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ABSTRACT
The Pareto dominance-based evolutionary many-objective opti-
mization methods are known to suffer from the deterioration of
searchability. We propose to redefine the calculation of Pareto-
dominance. Instead of assigning solutions to non-dominated fronts,
we rank them according to the number of dominating solutions
or the probability of being dominated. Through the experimental
results from a 0/1 knapsack problem, we demonstrate the advan-
tages of this probabilistic approach: 1) it allows to increase the
hypervolume for both the multi- and many-objective optimization
problems; 2) in the case of many-objective optimization, it results
in better fitted solutions as compared to NSGA-II and NSGA-III.

CCS CONCEPTS
• Computing methodologies→ Search methodologies.
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1 PROBLEM FORMULATION
Optimization problems with 2 or 3 objectives are known as multi-
objective; in case of higher dimensionality, they are referred to as
many-objective [5]. Several algorithms exist to effectively solve
multi-objective optimization problems, for example, NSGA-II [2].
Also, the non-dominated sorting procedure is very effective in this
case [9]. However, Pareto dominance-based many-objective opti-
mization evolutionary algorithms face various difficulties. One of
them is the deterioration of the searchability due to the lack of
selection pressure [7]. Indeed, when the number of objectives in-
creases, the number of incomparable solutions grows exponentially.
Several alternative approaches were proposed to overcome this
problem. Among them, there are the relaxed dominance-based ap-
proaches [6], the indicator-based approaches [8], and the reduction
of the number of objectives via scalarization [3]. However, all these
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Figure 1: Illustration of sorting

approaches are associated with some disadvantages. In particular,
the indicator-based approaches require calculating the value of the
relative indicator function; scalarization-based methods require
either running several single-objective optimizations during one
run or running individual single-objective optimization over many
runs [3]; finally, as stated in [6], diversity maintenance can become
more difficult in relaxed dominance-based approaches.

2 𝑘-PARETO OPTIMALITY
To illustrate the Pareto dominance based sorting, let us consider a 2-
objective maximization problem with a set of solutions presented in
Fig. 1. First, we identify all non-dominated solutions and associate
them with the first front. In our example there are 3 non-dominated
solutions: 𝐴, 𝐵 and 𝐶 . Next, we remove the solutions of the newly
identified front from the consideration, and repeat the process. As a
result, we obtain the second front made up of 2 solutions: 𝐷 and 𝐸,
and the third front with only one solution 𝐹 . Instead of sorting by
Pareto dominance, we propose to sort the solutions by the number
of other solutions that dominate the current one. We refer to this
value as 𝑘-Pareto optimality, where 𝑘 stands for the number of
dominating solutions. Examining Fig. 1, we infer that, for this case,
the following three fronts are formed: front 1 with solutions 𝐴, 𝐵,
𝐶 and 𝑘 = 0; front 2 with solution 𝐸 and 𝑘 = 1; and front 3 with
solutions 𝐷 , 𝐹 and 𝑘 = 2. Note that this sorting procedure placed
solution𝐷 to the third front, but it was in the second front according
to non-dominated sorting by Pareto dominance. The calculation of𝑘
can also be performed using a probabilistic measure. Indeed, instead
of calculating the number of solutions that dominate the current
solution, we can estimate the probability of this solution being
dominated. Assuming independence between the objectives, we can
approximate this value as the product of probabilities of the solution
being dominated according to every objective independently.

3 EXPERIMENTAL RESULTS
We evaluate the proposed sorting procedure, by using it in NSGA-
II instead of Pareto dominance-based sorting. The resulting al-
gorithms are referred to as PO-count and PO-prob depending on
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Figure 2: Increase in hypervolume compared to NSGA-II.

whether counting or probabilistic 𝑘-Pareto optimality is adopted.
These algorithms are compared with implementations of NSGA-II
and NSGA-III [1] from the deap python library1. For the experimen-
tal evaluation we use the 0/1 knapsack problem with independent
objectives as defined in [10]. The number of knapsacks or objectives
is varied within the range 𝑛𝑘 ∈ {2 − 8, 10, 15, 25} and the number
of items is set to 250. We adopt binary tournament selection with
replacement and uniform crossover with mutation probability 0.01.
We set the population size to 250 and the number of generations to
500. To measure the performance, we use two metrics: hypervolume
with the origin of coordinates as a reference point, and the fraction
of solutions dominated by other algorithms. The results presented
below are the average among 30 independent runs.

We choose NSGA-II as the baseline, and present the relative
changes in the hypervolume indicator for the rest of the algo-
rithms in Fig. 2 (increase: positive number, decrease: negative num-
ber). We notice that despite having been developed for the many-
objective optimization, NSGA-III almost always results in lower
values of hypervolume, even for a large number of knapsacks. This
confirms a similar observation from [4], and supports our choice of
NSGA-II as a baseline for implementation and comparison instead
of NSGA-III. Further, we see that the value of relative increase for
PO-count is always very close to 0. It means that PO-count yields a
population covering the same hypervolume as NSGA-II. Contrarily,
PO-prob improves the hypervolume, as compared to NSGA-II. This
difference is visible for small 𝑛𝑘 , +3% for 𝑛𝑘 = 3, and is especially
prominent for large 𝑛𝑘 , +30.35% for 𝑛𝑘 = 25. For 𝑛𝑘 between 5 and
8, PO-prob results in lower values of hypervolume than NSGA-II.
However, the relative decrease does not exceed−2.13%. Also, within
this range PO-count performs slightly better than other algorithms.

We calculate the percentage of dominated solutions as fol-
lows. For a given pair of algorithms algorithm1 and algorithm2 we
calculate how many solutions of algorithm2 (dominated algorithm)
are dominated by solutions of algorithm1 (dominating algorithm).
After that, we average the obtained results among all dominating al-
gorithms to get an average fraction of dominated solutions, denoted
as 𝜃 . We present the corresponding results in Fig. 3. We notice the
following tendencies. NSGA-II and PO-count behave very similarly.
For 𝑛𝑘 = 2, the value of 𝜃 for these algorithms is around 25%. After
that, it starts increasing and reaches its peak of approximately 45%
for 𝑛𝑘 = 7. Finally, it gradually decreases to 20% for 𝑛𝑘 = 25. NSGA-
III starts at a similar level and reaches its peak of approximately
30% for 𝑛𝑘 = 3. After that, it decreases below 10% for 𝑛𝑘 = 7 and
stays relatively close to 0 for the large numbers of knapsacks. These

1https://deap.readthedocs.io/en/master/
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Figure 3: Average percentage of solutions dominated by
other algorithms, 𝜃 .

results demonstrate the superiority of NSGA-III over NSGA-II in
case of many-objective optimization. PO-prob starts at around 45%.
However, for 𝑛𝑘 = 3 it is already below 10% and for 𝑛𝑘 = 5 it is
almost 0. This shows that the solutions produced by this algorithm
are rarely dominated. Thereby, PO-prob is an effective approach for
many-objective optimization problems.

4 CONCLUSIONS
We proposed a novel sorting procedure based on 𝑘-Pareto optimal-
ity, where 𝑘 stands for the number of solutions dominating the
current solution. In the case of independent objectives, this sorting
procedure can be approximated as a multiplication of probabilities
of the current solution being dominated for the single objectives.
We incorporate both proposed sorting procedures into NSGA-II
and compared them experimentally with NSGA-II and NSGA-III
using the 0/1 knapsack problem with various numbers of objec-
tives. We showed that the probabilistic 𝑘-Pareto optimality allows
an increased hypervolume for both multi- (up to +3%) and many-
objective optimization problems (up to +30%). Additionally, for a
large number of objectives, it results in better fitted solutions.
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