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%

Abstracted Rules
e.g. 'if side guide setting < width, then poor quality product

~

Abstraction checks for patterns in the base rules
and crates and abstracted rules for each

discovered pattern

Base rules
e.g. if side-guide-setting = 80, width = 82 then poor quality product
if side-guide-setting = 79, width = 80 then poor quality product

Learning system

Raw Data
e.g. Features

‘side-guide setting’, ‘ width’ ‘product quality’

78 81 : poor
79 80 : poor
78 76 : good
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Overview of Tutorial

Domains

Learning Classifier
Systems

Scalable and Reusable Learning

Affective Computing

Learning Cognitive Systems? Geccé%ﬁi“
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Take-Homes of Tutorial: e
LN
e What & Why -

* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,

* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.

x Up-to-Date summary of all the excellent work in the field:

IWLCS — 24th International Workshop on Learning
Classifier Systems

https://iwlcs.organic-computing.de 8
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Take-Homes of Tutorial: 4%\\@
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* What & Why
* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,

* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.
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Take-Homes of Tutorial: 4%\\@
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* What & Why
* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,

* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.
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LCS Overview 5&5/

In LCS the ‘# sign, known as ‘don’t Sk

g’
care’ symbol, can be either 0 or 1.

rule selection, reproduction, mutation,
recombination, and deletion

The classifier system
evolves a set of
maximally general and
accurate classifier rules 0

that collectively solve -

the problem

rule evaluation, and action decision

action |0 feedback

problem

instance 01100

Environment

Isidro M. Alvarez - isidro.alvarez@ecs.vuw.ac.nz 10

10

Connectionist learning j}&”

I
ot

® While the very first Al systems were easily interpretable,
the last years have witnessed the rise of opaque
decision systems such as Deep Neural Networks
(DNNSs).

Feature maps

Subsampling Convolutions Subsampling  Fully connected
Aphex34 CC BY-SA 4.0

Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A, ... &
Herrera, F. (2020). Explainable Artificial Intelligence (XAl): Concepts, taxonomies,
opportunities and challenges toward responsible Al. Information Fusion, 58, 82—115.1 2
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Opaque learning j& Symbolic learning A
m I— Practical Application of a Learning Classifier System in a Steel Hot
&* Strip Mill
( Frraag
’% b} ] ® “NN might learn these rules, but not in transparent form.
o o
== - e — 2 ; ® Transparency in the rule base is essential to allow
£ (D = ) = operators, engineers and managers to validate and learn
(O o »
o a0 = 3 from the rules.
8y [ - > - - [ 2
o = o
® ol S
2 Christoph Roser at
= AllAboutLean.com under the free
CC-BY-SA 4.0 license.
Browne, W., Holford, K., Moore, C., & Bullock, J. (1998). A practical application of a learning

classifier system in a steel hot strip mill. In Artificial Neural Nets and Genetic Algorithms (pp.
611-614). Springer, Vienna.

Sven Behnke CC BY-SA 4.0 13 14
13 14
) , Gecc%@ Take-Homes of Tutorial: s
LCSs are “Wondrous’ @ N
* What & Why \
% Learning Classifier Systems combine the global search of * What are the important systems in the LCSs concept.
Evolutionary Algorithms with the local optimisation of * Why LCSs are important/useful,
Reinforcement Learning to address classification and * Domains of application
regression problems. * Requirements from different classification domains
«» The knowledge extracted though interacting with data or « eXplainable Al (XAl) using LCSs,

embedded in an environment is human readable.

.

« 'Inventing' as LCS' flexible nature allows application to
many domains with many types of feedback on solution
progress.

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning

) ) ) ) ) * Layered, continual and cognitive learning.
+ Bit 'swampy' as an LCS is not a one line algorithm with

independent methods and few parameters.

15 16
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135-Bit Multiplexer VS %t

10-Bit Majority-On B\

43,556,142,965,880,123,323,311,94
9,751,266,331,066,368

VS
1024

Which is harder to solve?

17

Representation: LCS spaces Geﬁg\

Example : Multiplexer

® Has six features and one action, binary coded [0, 1]
® Used in electronics for efficient input of data

® Samples include: 001000:1, 000111:1, 111111:1

® Given just the data samples can the relationship between
Conditions and Acton be learned?

Address _0
Bits 01 (ol | o] o
o]e] o] 0 o o 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

[e] o 0 2] 1 1 1 1 (o] 0 0 0 1 1 1 1
0] o] 1 1 0] o] 1 1 0 0 1 1 0 0 1 1
0O 1 0 1 o 1 0 1 o Al 0 1 0 1 o 1

Register Bits
19

Geccjg\\ N

Symbol generation in LCSs LS

® Rules:
If <conditions> then <action>
Conditions relate to the features in the problem domain

Action relates to the target, e.g. class, movement of robot, ...

If < feature 1 is true, feature 2 is false, feature 3 is true> then <Class A>

Rule- 101:A

If < f1is true, f2 is true or false, f3 is false> then <Class B>

Rule- 1#0:B
18

18

Representation: LCS search spaces G“??‘e

Address ___
Bits 01

L) o o o o
=} © ©
Ll o o

oo™

_—

\

111
110
101
Unbiased 100
011
010
001
000

\

-1
5=0

o (o] o
\0 \O \O \ \
1 1 d
0 1 ;]
1 0 1 ]

Register Bits

o]
1
1

Y- 5 = C o o @ CC
o o ~ RS- HE-T-R =
OHOOHOOH-H‘OO
CESI O = O C Bk B Bk

= O O =l
o -~ E=
=] ©
P ©

o
Unbiased

20



Representation: LCS spaces

Address
Bits.

absiddique@ecs.vus.ac.nz

2

[

Sample space

o

,O—,-

0
o
1 1
! o‘ 1 1
0 o

Regnsler Bits

Solution space
SO )

There is a trade-off between the richness of a
representation to identify the decision boundaries
in a search space and the size of the solution space.

21

Overly General Issue seccfgi\f

[ 1] 1]

10
o1

00

00 o1 10

(a) Ground truth of 4-bit Majority-On Problem

e

o

Condition form:
B283] BitOBIt1Bit2Bit3

— #: don’t care, cover 1 or 0
10| =2 | osoo | soso0

o1 | %5 | osowo | woowo Horizontal axis: Bit0 Bit1

T
L i I T Vertical axis: Bit2 Bit3
1 BOB1 L1} 10 1 BOB1

(b) Correct maximum generalized
rules of action 0
8283

Blue: uncovered action 0

(C) overly-general rules of action 1

23

White: uncovered action 1

10 Green: Correct covered
om0

o | 25 ) Red: Incorrect covered

oo [ )

00 01 10 11 BOB1
(d) overly-general rules of action 0

23
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=g GECC \\i"
Overly Specific Issue j%

* Large number of overly specific plugs a population
when evaluation.

* Basic Accuracy-based LCSs produced overly specific
rules

* Addressed by the Subsumption method.

Optimal solution(s) Gecgé%s»
Describes an ideal ruleset rather\ o

than the requirement of
individual member rules;
multiple [O]s exist;

Previows: [0] set Proposed: Natural Solution

10##1#:1 10##0#:0 4
11###1:1 11###0:0

Describes the member rules rather than the

01#1##:1 01#0##:0 ruleset;

001###:1 000#it#:0 A dataset only has one natural solution;
Completeness;

Correctness; .

Minimality; Consistent;

Un-subsumable;
Allow overlapping;

Non-overlapping;
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Choice of Encoding for real numbers Gegcig\f

%

Euclidean and Hamming distances alter search space

:Hamming distance

Integer Binary  Gray Enumerated

0 000 000 0000000 .
1:1 0011 001:1 0000001 :1 Encoding
21 010:2 011:1 0000011 :1

31 011:1 010:1 0000111 :1

4 1 100:3 110:1 0001111 :1

5 :1 101:1 111 :1 0011111 :1

6 :1 110:2 101:1 011111 1

7 1 111:1 100:1  1M111111 A1

How to encode the range: 0 - 3 and 0 — 4

Alternative representations

Many other representations available
* Artificial neural networks

* Fuzzy logic/sets

* Horn clauses and logic

* S-expressions, GP-like trees and code fragments.

?

27

GECC&S\ 4
¥

* s a LCS with S-expressions not just GP? NO!
* How to tailor functions without introducing bias?
* How to identify building blocks of Subexpressions?

* When are two Subexpressions equivalent?

* |s trade-off between reduced problem search space to increased

solution search space worth it?

29
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Oblique Class boundaries

S

s

We have a search space with only two classes to identify: 0 & 1
It’s real numbered so we decide to use bounds: e.g. 0<x<10

We form Hypercubes / Hyperrectangles, but these are not often
suited to oblique domains
Imagine sine wave domains.....

28

30

GECCg\ N

H : GECCg\ O
Symbolic Regression e 3
Problem

Name Equation . .
e R S Task: Symbolic Regression
Nguyen-03 o +a + 0’ + 2’ + o .
Nguyen-04 =% 4 z° {!r‘ ' 4224z @ SUCCGSS |f < 001 error
Nguyen-05 sin(z?) » cos(z) — 1
Nguyen-06 sin(x) + sin(x + %) . .
mwentr izt 1)+ 11 Solved if ‘exact’ function learnt
Nguyen-08 sqrt
Ni“;‘cnrm # .1'- (v%)
Nguyen-10 2 » sin(z)cos(y)
Nguyen-10 Nguyen-10 -1.00, 0.30 -0.61, 0.61 : —

(sin(sin(sin((sin(x1 + sin(xl + x1))
+ sin(xl + (xI + x1))) + x2) +
(sin(sin(x1 + x1)) + sin(sin(sin(x] +
x1) + sin(sin(x1 + x1) + (x1 + x1)))))
+ (xI + sin(sin(sin(sin(sin(x1)))))))
+ sin((sin(x] + sin(sin(sin(sin(sin(x1
+ x1) + sin(xl + x2))) +
sin(sin(sin(sin(x1 + x1) + x2)) +
sin((sin(x1 + sin(xl + x2)) + x1) +
sin((x1 + x1) + x1)))) + x2)) * xI

DO 1.0 / sin DO 1.0 / sin + DO 0.0 *
DIDO*-D010O/DIDO*//+




Take-Homes of Tutorial:
* What & Why

* Why LCSs are important/useful,
* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,
* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.

31

eXplainable Al (XAl)?

® The results of the solution can be
understood by humans

Or

® Understandability — humans can know how
the model works

® Comprehensibility - represent its learned
knowledge in a human understandable
fashion

® |nterpretability - to provide meaning

® Explainability - interface between humans
and Al

® Transparency - if by itself it is
understandable.

33

GECC%\\"

* What are the important systems in the LCSs concept.

DARPA - XAl

® Dramatic success in machine learning has led to a torrent
of Artificial Intelligence (Al) applications.

® Continued advances promise to produce autonomous
systems that will perceive, learn, decide, and act on their
own.

® However, the effectiveness of these systems is limited by
the machine’s current inability to explain their decisions
and actions to human users

https://www.darpa.mil/program/explainable-artificial-intelligence

32

31

32

Take-Homes of Tutorial:

S

GECCTg

Geccﬁi"
&
* What & Why

* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,

* Domains of application
* Requirements from different classification domains
» eXplainable Al (XAl) using LCSs,

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.

34
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%&' Identification of Problem Patterns .4 -

Pattern visualisation o

(- . )
Clustering a.re ba'sed on' Clustering are based on rules’
Agglon?eratwe Hierarchical generalization level - )
Clustering (AHC) 0
08 3
3
H
An 101 for 6-bits Multiplexer Froblem: Statistics: Visualization 06 5
Cluster DY) S
0012 3 45 6 i
:‘:i g ?0 < g ? é ] nnms-]r-nat-:%nx-nmn;[- §
i £
sz L E R R0 & 4 k|0 111000120
8ir3 klanﬁﬂﬁ:}n .
8ird LA B A
gits  F ¥ R BoR KD ;g;n oo
fign 1111 00 00 o
‘ 1 T#]0
umber of rules in Clusters (C] 1 a 5# #
€O €L G203 4 G5 CB e
0008000 2 1 . 33@\\"&
Az E @
ribyre 4 0
s | # | # | # | #|#

35 36

Visualized VS Standard XCS Visual%d Purpose of Problem Patterns S

attribute Ppercentage

37 38
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Discovered size of optimal set  *<3 RCR Visualized Results (Real Domairis)
in addressed n-bit domains . ~

om m: the number of
* Multiplexer: address bits
* Carry: T4 K=3-2 g N: the number of e !

: 22 +ZK=1 *2 . . i I

involved bits (N>4) )
* Majority-On (Even): N . N Majority-On is two ;

2 2 different problems

Cy +Cy P

depending on N
being even or odd!

From left to right first line: ZOO, IRIS, second line: Wine, WBCD
N+1

2
2xCy 39

Majority-On (Odd):

39 40

dentify the Optimal Solution j.t Compaction Testing Accuracy j%

RCR etc. larger domain </
over-general rules ~/

CRA etc. larger domain X
CRA2 etc. over-general rules <

Proposed Compaction Algorithms

Prog

Domain CRA FU1l FU3 CRA2 K1 QRC PDRC RCR RCR2 RCR3

sed

[Single Model] [ Training Set | Compatiion Algorithm

Previous
Compaction Algorithm

Cowering Aomwl

Zoo 0.58 0.52 095 0.92 0.19 0.94 0.92 0.98 0.98 0.93

Mushroom 0.99 0.99 0.99 0.99 0.34 1.0 0.99 1.0 1.0 0.99

German 0.63 0.65 0.63 0.63 0.57 0.67 0.63 0.71 0.71 0.64

Training Accuracy |

[ ron]
| k1l
QRC

41 42
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Absumption: Specification Gecc%@

Improve LCS: ASCS (Training

i
An over-general rule's  An over-general rule's covered Accuracy)
condition part niche (one instance's state)
0 1 2 3 4 5 0 1 2 3 4
lof#fol#fal#] (o]iJofo1f1] Foomain U e UGS ol 55 e (9535 opiml |
L = ! ) é 20 MUX (32) 6786 99% 108 100%
---------- -'L--------------------------' 37MUX(64) 7174 71% 320 100‘%
Randomly specify a '# bit Flip the according bit's valud ZOMUI(125) L3438 0% ASCS can directly produce complex model to
to fill the specified bit L0l IZE) GEESD 562  represent an explored domain, e.g. using
bosabile oot naw donditions 112 @iy (G IR 263| 12870 different interactive rules to construct
. 5 f ¢ p e 14 carry (318) 8968 149 an optimal solution
12 Majority-On (1716) 8490 17% ToUTT
I 0 I 0 I 0 I # I 1 I # I Sronment 13 Majority-On (3432) 8739 7% \/ 100%
[1] 1 2 3 4 5 vironmen -
\mption 14 Majority-On (6435) 10747 3.6% 12870 100%
[Of# o [1[1]#] |
0 1 2 3 4 5 wrong prediction
(o]#]of#]1]0]
43
44

Gecc%é\, Take-Homes of Tutorial:

Training Performance S » What & Why
* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,
12 Carry: 10 Majority-On:
. s
o F et o WMWW * How to Learn
g - * Visualising learnt patterns
- « Combining blocks of knowledge
” m * Constituent & holistic (lateralized) learning
T sk T ek T * Layered, continual and cognitive learning.

46
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Symbol generation & its transfer “‘;fl@

® Modeling a capacity to generate and then reuse symbols
and functionalities

— Different problems in the same domain are likely to contain
common patterns

— Patterns in one domain are useful in related domains

® XCSCFC [Igbal, Browne 2014] v o)
— Generate GP-like logics as A v ]

a hierarchical combination of symbols from basic symbols

— Based on the XCS’s powerful search capacity

47
47

Representation: LCS search spaces seg;fl%;?\-'

Classifier: a2+b2< 1, for class ‘red’

Code: ((a*a)+(b*b)) < 1
Code Fragment Rules: aa*bb*+1< :red
aa*bb*+1>=: blue

50

Code Fragments Ge)c;‘f}&;i«

* Since 2011 - Code Fragments

* On-line, reinforcement learning

* Reusable + Rich Alphabet

* Part solutions and solution parts

* Condition bits - Independent number, location
* Action bits — State machines, computed actions

0 CF Leaf nodes: Features from the
e a environment or other CF
CF Root nodes: Originally pre-
(0o) ()  (95) defined functions

Muhammad Igbal 49

49

Representation: LCS search spaces eegcé@"

Classifier: a2< 1 AND b2< 1,

Code: ((a*a)<1)&&((b*b) < 1)
Code Fragment Rules:  aa*1<bb*1<&&1< :red
aa*1<bb*1<&&1 >=: blue

51



Representation: LCS search spaces G“;%t

Classifier: ifa<2,a2< 1 AND b%< 1, then fed
if a>=2, (a-4)>+b?< 1, then red

Code: if a<2 AND ((a*a)<1)&&((b*b) < 1), else if ((a*a)+(b*b)) < 1
Code Fragment Rules: a2<, ad-a*bb*+1< :red
a2<, ad-a*bb*+1>=: blue
a2>=,aa*1<bb*1<&& 1< :red
a2 >=,aa*1<bb*1<&& 1>=: blue

52

Building blocks for knowledge it
* Improvement of performance through
experience
* Knowledge gained through experience

* ECis very good at searching, e.g. for building
blocks but ...

Isidro M. Alvarez -
isidro.alvarez@ecs.vuw.ac.nz 54

54

Code fragments chci

&
Rule-condition is a set of GP-like trees
I Condition [ Action |
["DODO~] [ 'DOD3d~ T DID4r~ ["DODO~T T DODO~T T DODO~[ | 0 |

Where features (DO, ..., D5) are the leafs of the trees, functions at nodes

53

Building block evidence — Ge;ci:s
Doug Nitz )

L]
——
r
v cm
—

4
r r
v v

http://www.dnitz.com/#research

used with permission

55
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Code Fragment Reuse Gekcé]%g\.«

Address
Bits J

o

o
o o] 1 1 1 1 y |
EARAARAYS ALAARARARAN
--- 58 9 YA
e Function

Code Fragment  Terminal

=)

Learned code fragment \
is reused in new problem \

58

Two million instances

1.0

0.9

g 0.8 135-bits Multiplexer Problem
c
g 0.7 —standard XCS
£ ——proposed XCSCFC
£ o6

0.5

0.4 T

0 500 1000 1500 2000 2500
Instances (x 1000)
Muhammad.lgbal@ecs.vuw.ac.nz 58

Reusing the Extracted Knowledge GEC;Q&;&«
i

Problem Code Fragments
Level Name Expression

L1 0 |DpiDoD4dr

Level 1 L1.1 {D5~DID0O&& ==
[2 0 |L115D2L1 4r&

Level 2 2.1 |L1.5D2|L1_11D3&t
L3 0 |L29L17D2]|r

Level 3 3.1 |L1.1012 1712112 1r&

Muhammad.lgbal@ecs.vuw.ac.nz 57

57

Salient object detection with XCSCFC

®LCS automatically group images
based on their features.

®Then learn feature weighting and
combinations to extract salient
objects.

59
59



Salient object detection with XCSC‘F&

<— Ground truth

FTS

XCSCFC-based
system

60

60

Lateralized Al Approach

» Left half considers individual features
and simple niches

» Right half creates abstract knowledge
representation, i.e. high order features

Homogeneous Knowledge

extracted across niches

Lateralized
Approach

» Input Signal Processing

= A new input signal is placed in the
context of system knowledge

(“R=R~Y=R=R=Y=N~Te

Constituents Knowledge Abstract Knowledge

= Attention is given to the more salient
parts of a signal

absiddique@ecs.vuw.ac.nz

62

683

Take-Homes of Tutorial:

* What & Why
* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,
* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,
* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.

61

Interpretation of Results

[ Constituents of Multiplexer
(D Constituents of Parity 0 Problem Class

Multiplexer Evaluation

,,,,, Parity Evaluation

[1Jof2]sofofsJofsaTs oJo 2o 2 o 0]
Problem Instance
...... At abstract level
. abstract leve
&M 6-bit Mux Concept 3P 3-bit Parity Concept
Rules.———— - 69 Rules.——-—— 38
Action-CFs ---—-- 47 Action-CFs -=----- 24

Condition-CFs --- 26

63

problem instance problem instance
-




Interpretation of Results Gecég\\‘\l« Aliased Navigation Domain GECA&;%
‘g 1 8,

Is learning the n-th thing any easier than learning the first? (
Life-long learning, Thrun 1996

Do|Di|Dz|Ds|Ds|Ds|Ds|P6|P7 Rulel ~ Rule2

if ~(~Ds)->P7="P6 | If *Ds->P7=P6

Applicable | QutpCt | Applicable | Output
ojojojo]o ol olal ——1—] ~ 0
olololo R-1: If NOT(NOT Dg) Then NOT P6 A B
0|0 |0|0— R-2: If NOT Dg Then P6 & i
olofolo|o[Trrop. 7O ® :
olofofo|1]ofof[1]1 x - v il
s p === f -] - S - s £ - - » Maze 10
1|1f1]1f1]1]ofo]o * - v 0
1(1f1]1(1f1f1]0f1 7 il & -

Almost, 7-bit parity is as easy as 2-bit parity if know 6-bit parity!

absiddique@ecs.vuw.ac.nz 64 65
64 65
Navigation Experiments Gecé}kg\\.« Navigation Experiments Geccg%s»
» Maze 10 = > L57
50T T T T T T T T T T
L ~
A0[RI et WO e e SR i
5| e e S B S R S A A w
o
g E b
L (]
o [ . s
w 20 f a
(=% =
QL 15 ] E
7]
ok B »
L A g oSS
ACS2 -
o LIbXCS =
5 L 1 1 1 1 L 1 1 LateralXCS
Gy, Ty, iy oy, %, %, %, %, %, , $,=00100000 5;=00110010 5,=00101010 55=00110110 5,=001F0110
$5=0010F010 5;=00100F10 5,=00100010 Sz=11000001
Problem Instances
66 67
66 67
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Computer Vision Domain Ge;cfjxgi#f

» Separating Cats from Dogs, even after
Adversarial Attacks

niieal images Olginal mages

jEJ -jz-

dversaral iages

wlEe T2

https://www.kaggle.com/c/dogs-vs-cats

68

68

Take-Homes of Tutorial: Gecé]é\,
S
* What & Why
* What are the important systems in the LCSs concept.
* Why LCSs are important/useful,

* Domains of application
* Requirements from different classification domains
* eXplainable Al (XAl) using LCSs,

* How to Learn
* Visualising learnt patterns
* Combining blocks of knowledge
* Constituent & holistic (lateralized) learning
* Layered, continual and cognitive learning.

70

70
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Interpretation of Results Geccﬁ(
a%

VGG Dog Lateralized System Cat

Cat-1

DL Model (DL-Models|

69

Layered Learning

* One unwieldy
problem split into
several steps

» Each step feeds
into the next

* Educator -
Instructs using
Threshold
Concepts

"The Doors of
Perception" by koen_jacobs is

Isidro M. Alarez - isidro.aharez@ecs vuw.ac.nz

licensed under CC BY-ND 2.0

71



Boolean Multiplexer

Length n=k+2"

=% Output

Humans need to know:

* Recognise Patterns

* Localisation

* Binary numbers
(powers and sums)

* Addressing

* Returning a value

Al 16 way | Can not learn these within the

o itch
a :QIC/ problem itself.

|ofa[afa]efe]e]w]e]efnlofx]n]u]n]e]n]e]x]e] 0|

72

72

Training Path: Layered Learning

+ Sub-problem solutions feed Mux problem

1| S Binary to IO} &
,1> T Address I

Mux
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Layered-learning in LCSs

)

Mux Data Bit

*Train system in 5 stages
L ) e || @ KBS, KBIitString, BinTolnt,

wm»I sumsms || Address, ValueAt

» *Mux: address bits, data bits
e *Length of a Mux given by:
. Sting (A) Int () oL — k + ZK
> o) «K address bits given by:
- *K=1Log,L |

— =)

Isidro M. Avarez - isidro.aharez@ecs vuw.ac.nz 7
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Rule-sets as Functions

Concept:

If <Conditions> Then <Actions>

If <Input> Then <Output>

Function(Arguments <Input> Return <Output>)

Condition Action
DIDg DOD5d~ | DIDAr DODI-] | DODO~] | DODO-| 0
DID0- DOD0- D0~ Do DIDdd | D4 T
DD DOD3d- | DEDI& DODG-] | DODO-] | DOD0-| T
DADGD3DIG | DOD0-] | DODo: DODG-| | DODO~| | DOD0-| 1
DODIAD0DIA& | DOD0~| | DODID2D5&] | D3DI&~ | DODO-| | DODO-|

Learned rule-set is
\ reused as a function in
Learned code fragment new problem

is reused in new problem %\
.
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CF Rule for 6 Bit Mux

CF Tree

Output

Isidro M. Alvarez - isidro.alvarez@ecs.vuw.ac.nz

76

Training 135 Bit Mux

76

Performance

04

02

135 Bit Multiplexer
[1] - 135-bits using XCSCF~
[2] - 135-bits using XCSCFC
[3] - 135-bits using XCS

T T T
o 1000 2000

Instances (x 1000)

Isidro M. Alvarez - isidro.alvarez@ecs vuw.ac.nz
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3000 4000
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CF Rule
for 6 Bit
Mux

—
)
B "®
@
@
©
.
®
CF7 @

e ValueAt
function will

T A
Input: Integer
output the value é) Gurput: Bimary

at the address bit

— [ rinciongl
™
0 Floor
Input: Variant
1 Cailing
Oltpu:
1 Natural Lo
nteger L Constant
5 Bit String
Computes the @ Powerz Loop
address bit - Plus
= Minus
Times
/ Division
= ValueAt
N KBits
N m KBitString
function is < Power2 Loop
aorea ™ AddressOf
KBits kil
<) Shipin ieger
TF 10 TFo © @
@ @
© >
@ O © > S b
OO @ © @
@ O
(&)
©
@
(€]
@®

Input: Variant
Output: Integer

77

Testing 6 Bit Rules on 264, 521, 1034

Bit Mux

Performance
088
|

0s2

79

&) 21 [31
XCSCF~

—--  [1]-264mux

[2]-621mux
rrrrr [3]-1034mux

T T T T T

200 400 600 800 1000
Instances (x 1000)
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Continuous Learning

Subtrgction 1

Continual Learning Classifier GECAQ
System: ConCS T g

77777777777777777777777777777777777777777777777777777777 A
‘ConCS : J
: ! —> Agent0 «——>»Env0

CF generation

Knowledge Pool

—>»  Agentn <> Envn —

o
%
=
c
NC
o ©
- g
[=
=3
w

Agent: type-fitting XCSCFA
82
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Transfer Learning

+ All problem solutions could feed unsolved problems

Isidro M. Alvarez - isidro.alvarez@ecs.vuw.ac.nz 81
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Solve problems concomitantly

- Functions puts | PUE | Output Anticipated operation
s) ¢ type

0 integer | integer
list integer

2 st | st

3 list integer

4 list | integer
list | Boolean

6 | Hst | in

7 list S

5 list list

Binary Addition
9 Jist list
| Length of Binary |
g | —engtofbinany ry list | integer
Addition
1 General Carry-one list
fearr)
12| Sum Modulo 2 list

- | General Even-parity

83
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Solve problems concomitantly eecf%

ConCS: learning curve on Hierarchical Multiplexer
domain and its subproblems with random arrivals

1.0+
101 ‘

: Wv “m-«hvw‘;ﬁf
E 1 I/ 1s]
N o I u
ot b
b RO )

instances (x1000)

0-5: subproblems of Multiplexer; 15 Hierarchical Multiplexer

84

84

ConCS: knowledge network Gecc%%

binzdac

mux_addr_lengthz

|

mMux_adar_lengtn

log2 «

86

Solve problems concomitantly Gegci@f

Learned Solutions

Function Name |

Variable-size Even-parity

Hierarchical Even-parity

of two halve

Length of Bi

Hierarchical Majority-on

85
Relatedness on UCI Zoo GEC;?,@
0.33
1.0
0.3
0.14
0.26 0.35
invertebrate amphibian
0.65 06 g
87
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Summary of Advanced LCSs Gec;%\

» eXplainable Al

* Readable rules form a model, learned knowledge in CFs,
can explain decisions, with time it is understandable.

» Exact, visualisable patterns

 Interrogate meaning and scaling within large
sample/solution space problems with interacting rules.

* Lateralized learning

» Consider constituent and holistic knowledge at different
levels of abstraction simultaneously.

« Continual learning classifier systems

» Multitask learning while learning a curricula.

88

88

Explanatory Learnlng

| IF shape2 == null,
ellipse or rectangle
AND magnitude 2
is > 40.4 THEN
spoon

IF shapel ==
IF shape2 ==

ellipse or rectangle

THEN plate

ellipse  THEN plate

90
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Explanatory Learning

Getting there? Gegcéﬁsi.,

“the results of computer induction should be symbolic
descriptions of given entities, semantically and
structurally similar to those a human expert might
produce observing the same entities.

Components of these descriptions should be
comprehensible as single ‘chunks’ of information, directly
interpretable in natural language, and should relate
quantitative and qualitative concepts in an integrated
fashion”

— R. S. Michalski, A theory and methodology of
inductive learning, in Machine learning, Springer, 1983,
pp. 83—-134
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Cognitive System Gec;ﬁf@
LCSs have a role as Cognitive Systems:

» Perceive - Applicable to a wide range
problems
* Represent, Reason, Learn - Exceptionally flexible
framework
» Communication / Action - Transparent and reusable
solutions

What's missing?
Memory to only consider relevant details of problems
Epochs to allow for parallel cloud computing
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