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ABSTRACT
A recent novel modification to Ant Colony Optimisation (ACO)
known as Partial-ACO can be successfully used to solve Travelling
Salesman Problems (TSP) by making partial modifications. The ap-
proach also dispenses with a pheromone matrix using the popula-
tion to build pheromone levels on edges enabling scaling to large
problems. Consequently, being population based the approach can
be also used within a Genetic Algorithm as a mutation operator.
Results demonstrate significant improvements when using Partial-
ACO as a mutation operator with a range of crossover operators.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms.

KEYWORDS
Ant Colony Optimisation, Genetic Algorithm, TSP

ACM Reference Format:
Darren M. Chitty. 2021. Partial-ACO as a GA Mutation Operator Applied
to TSP Instances. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459424

1 INTRODUCTION
Meta-heuristic approaches are popular for solving Travelling Sales-
man Problems (TSP) such as Genetic Algorithms (GAs) [4] or Ant
Colony Optimisation (ACO) [2]. The goal of the TSP is to visit all
cities onceminimising traversal. The symmetric TSP is represented
as a complete weighted graph G = (V , E,d) where V = {1, 2, ..,n}
is a set of vertices defining cities and E = {(i, j)|(i, j) ∈ V ×V } the
edges with distance d between pairs of cities such that di j = dji .
The objective is to find a Hamiltonian cycle inG of minimal length.

ACO has two issues for scaling to large problems, a memory
overhead from a pheromone matrix and a computational cost of
simulating ants. A novel variant to ACO known as Partial-ACO
[1] dispenses with a pheromone matrix using an ant population
to construct pheromone levels. Moreover, only partial changes are
made to ants best found solutions enabling Partial-ACO to scale
to TSPs of over 100k cities. As Partial-ACO constructs pheromone
levels via a solution population these can be ants or in fact GA so-
lutions. Hence, the approach could be embedded inside a GA. This
paper presents Partial-ACO within a GA as a mutation operator.
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2 PARTIAL-ACO INSPIRED GA MUTATION
ACO applied to the TSP involves simulated ants moving through
graph G visiting each city depositing pheromone defined by the
quality of the ant’s tour. Ants construct tours by probabilistically
deciding cities to visit next using this pheromone and heuristic
information of edge length using the random proportional rule, the
probability of ant k at city i visiting city j ∈ N k defined as:

pki j =
[τi j ]α [ηi j ]β∑

l ∈N k [τil ]α [ηil ]β
(1)

where [τil ] is the pheromone on edge of city i to city l ; [ηil ] is
heuristic information, 1/dil ; α and β are tuning parameters.

An alternative meta-heuristic is a GA which uses the princi-
ples of Darwinian evolution to find optimal solutions. A popula-
tion of solutions is iteratively improved using natural selection,
genetic crossover and mutation. With the TSP genetic material
represents a tour of cities to be visited. As cities can only occur
once specialist crossover operators prevent a given city existing
twice in a solution. To generate offspring genetic material from
one parent between two crossover points is copied. Genetic ma-
terial is then copied from a second parent unless a city is already
present. Remaining unvisited cities are resolved using a range of
crossover methods such as cyclic (CX), partially mapped (PMX) or
order based (OX) crossover. Mutation is then probabilistically per-
formed such as swapping or inserting cities or inverting a set.

Both ACO and GAs have disadvantages. ACO in terms of a large
pheromone matrix memory overhead and computational cost of
simulating ants. A GA in terms of using only two parents rather
than whole population to generate two new solutions and also
no domain specific heuristic information. A recent ACO variant,
Partial-ACO [1], has two differences to ACO. First, no pheromone
matrix instead using a population based approach (P-ACO) [3]with
pheromone levels calculated based on the population of ant solu-
tions. As pheromone cannot build up on edges of graph G, the
pheromone deposit of ant k on an edge E of graph G is related
to the quality of the given solution compared to the global best,
дbest . Hence, ant k pheromone deposit, ∆τki j , is defined by:

∆τki j =

{
(дbest /lkbest )

α , if edge (i, j) belongs to T k
0, otherwise

(2)

where (дbest /lkbest ) is the quality of antk’s local best solution in re-
lation to the global best and α a parameter controlling pheromone
influence. An ant k at each decision point reconstructs pheromone
levels on edges from its current location to those unvisited.

The second difference with Partial-ACO is that ants only par-
tiallymodify their own best found solution, lbest , in the same prob-
abilistic manner as ACO. A random section is selected in the lbest
solution and retained. The remaining part of the solution is recon-
structed probabilistically as previously described (see Figure 1).
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Figure 1: An illustration of the Partial-ACO methodology.

Table 1: GA and Partial-ACO mutation parameters

GA Parameters Partial-ACO Mutation Parameters

Population Size - 128 α - 10.0
Maximum Iterations - 100k β - 4.0
Mutation Probability - 33% τinit - 0.5

Tournament Size - 3

Table 2: Average run-times and error fromoptimal solutions
when using standard GA crossover and mutation operators

TSP
Instance

Crossover Operator

CX OX PMX

lin318 Error (%) 5.13 ± 1.20 11.24 ± 2.12 5.84 ± 1.39
Time (secs) 99.83 ± 2.98 90.64 ± 2.44 90.88 ± 2.28

pcb442 Error (%) 5.83 ± 1.22 19.70 ± 2.34 6.35 ± 1.52
Time (secs) 99.54 ± 2.08 93.91 ± 2.42 94.56 ± 1.83

rat783 Error (%) 9.32 ± 0.71 31.82 ± 1.21 8.87 ± 0.69
Time (secs) 107.86 ± 1.49 107.92 ± 1.78 110.89 ± 0.95

pr1002 Error (%) 12.12 ± 1.02 35.67 ± 1.23 10.63 ± 1.07
Time (secs) 116.43 ± 0.95 112.45 ± 0.54 117.02 ± 1.43

fl1400 Error (%) 14.22 ± 2.17 31.22 ± 2.12 11.24 ± 2.22
Time (secs) 123.86 ± 0.40 124.56 ± 0.31 131.99 ± 2.80

u2192 Error (%) 31.09 ± 1.15 47.97 ± 1.13 25.80 ± 1.33
Time (secs) 155.40 ± 0.55 156.10 ± 0.44 194.83 ± 5.10

pr2392 Error (%) 30.50 ± 1.01 45.74 ± 1.04 25.07 ± 1.08
Time (secs) 165.86 ± 0.86 167.84 ± 0.55 224.33 ± 6.76

fl3975 Error (%) 45.34 ± 1.85 56.57 ± 1.78 39.62 ± 3.51
Time (secs) 250.48 ± 0.79 249.69 ± 1.38 387.73 ± 27.20

Given the population based nature of Partial-ACO it can equally
use a population of solutions generated by a GA. Consequently, the
Partial-ACOmethodology could be utilised as a mutation operator
within a GA. Indeed, the partial modification of a solution can be
described as similar to mutation. Hence Partial-ACO mutation se-
lects two points in a solution similar to crossover. However, in this
case all the cites between these points are marked as unvisited. An
ant then reconstructs this section starting from the city prior to the
first crossover point making choices using pheromone constructed
from the population of GA solutions and heuristic information.

3 RESULTS
Tomeasure the effectiveness of the Partial-ACOGAmutation oper-
ator it will be tested against eight TSP instances from the TSPLIB
library. To provide a baseline to compare Partial-ACO mutation
several standard crossover and mutation operators will be tested
first, crossover operators OX, CX and PMX with swap, inversion
and insertion mutation. Experiments were conducted over 25 ran-
dom runs using a parallel implementation executing on an AMD
Ryzen 2700 processor. Table 1 provides the GA parameters used.

The baseline results are shown in Table 2 whereby it can be ob-
served that for small problems error is only a few percent from op-
timal but for larger problems considerable performance loss occurs.

Table 3: Average run-times and error fromoptimal solutions
when using additional Partial-ACO mutation within a GA

TSP
Instance

Crossover Operator

CX OX PMX

lin318 Error (%) 2.49 ± 0.61 2.88 ± 0.79 2.98 ± 0.98
Time (secs) 112.22 ± 1.75 112.65 ± 1.58 112.94 ± 1.56

pcb442 Error (%) 2.83 ± 0.68 6.05 ± 1.35 3.05 ± 0.93
Time (secs) 126.37 ± 1.27 124.54 ± 0.73 125.10 ± 0.95

rat783 Error (%) 3.53 ± 0.52 9.60 ± 1.77 4.07 ± 0.72
Time (secs) 191.09 ± 0.89 187.92 ± 0.53 193.12 ± 1.68

pr1002 Error (%) 3.71 ± 0.52 10.77 ± 1.57 4.16 ± 0.78
Time (secs) 239.97 ± 0.81 239.02 ± 0.48 243.05 ± 2.43

fl1400 Error (%) 3.82 ± 1.50 8.86 ± 1.92 5.12 ± 1.72
Time (secs) 354.27 ± 3.02 357.01 ± 0.90 360.21 ± 4.84

u2192 Error (%) 5.17 ± 0.73 14.37 ± 1.35 6.44 ± 1.37
Time (secs) 621.97 ± 2.64 624.81 ± 1.16 640.35 ± 11.17

pr2392 Error (%) 5.40 ± 0.70 17.14 ± 1.31 6.05 ± 0.62
Time (secs) 713.06 ± 1.61 714.87 ± 1.23 728.75 ± 5.21

fl3975 Error (%) 4.96 ± 1.91 12.67 ± 1.21 6.99 ± 2.76
Time (secs) 1486.92 ± 8.36 1483.63 ± 2.72 1511.48 ± 37.20

Local search such as Edge Assembly (EAX) or 2-opt would improve
results but for these experiments a pure evolutionary approach is
desired. The PMX crossover operator offers the best performance.

To test the effectiveness of Partial-ACO mutation within a GA
it is added as a fourth mutation operator. The Partial-ACO param-
eters used are described in Table 1. The results from a GA with
Partial-ACO mutation are shown in Table 3. Contrasting to Table
2 it is clear that a significant performance gain has been achieved
especially for larger problems with up to a ten fold reduction in rel-
ative error. CX crossover demonstrates the best results when using
Partial-ACO mutation. However, it should be noted that Partial-
ACO mutation incurs a computational cost especially as problem
sizes increase, a quadratic increase. This is due to quadratically
greater edges for ants to consider at each step as noted in [1].

4 CONCLUSIONS
The performance of a GA applied to TSP instances is significantly
improved using the population based ACO technique Partial-ACO
as amutation operator. The GA population provides pheromone in-
fluence for simulated ants partially mutating solutions combining
Darwinian principles with ant search. This enables considerable
error reduction compared to standard GAs with only small errors
from optimality without resorting to local search. These gains are
due to ants considering all GA solutions via pheromone and heuris-
tic informationwhich GAs do not. However, simulating ants incurs
a large computational cost. Further work will investigate methods
to reduce this cost, other crossover operators and local search.
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