 2L or less.
A No Free Lunch result holds over at most 2L functions,  
where L is the length of the bit encoding.

1. Sharpened No Free Lunch:

NFL holds if and only if 
the set of function is closed under permutation 
(C.U.P.).

2. Focused No Free Lunch:  An example

No Free Lunch holds over at most 2L functions,  
where L is the length of the bit encoding. 
The set of 2L functions is NOT C.U.P.

WAIT:  Isn’t this a contradiction?  
20
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1. Sharpened No Free Lunch: 
requires a permutation closure.

2. Focused No Free Lunch for Bit Representations: 
does not require permutation closure.

WAIT:  Isn’t this a contradiction?

Proofs have assumptions and conditions.  

Sharpened NFL holds FORALL arbitrary search algorithms.     

Focused NFL uses group theory to compare the orbits of  two 
SPECIFIC algorithms. 

These are not the same, but if you are not alert, 
you can draw extremely misguided conclusions.  

21 22

FOCUSED NO FREE LUNCH

Can hold over just 2 functions,
And if one is compressible,
Both are compressible..

23

FOCUSED NO FREE LUNCH
Theory can tell you what it true.

But Theory can also blind you to what is true. 

Beware of:         Assumptions
Existential proofs 

and Universal proofs.

For example:  “The Halting Problem”

Many “Complexity Results” are Existential. 24
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NO FREE LUNCH IS BLACK BOX

Break the Black Box,   Break No Free Lunch.

(This is almost always true.)
25 26

GENETIC
ALGORITHMS
AND
HYPERPLANE
SAMPLING

JOHN HOLLAND
CHARACTERIZED
THE GA AS A
NEAR PERFECT
GLOBAL SAMPLING
METHOD.

27 28

HYPERPLANE SAMPLING:

Approximate Claim:

A GA will achieve near optimal hyperplane sampling to
guide search toward globally competitive regions of the search space.

Two Problems:

The population average changes every GENERATION.
This equation only looks one GENERATION into the future,
And ignores secondary interactions over time.

594



4/26/21

8

29

HYPERPLANE SAMPLING:

Approximate Claim:

A GA will achieve near optimal hyperplane sampling to
guide search toward globally competitive regions of the search space.

Two Problems:

Small populations do not 
sample small hyperplanes.

This inherently yields a 
course grain sample, that 
is changing over time.

30

HYPERPLANE SAMPLING:

Again, you need to be careful with THEORY.

Theoreticans are human like the rest of us,
And are just as prone to “hyping results” as anyone else.

What are the ASSUMPTIONS?

Are the results Universal or Existential?

Are the results being “stretched” beyond the proof. 

31

AN INFINITE POPULATION GA MODEL (WHITLEY 1990):

32

AN INFINITE POPULATION GA MODEL:

Compute the probability of generating the string of all ZEROs,  0L

Use XOR to remap the equation to every string in the search space.

This model can be 
executed to track 
the GA behavior on
strings up to about 
10 to 20 bits.

We can easily 
add mutation.
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33

AN INFINITE POPULATION MODEL:

Vose/Liepins:   Crossover and Mutation Probabilities can be 
expressed as a matrix.

SAME COMPUTATION

Compute the probability 
of generating 
the string of all ZEROs,  0L

34

AN INFINITE POPULATION MODEL:

Mutation and Crossover are in matrix M.

35

AN INFINITE POPULATION MODEL:

36

AN INFINITE POPULATION MODEL:

SO WHAT? 

WE LEARNED ABOUT THE DYNAMICS OF GENETIC ALGORITHMS.

WE LEARNED THAT IS THE GA HAS IT OWN MODES OF FAILURE.

DYNAMICS ARE MORE COMPLEX THAN “HYPERPLANE SAMPLING.”

BUT WE ALSO LEARNED SOME AMAZING THINGS TOO.
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37

AN INFINITE POPULATION GA MODEL:

The Physic community,  about 1993:
This equation is potentially (probably) chaotic 38

39

THE GENETIC ALGORITHM FRACTAL:

The blue triangle is the feasible population space. 
The colors represent convergence speed.
The colors are inverted inside the feasible population space. 40

THE GENETIC ALGORITHM FRACTAL:
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41

THE GENETIC ALGORITHM FRACTAL:

The dynamics appear to show 
that Evolutionary Algorithms 
can be influenced by attractors 
that are OUTSIDE the  
feasible population 
representation space. 

Note how the pattern outside 
the feasible population 
extends through the feasible 
population.

42

LIMITATIONS OF THE
INFINITE POPULATION MODEL:

Uses fitness proportional selection,
Because it is easy to model mathematically.

43

LIMITATIONS OF THE
INFINITE POPULATION MODEL:

Uses fitness proportional selection,
Because it is easy to model mathematically.

Another risk with theory:

Looking where you have a 
mathematical flashlight.

Perhaps sometimes OK.

But Be Aware, 
and Beware.

ELEMENTARY LANDSCAPES:

A “Wave Equation” holds for 
certain problem classes and operators: 

� Traveling Salesman Problem 
� Graph Coloring,  Number Partitioning, … 
� MAXSAT,   NK-Landscapes,  …
� all k-bounded pseudo-Boolean functions  (thanks,  Andrew Sutton).

¢ Lov Grover (1992) and Peter Stadler (1996)
44
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THE WAVE EQUATION
FOR NEIGHBORHOODS

45

THE WAVE EQUATION:
A SIMPLER EXPLANATION.

46

47

FOR THE
TRAVELING SALESMAN PROBLEM

48
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K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

50

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

MAXSAT

NK Landscapes

Spin Glass Problems

Bit Representations
that are not K_bounded
can be transformed into K bounded functions.

51

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

52

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

Why is this important?
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53

The location of Improving Moves can be computed on average in 
constant time.   Special versions of this are known from 1992.
A general proof is given by:   Whitley et al.  2013  AAAI.  

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

54

CONSTRUCTING THE MULTILINEAR FORM. 

There is only one 
unknown at very step.

THE MULTILINEAR FORM

w0 = f(000)
w1 = f(001) - w0
w2 = f(010) - w0
w3 = f(011) - w0 - w1 - w2
w4 = f(100) - w0
w5 = f(101) - w0 - w4 - w1
w6 = f(110) - w0 - w4 - w2

f(x) = w0 + w1x1 + w2x2 + w4x4 +w3x1x2 +w5x1x4 + w6x2x4

.  

55

THE MULTILINEAR FORM

w0 = f(000)
w1 = f(001) - w0
w2 = f(010) - w0
w3 = f(011) - w0 - w1 - w2
w4 = f(100) - w0
w5 = f(101) - w0 - w4 - w1
w6 = f(110) - w0 - w4 - w2

f(x) = w0 + w1x1 + w2x2 + w4x4 +w3x1x2 +w5x1x4 + w6x2x4

.  

56The multilinear form can also tell us about
Nonlinear “LINKAGE” between bits in O(n2) time.
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HOW TO SOLVE ONEMAX IN O(N) TIME BY SAMPLING

Construct the linear terms 
of the multilinear form.

Test the hypothesis that the function is linear.

58

THE WALSH/DISCRETE FOURIER POLYNOMIAL

59

THE WALSH/DISCRETE FOURIER POLYNOMIAL

M  M
M -M

The decomposition pattern 
of the Walsh Matrix. 60

THE WALSH/DISCRETE FOURIER POLYNOMIAL

M  M
M -M

AND,  YES THERE IS A FAST DISCRETE 
FOURIER TRANSFORM with O(n log n) complexity.
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61

THE WALSH/DISCRETE FOURIER POLYNOMIAL

62

THE WALSH/DISCRETE FOURIER POLYNOMIAL

THEOREM:

For a k-bounded function,
if there are O(n) subfunctions (m=O(n)),
The Walsh polynomial is O(n) in size.

PROOF:  by construction there are at most 2km coefficients

63

THE WALSH/DISCRETE FOURIER POLYNOMIAL

64

THE WALSH/DISCRETE FOURIER POLYNOMIAL
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WE CAN COMPUTE ONE HYPERPLANE AVERAGE IN
O(N) TIME FOR K-BOUNDED PROBLEMS.

For K-bounded problems,  
we can exactly compute
the hyperplane averages that Holland
was trying to estimate!

This can yield the global optimum, BUT ONLY
IF there is no deception,  or only low order deception.

THE ONLY CHALLENGING 
K-bounded Problems Are DECEPTIVE.

(SAT Solvers have used this trick for decades!)

66

67

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

Each fi with k=3 has only 4 nonlinear coefficients 
68

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS

604



4/26/21

18

69

(WARNING: I shortened the notation for compactness.)

CONSTANT TIME
IMPROVING MOVES

70See Hoos and Stützle,  Stochastic Local Search, 2005

CONSTANT TIME
IMPROVING MOVES

71

IMPROVING_MOVE_LIST:  y3, y5

IMPROVING_MOVE_LIST:  y8, y5

CONSTANT TIME
IMPROVING MOVES

72

OTHER THEORETICAL RESULTS:

No difference in runtime cost
For BEST-FIRST, and NEXT-FIRST.

You can flip 2 or 3 or 10 bits at once,  still in O(1) time.
(We will come back to this.)
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A MAX-3SAT INSTANCE
-1 9 -8
-1 9 8
1 -9 8
-1 -9 -8
-5 -4 -6
-5 4 6
-5 5 -6
5 -4 6
2 1 7
2 -1 7
-2 -1 7
-2 -1 7
3 6 8
3 6 -8
3 -6 8
-3 6 -8

73

A MAX-3SAT INSTANCE
-1 9 -8 T
-1 9 8 F                  
1 -9 8 T
-1 -9 -8 T
-5 -4 -6 T
-5 4 6 T
-5 5 -6 T
5 -4 6 T
2 1 7 T
2 -1 7 T
-2 -1 7 T
-2 -1 7 T
3 6 8 T
3 6 -8 T
3 -6 8 F 
-3 6 -8 T

74

A MAX-3SAT INSTANCE

-1 9 -8 T
-1 9 8 F                  
1 -9 8 T
-1 -9 -8 T
-5 -4 -6 T
-5 4 6 T
-5 5 -6 T
5 -4 6 T
2 1 7 T
2 -1 7 T
-2 -1 7 T
-2 -1 7 T
3 6 8 T
3 6 -8 T
3 -6 8 F 
-3 6 -8 T

75

Randomly flipping bits
would be really silly.

A MAX-3SAT INSTANCE

-1 9 -8 T
-1 9 8 F                  
1 -9 8 T
-1 -9 -8 T
-5 -4 -6 T
-5 4 6 T
-5 5 -6 T
5 -4 6 T
2 1 7 T
2 -1 7 T
-2 -1 7 T
-2 -1 7 T
3 6 8 T
3 6 -8 T
3 -6 8 F 
-3 6 -8 T

76

Randomly flipping bits
would be really silly.

Enumerative Local Search
would be really silly.
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A MAX-3SAT INSTANCE

-1 9 -8
-1 9 8 F  <<                 
1 -9 8
-1 -9 -8
-5 -4 -6
-5 4 6
-5 5 -6
5 -4 6
2 1 7
2 -1 7
-2 -1 7
-2 -1 7
3 6 8
3 6 -8
3 -6 8 F <<        Flip 8 to -8?  
-3 6 -8

77

-1 9 -8
-1 9 8
1 -9 8
-1 -9 -8

78

A MAX-3SAT INSTANCE

-1 9 -8
-1 9 8
1 -9 8
-1 -9 -8

x1  IFF  x9  and ~x8

Construct the Truth Table and the DNF form

Convert to CNF using DeMorgan’s Rule:

-1 9 -8
-1 9 8
1 -9 8
-1 -9 -8

79

A MAX-3SAT INSTANCE

80

REAL WORLD 
INDUSTRIAL 
SAT PROBLEMS
FROM THE SAT COMPETITIONS

Typically have less
than 2N nonlinear terms 
over N variables.
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81

IN MODERN COMBINATORIAL OPTIMIZATION,  
UNIFORM RANDOM MUTATION

MAKES NO SENSE

82

IN MODERN COMBINATORIAL OPTIMIZATION,  
UNIFORM RANDOM MUTATION

MAKES NO SENSE

IF WE WANT TO SOLVE REAL WORLD PROBLEMS
UNIFORM RANDOM MUTATION

MAKES NO SENSE

IN MODERN BIOLOGY
UNIFORM RANDOM MUTATION

MAKES NO SENSE 83

IN MODERN COMBINATORIAL OPTIMIZATION,  
UNIFORM RANDOM MUTATION

MAKES NO SENSE

IF WE WANT TO SOLVE REAL WORLD PROBLEMS
UNIFORM RANDOM MUTATION

MAKES NO SENSE

HOW GENES ARE ENCODED
IS IMPORTANT

CTAGTCGATTCGTAATCATCCGACGTACGTACTGAGTT

Neighbor-Dependent Mutation:   “a cytosine followed by a 
guanine is about 10 times more mutable than a cytosine in any 
other dinucleotide.”

CpG mutations account for 1/3 
of genetic based diseases in humans.

Single Nucleotide Polymorphism   is associated with “mutation 
hotspots” and the most common type of genetic variation.

84
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LIMITING MUTATION IN DNA 

There are  ultraconserved segments of DNA that have survived 
unchanged for 100 million years in vertebrates.  

There are highly sophisticated error correction mechanisms.

Gene Duplication and Genetic Redundancy is common.

Most “mutations” have small effects or no effect.

85

BACK TO K BOUNDED FUNCTIONS

a: 1 -0 6       l: -6 10 13      q: -11 16 17      v: -15 -7 -13
b: 2 -1 6       m: 8 -3 6        r: 12 -10 17      w: 16 -9 -11
c: -1 2 4       n: 7 -12 -15    s: -13 -12 15     x: 17 -5 -16
d: -4 1 14     o: 9 11 14       t: 14 -4 16        y: -3 -7 13
e: -5 4 2       p: -10 -2 17     u: -9 14 16       z: 0 6 -14

86

WHAT ABOUT RECOMBINATION?

a: 1 -0 6       l: -6 10 13      q: -11 16 17      v: -15 -7 -13
b: 2 -1 6       m: 8 -3 6        r: 12 -10 17      w: 16 -9 -11
c: -1 2 4       n: 7 -12 -15    s: -13 -12 15     x: 17 -5 -16
d: -4 1 14     o: 9 11 14       t: 14 -4 16        y: -3 -7 13
e: -5 4 2       p: -10 -2 17     u: -9 14 16       z: 0 6 -14

We could consider  a MAX-3SAT problem

87

WHAT ABOUT RECOMBINATION?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)

We could consider  an NK-Landspace or MK Landscape

The  variables interactions are the same.

88
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89 90LOCAL OPTIMUM       P1: 000000000000000000
LOCAL OPTIMUM       P2: 111100011101110110

THE RECOMBINATION GRAPH:
THE DECOMPOSED VIG.

91
Thanks to Renato Tinos

THE RECOMBINATION GRAPH:
THE DECOMPOSED VIG.

92

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

610



4/26/21

24

THE RECOMBINATION GRAPH:
BE GREEDY

93

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

THE RECOMBINATION GRAPH:
BE GREEDY

94

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

THE RECOMBINATION GRAPH:
BE GREEDY

95

This decomposition partitions the variables and the subfunctions.

Partition Crossover deterministically returns the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?

THE RECOMBINATION GRAPH:
BE GREEDY

96Partition Crossover deterministically returns 
the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?
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97 98

DECOMPOSED EVALUATION
FOR MAXSAT

N = 1,067,657
(Thanks to Wenxiang Chen)

99

DECOMPOSED EVALUATION
FOR MAXSAT

Crossover
returns the
Best of 
21087 offspring.

All offspring are
Local Optima
in this
subspace.

100

These subproblems can be solved by Dynamic Programming!

“OPTIMAL RECOMBINATION
BY DYNAMIC PROGRAMMING”

Thanks to
Francisco Chicano.

These 
subproblems 
have a tree 
decomposition 
with low width.
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PARTITION CROSSOVER
DETERMINISTICALLY
“TUNNELS” BETWEEN OPTIMA

101

P1
P2

recombine P1 and P2

We can remove randomness from Crossover

PARTITION CROSSOVER AND TSP

102

PART 2:   TRANSFORMS

103

TRANSFORMS

¢ SAT to MAXSAT

� For decades,  SAT problems have been 
converted into MAX-kSAT instances.
Modern SAT solvers expect a MAXSAT form.

� TRANSFORMS may also serve as REDUCTIONS 
used to prove NP-Completeness.

104
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TRANSFORMS

¢ Transforms exist for all Pseudo-Boolean Functions

“All pseudo-Boolean optimization problems can be 
reduced to the quadratic case.” Boros and Hammer 
(2002):186 

This assumes a polynomial evaluation function.

The transformed function is polynomial in size 
relative to the original function.  105 106

TRANSFORMS CAN BE
QUASI-BLACK BOX (IF YOU INSIST).

T
R
A
N
S
F
O
R
M

107

TRANSFORMS CAN BE
QUASI-BLACK BOX (BUT NOT REALLY).

T
R
A
N
S
F
O
R
M

The quadratic function is recovered by sampling in O(n2) time.

THE MULTILINEAR FORM

w0 = f(000)
w1 = f(001) - w0
w2 = f(010) - w0
w3 = f(011) - w0 - w1 - w2
w4 = f(100) - w0
w5 = f(101) - w0 - w4 - w1
w6 = f(110) - w0 - w4 - w2

f(x) = w0 + w1x1 + w2x2 + w4x4 +w3x1x2 +w5x1x4 + w6x2x4

.  

108
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TRANSFORMS

¢ Assume our function is 
written in Multilinear Form  (helpful,  but not necessary)

109

Where 
xi is a Boolean Variable,  cS is a weight (constant)
S is a single variable

or a subset of variables with nonlinear interactions
And j indexes a variable in S.

LEADING ONES
AS A MULTILINEAR FORM

¢ The n=4 case.

110

f(100110011000111111) = 1

¢ A general example

f(011111111111111111) = 0

f(111110000110001111) = 5

LEADING ONES
AS A MULTILINEAR FORM

¢ The n=4 case.

111

¢ The Walsh Polynomial is EXPONENTIAL in Size!

LEADING ONES
AS A MULTILINEAR FORM

¢ The n=4 case.

112

¢ In general for maximization.

¢ In general for minimization.

615



4/26/21

29

THE BASIC SUBSTITUTION:   
1 VARIABLE REPLACES 2 VARIABLES

113

SUBSTITUTION WITH PENALTY CONSTRAINTS

P IS THE SUM OF |CS|
114

FOR LEADING ONES N=4, P=5

115

LEADING ONES IN GENERAL:

THE WALSH POLYNOMIAL IS LINEAR IN SIZE.

116

LEADING ONES IN GENERAL:

One can optimize each subfunction zi=1, zi-1=1, xi+1 =1 to 
obtain the global optimum in O(n) time.

You can use Local Search with Lookahead to solve the 
Quadratized Leading Ones  in O(n) time.
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117

LEADING ONES:  
THE NEW VARIABLE INTERACTION GRAPH

RESULT:   

Quadratic Leading Ones has a bounded tree width and  is 
solved by Dynamic Programming in O(n) time.

118

LEADING ONES:  
THE NEW VARIABLE INTERACTION GRAPH

The same Variable Interaction Graph holds for all  
Hidden Permutations versions of Leading Ones.

x(i) is just replaced with x(!(i))

119

FOR LEADING ONES
N=4

Every penalized point in f(x,z)  is greater that every point in f(x). 120

GENERAL  RESULT
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121

A MORE RECENT
TRANSFORM:

This transform can reveal submodular functions: 
Leading Ones and Hidden Permutations are submodular

x1 + x1x2 + x1x2x3 + x1x2x3x4 + x1x2x3x4x5

Transforms to:

x1 + x1x2 
x1y1 + x2y1 + x3y1 -2y1
x1y2 + x2y2 + x3y2 + x4y2  -3y2
x1y3 + x2y3 + x3y3 + x4y3  + x5y3 -4y3

122

A MORE RECENT
TRANSFORM:

This transform can reveal submodular functions: 
Leading Ones and Hidden Permutations are submodular

123

TRANSFORMS FOR
NEEDLE-IN-A-STACK

Needle(x):  return 100 if x = ??????????????????????????????????????  
else return 0

124

TRANSFORMS FOR
NEEDLE-IN-A-STACK

Needle(x):  return 100 if x = 1100010001001110101010011010110  
else return 0

Using the same Transform,  it has the same Variable Interaction 
Graph as LeadingOnes:  it is now trivial to solve.
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125

THERE ARE NO QUADRATIC 
NEEDLE-IN-A-STACK PROBLEMS!

Needle(x):  return 100 if x = 1100010001001110101010011010110  
else return 0

We can NEVER hide a needle in a quadratic form,  because we can 
construct the multilinear form of the quadratic in O(n2) time.

126

QUADRATIC
PSEUDO BOOLEAN FUNCTIONS
IN QUANTUM COMPUTING

Nike Dattani,    ArXiv,   September 2019

“Quadratization in Discrete Optimization and Quantum Mechanics”

Lists 40 new transforms, many published in the last 5 years.

Dattani et al. hold the record for quantum factoring of
Semi Prime Numbers used in Encryption.

WHAT ABOUT LOOKING 2 OR 3
OR 10 MOVES AHEAD?

127

With Thanks to Francisco Chicano

128

If two variables are not connected in the VIG, 
there can be no improving move.
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WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

129

Assume you have taken all single bit flip  improving moves.

What happens when you flip bits 5 and 8 at the same time?

WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

130

Assume you have taken all single bit flip  improving moves.

What happens when you flip bits 5 and 8 at the same time?

NOTHING.     There are no nonlinear coefficients involving 5 and 8. 

WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  

131

WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  

0,6 0,14 1,0 1,2 1,4 1,6 1,14 2,4
2,5 2,6 2,10 2,17 3,6 3,7 3,8 3,13
4,5 4,14 4,16 5,16 5,17 6,8 6,10  6,13 
6,14  7,12 7,13 7,15 9,11 9,14 9,16 10,12
10,13 10,17 11,14 11,16 11,17 12,13 12,15 12,17
13,15 14,16 16,17

132
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WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

133

If the number of subfunctions is linear,  
the number of pairs is linear.

0,6 0,14 1,0 1,2 1,4 1,6 1,14 2,4
2,5 2,6 2,10 2,17 3,6 3,7 3,8 3,13
4,5 4,14 4,16 5,16 5,17 6,8 6,10  6,13 
6,14  7,12 7,13 7,15 9,11 9,14 9,16 10,12
10,13 10,17 11,14 11,16 11,17 12,13 12,15 12,17
13,15 14,16 16,17

134

For K-bounded Pseudo Boolean Functions:

Random Mutation is Obsolete

We can compute the location of improving moves
in constant time, multiple steps ahead.  

For problems like the TSP and Graph Coloring 
(and many others)

Random Mutation is useless.

THE TROUBLE WITH ‘‘RUNTIME”

1.  If P ≠ NP,  you cannot achieve a polynomial time bound 
unless the function is in the class P. 

135

GOOD THEORY
MUST ALSO BE GOOD SCIENCE

136

“Algorithm A1 runs in O(n2) time on Problem P2.”

By itself, this is meaningless counting.

It is not a theory of anything.
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GOOD THEORY
MUST ALSO BE GOOD SCIENCE

137

“Algorithm A1 runs in O(n2) time on Problem P2.”

By itself, this is meaningless counting.

It is not a theory of anything.

Remember No Free Lunch?   (Sharpened and Focused)

We would never accept this in empirical research,
so why is is OK in theoretical work?

GIGA:  GENE INVARIANT GENETIC ALGORITHM

138

GIGA:  GENE INVARIANT GENETIC ALGORITHM

Joe Culberson,  1992, 2993, 1995

All individuals have an equal chance to reproduce.

There is NO selection in the traditional sense.

Two parents produce 2 offspring, so that no “genes” are lost.

Mating is based on matching individuals with similar fitness.

NO BITS (Alleles) ARE EVER LOST.

It is impossible to lose diversity.
139

GIGA:  GENE INVARIANT GENETIC ALGORITHM

140

000000000111111111
111111111000000000

My Own Simple Twist:

Sample a string,
Sample its complement.

GIGA:  DOES NOT USES MUTATION.
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GIGA:  GENE INVARIANT GENETIC ALGORITHM

141

Generation 1 Generation 2

GIGA:  GENE INVARIANT GENETIC ALGORITHM

142

SELECTION

Better Solutions move UP

Poorer Solutions down DOWN

GIGA:  GENE INVARIANT GENETIC ALGORITHM

143

SELECTION

Recombine Strings with
Similar Fitness.

So recombine adjacent 
neighbors.

BACK TO THE TSP

144

Partition Crossover 
deterministically returns 
the best of 2q offspring.

623



4/26/21

37

CREATE TWO OFFSPRING:

145

CREATE TWO OFFSPRING: KEEP BOTH

146

THE MIXING GA
(AN UPDATED FORM OF GIGA.)

Thanks to Swetha Varadarajan!
147

THERE IS NO SELECTION!

Thanks to Swetha Varadarajan!
148
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THERE IS NO SELECTION!
EXCEPT MATING SELECTION.

Thanks to Swetha Varadarajan!
149 150

FIRST POPULATION:    ATT532

EACH ROW IS A LOCALLY OPTIMAL TOUR.  
EACH COLOR IS A EDGE.

151

FIRST POPULATION:    ATT532

EACH ROW IS A TOUR.  
EACH COLOR IS A EDGE.

Thanks to Swetha Vardarajan
and Gabriela Ochoa

152

FIRST POPULATION:    ATT532

BLACK edges are NOT part of the global optimum.
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153

FIRST POPULATION:    ATT532

COLOR edges are edges also found  in  the global optimum. 154

FIRST POPULATION:    ATT532

Local Optima are 70% composed of globally optimal edges!!

155

FIRST POPULATION:   SAME DATA,  SORTED.

Local Optima are 70% composed of globally optimal edges!!
156

FIRST POPULATION:    ATT532
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157

FIRST POPULATION:    ATT532

If we select the 532 most frequent edges,  about 85% are global.  
158

FIRST POPULATION:    ATT532

CONVERGENCE:

159

FIRST POPULATION:        LAST POPULATION:    

160

FIRST POPULATION:        LAST POPULATION:    

In this case,  the edges in the population NEVER CHANGED.

Good
Tours
Go 
UP 

Bad
Tours
Go 
DOWN 
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161

FIRST GENERATION:        LAST GENERATION:    

In this case,  the edges in the population NEVER CHANGED.

Good
Tours
Go 
UP 

Bad
Tours
Go 
DOWN 

EAX GENETIC ALGORITHM FOR THE TSP

Nagata and Kobayashi (2012)
A Powerful Genetic Algorithm Using Edge Assembly 
Crossover for the Traveling Salesman Problem
INFORMS JOC

Probably the best off the shelf Inexact Solver for the TSP.

Highlights the power of crossover.

The only selection is Brood Selection.

162

EAX:  EDGE ASSEMBLY CROSSOVER. 

163

Convergence of 
EAX.

It converges to the 
Global Optimum 
IF
It does not 
prematurely 
converge first.

EAX usually 
drives out 
non-global edges.

THANKS TO
Swetha 
Varadarajan

A HYBRID OF EAX, PARTITION CROSSOVER
AND THE MIXING GA (A FORM OF GIGA).

164

The algorithm can 
now converge while 
losing minima 
diversity.

THANKS TO
Swetha 
Varadarajan
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165

These were 
found using 
Chained-LK.

But it could 
have been 
Lin
Kernighan
Helsgaun
(LKH).

PARTITION CROSSOVER AND TSP

166

PARTITION CROSSOVER AND TSP

167

PARTITION CROSSOVER AND TSP

168

Group 1

Group 2

Group 4

Group 3
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169

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during 
recombination.

Group 1:     v1,    v2,    v4,   v5,    v7,   v9

Group 2:     v11,  v13,  v14, v15, v17, v18

Group 3:     v20,  v21,  v23,  v26, v27, v28

Group 4:     v32,  v33,  v34,  v35, v36, v39

170

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during 
recombination.

Group 1:     v1,    v2,    v4,   v5,    v7,   v9

Group 2:     v11,  v13,  v14, v15, v17, v18

Group 3:     v20,  v21,  v23,  v26, v27, v28

Group 4:     v32,  v33,  v34,  v35, v36, v39

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Partition Crossover returns the best of  2^4 = 16 solutions.

171

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Group 1.       Group 2.       Group 3.      Group 4.

172

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Group 1.       Group 2.       Group 3.      Group 4.

ALL of these 
solutions are 
LOCAL OPTIMA
In the
Hyperplane 
Subspace.
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173

THESE TUNNELS ARE JUST THE TOPS OF
LATTICES OF QUASI LOCAL OPTIMA.

174

THE BLACK DOTS ARE GLOBAL OPTIMA

175

THEOREM:  A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

PROOF BY CONSTRUCTION:    Construct a traveling salesman 
problem over N vertices such that it has two local optima,  and these 
two local optima decompose into N/c recombining components for 
some constant c.

This results in a lattice of size 2N/c

176

THEOREM:  A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

The construction builds a chain of recombining components.
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AN ENSEMBLE OF SOLVERS

177 178

THE JUMP FUNCTION.

This is very nice example 
problem that can  illustrate 
the power of crossover.

T. Jansen and I. Wegener (2002)
The Analysis of Evolutionary Algorithms: a proof that crossover 
really can help.   Algorithmic.  Springer.

179

THE JUMP FUNCTION.

It is a symmetric Unitation function.
It is basically ONEMAX with a MOAT.  180

THE JUMP FUNCTION.
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181

THE JUMP FUNCTION.

Unintelligent
Random Local Search

(N choose k) 2k

N is the number of bits

k is the size of the gap.

N = 128,   k = lg(N)  = 7

(N choose k) = 94,525,795,200     (94 Billion)

(N choose k) 2k   = 12,099,301,785,600   (12 Trillion)

182

THE JUMP FUNCTION.

Doer’s 
“FAST GENETIC ALGORITHM” 
(GECCO 2018).

It isn’t a genetic algorithm,
It is really just the (1+1)ES.

We downloaded 
the publicly available code.

It ran for one week on a
N=1000, k = 10 problem
and didn’t converge.

183

THE JUMP FUNCTION.

How to really solve the JUMP Function.

Apply Systematic Local Search First.

The evaluation function can be rewritten 
to evaluate in constant time.

184

THE JUMP FUNCTION.

Apply Systematic Local Search First.

Population Size: 15

Local Search will converge to points
on the edge of the “Moat” in O(N) time.
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185

THE JUMP FUNCTION.

186

THE JUMP FUNCTION.

We proved that 
Systematic Local Search converges 
to the edge of the Moat in O(N) time.
Then crossover JUMPS the Moat in O(N) time.

Total runtime:  O(N). 

187

THE JUMP FUNCTION.

Our simple Local Search + Crossover GA
solves N = 1,000,000  (one million) and k = 20 (log(N)) 
in a fraction of a second.

Now THAT is a “Fast Genetic Algorithm.”
188

THEORY AND PRACTICE.

Virtually NO THEORY in our 
community asks what happens if you 
apply local search first,
then apply crossover.

Most THEORY assumes 
naïve unintelligent local search.

Many “theory benchmarks” are so trivial 
they are easily solved,
even by unintelligent local search.
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189

QUESTIONS?  
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