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ABSTRACT
Bilevel optimisation has been successfully applied to truss optimi-
sation to consider topology and sizing in upper and lower levels,
respectively. This study proposes novelty particle swarm optimi-
sation for the upper level to discover new designs by maximising
novelty. Our experimental investigations show that our approach
outperforms current state-of-the-art methods and obtains multiple
high-quality solutions.
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1 INTRODUCTION
Trusses are structural frameworks carrying applied external forces
on nodes to support structures in civil, aerospace and robotic appli-
cations. In truss optimisation, it is important to quickly find pre-
liminary designs for further detailed investigation and design [8].

Weight minimisation is the most common objective, and a solu-
tion consists of subset of available connections, namely the.

Truss optimisation problems are subject to multiple constraints
such as stability, failure criteria, practice design codes and manufac-
turing specifications. Conventional optimisation methods showed
limited efficiency in solving the problem [3].

Bilevel optimisation is an efficient design approach because it
can model the interaction among different aspects of the problem
more explicitly. In the bilevel formulation, the upper level optimisa-
tion problem determines the truss configuration, such as topology,
where the lower level optimises bars’ sizing.

It has been observed that there exist multiple distinct topologies
with almost equal overall weight in the truss optimisation search
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space [3, 5]. Therefore finding multiple equally good truss designs
with respect to the topology and sizes can enable practitioners to
choose according to their preferences.

In this paper we consider bilevel optimisation of topology and
size of trusses subject to discrete sizes. For the lower level opti-
misation, we use a reliable evolutionary optimiser. For the upper
level, we employ novelty particle swarm optimisation to explore
the upper level. In our experiments, We show that we can find mul-
tiple distinct high-quality solutions with respect to the topology –
moreover, we demonstrate new best solutions for all investigated
design problems.

2 BILEVEL TRUSS OPTIMISATION PROBLEM
Bilevel truss optimisation problem nests an upper level topology
optimisation problem into a lower level size optimisation problem
as follows:

find ®𝑥, ®𝑦, ®𝑥 ∈ {0, 1}𝑚, ®𝑦 ∈ 𝑆𝑚

optimise 𝐹 ( ®𝑥, ®𝑦)
subject to 𝐺1 ( ®𝑥), 𝐺2 ( ®𝑥), 𝐺3 ( ®𝑥)

where 𝐺1 ( ®𝑥) = True ⇐⇒ Essential nodes are in truss
𝐺2 ( ®𝑥) = True ⇐⇒ Truss is externally stable
𝐺3 ( ®𝑥) = ®𝑦 ∈ argmin{𝑊 ( ®𝑥, ®𝑦), 𝑔 𝑗 ( ®𝑥, ®𝑦) ≤ 0, 𝑗 = 1, 2, 3}

where ®𝑥 refers to the binary topology variable in the upper level
where it shows if a truss bar is active (1) or excluded (0). We can
show the upper bound of topology as the ground structure where
all bars are active for𝑚=8 as ®𝑥 = [11111111]. ®𝑦 denotes the sizing
variable in the lower level optimisation problem. The elements of
®𝑦 should be selected from an available size set (𝑆). 𝐹 ( ®𝑥, ®𝑦) shows
the objective function considered in the upper level such as weight
minimisation used in [5] or maximising novelty in this study and,
𝑊 ( ®𝑥, ®𝑦) = 𝜌

∑𝑚̂
𝑖=1 𝑥𝑖𝑦𝑖𝑙𝑖 refers to the truss weight where, 𝜌 and 𝑙

show the material density and length of a bar, respectively.
Solutions in the upper level should satisfy the topology con-

straints for feasibility namely𝐺1 ( ®𝑥) and𝐺2 ( ®𝑥), we refer the reader
to [6] for detailed explanations.

3 BILEVEL NOVELTY SEARCH
NdPSO is a Novelty-Driven variant of PSO employing novelty
search to drive particles toward novel solutions that are different
from previously encountered ones [4]. The main idea is to explore
the search space by ignoring objective-based fitness functions and
rewarding novel individuals. NdPSO employs core principles of PSO
and mainly replaces the objective function with novelty evaluation.
Note that personal best (𝑝𝑡 ) and global best (𝑝𝑔) value in NdPSO
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Algorithm 1: Novelty PSO for Bilevel Truss Optimisation
Randomly generate the initial population of Binary PSO
Set the velocity of particles in population
Evaluate the novelty score for each particle ( ®𝑧𝑖 )
𝑦𝑖 = loweroptimiser(𝑧𝑖 )
Store𝑊 ( ®𝑧𝑖 , ®𝑦𝑖 )
Update 𝑝𝑡 and 𝑝𝑔
Update the archive
repeat

for i=1 to population size do
Update position of particle
Update velocity of particle
Evaluate novelty score of the particle
𝑦𝑖 = loweroptimiser(𝑥𝑖 )
Store𝑊 ( ®𝑥𝑖 , ®𝑦𝑖 )
Update 𝑝𝑖𝑡 and 𝑝𝑔 according to novelty score
Update the archive

until termination criterion is met

show a dynamic behaviour. We use NdPSO in the upper level of
truss optimisation to discover novel topology designs.

Our proposed approach works as follows (see Algorithm 1).
Initially, the binary PSO generates a random population of binary
strings. The particles’ velocities are drawn randomly from [−𝜐,𝜐].
Then, the novelty score is computed for particles with respect to the
archive. Because all particles are feasible, loweroptimiser computes
the corresponding optimal size for the upper level topology using
an evolutionary optimiser in lower level for size optimisation [1].
Next, we update the archive with the current population. Then,
the position and velocity of particles are updated, and the above
process repeats till the termination criterion is met.

4 EXPERIMENTAL RESULTS
We apply our method to two truss problem known as 15-bar and
72-bar trusses which are a symmetric and non-symmetric problems.
We refer the reader to [2] for details on the benchmarks.

Table 1 shows our findings by the proposed bilevel novelty search
compared with other methods. We can see that designs (b) and (c)
find the same weight, and they are symmetric around the vertical
axis with respect to the topology and size of bars. Both designs
remove 6 bars from the design space, and symmetrically they elimi-
nate nodes 2 and 4 from the design space, respectively. Design (d)
eliminates five bars and node 2 from the design space. Design (a) is
the best-found design eliminates five bars in the design space and
provides a lighter solution compared with other methods.

Table 2 shows our findings for 72-bar truss problem. We can see
that designs (b) and (c) identify five groups of bars as redundant,
including four common groups. This will lead to the elimination
of 16 bars (out of 72) from the design space. Design (a) combines
the identified redundant bars in designs (b) and (c) and removes 20
bars in total from the design space and achieves a lighter solution.
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