
Benchmarking Gradient-Free Optimizers for 3D Performance
Capture in the ��∇ Nevergrad platform

Alexandros Doumanoglou
Nikolaos Zioulis∗

aldoum@iti.gr
nzioulis@iti.gr

Vladimiros Sterzentsenko∗
Antonis Karakottas∗

vladster@iti.gr
ankarako@iti.gr

Centre For Research and Technology
HELLAS

Thessaloniki, Greece

Dimitrios Zarpalas
Petros Daras
zarpalas@iti.gr
daras@iti.gr

ABSTRACT
In this paper we document our work that extends the�∇ nevergrad
platform by adding a real-world benchmark at the intersection of
computer vision and graphics: 3D Performance Capture. Detailed
documentation can be found at vcl3d.github.io/nevergrad/

CCS CONCEPTS
• Theory of computation → Optimization with randomized
search heuristics.

KEYWORDS
Benchmarking, Open Source, Optimization, Performance Capture,
Nevergrad

ACM Reference Format:
Alexandros Doumanoglou, Nikolaos Zioulis, Vladimiros Sterzentsenko, An-
tonis Karakottas, Dimitrios Zarpalas, and Petros Daras. 2021. Benchmarking
Gradient-Free Optimizers for 3D Performance Capture in the �∇ Nevergrad
platform. In 2021 Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3463281

1 INTRODUCTION
In this work we introduce a new benchmark to the�∇ nevergrad [4]
platform for the real-world application of 3D Human Performance
Capture.We consider the case of fitting an animatable, skinned, tem-
plate 3D mesh to a post-processed 3D-reconstructed mesh created
from sensed noisy volumetric data.

For the purposes of the benchmark we create and release1 a vol-
umetric dataset consisting of 11 human performances, recorded via
a volumetric capture system [5]. For each performance, a skinned
3D template mesh of the performer has been automatically gener-
ated. Also, among all input volumetric frames, one individual frame
is selected as a fitting target for the template mesh. The fitting

∗Authors with equal contribution
1github.com/VCL3D/PerformanceCapture/releases/tag/dataset_1.0

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3463281

of the animatable template mesh, is accomplished via solving for
its animation (i.e. pose) parameters that better explain the target
frame’s captured performance data. The latter is a 3D reconstructed
mesh [2] at each frame of the captured volumetric sequence. The
quality of the fit is measured by a function which linearly combines
multiple error terms (3D, projective 2D, and priors) into a single
objective. This work aims to provide a fully automated benchmark
to assess the performance of any�∇ nevergrad optimizer to the
performance capture template fitting task. A detailed discussion on
the fitting problem, the objective function, and evaluation results
of the most popular�∇ nevergrad optimizers to this problem can be
found in [1].

2 SOFTWARE
2.1 Benchmark Application Components
The objective function evaluation, used in this benchmark, requires
loading and 3D processing of the recorded depthmaps, computing
a 3D distance field in the GPU, for efficient run-time, as well as
multiple GPU-accelerated rendering operations among others. Im-
plementing the objective function evaluation pipeline in Python
would be both impractical and costly in terms of development time
and run-time performance, not to mention the increased code-base
size which would be required to import in�∇ nevergrad . Thus, we
chose to develop an external C++ application executable (called
Performance Capture Benchmark Server), which is distributed in
Windows binary form2 which serves objective function evalua-
tions. Its interface is decoupled via a RabbitMQ messaging broker
[3]. On the�∇ nevergrad side, the implemented class realizing the
objective function, talks to the benchmark server via RabbitMQ
messages, whilst exposing a blocking call interface, hiding the
behind-the-scenes asynchronous messaging. Thus, this benchmark
comes with two major software components: the C++ server and
the�∇ nevergrad Python client.

2.2 Installation, Requirements & Execution
Out-of-the-box execution of this benchmark, with minimal config-
uration, requires that the RabbitMQ server, the benchmark server
and�∇ nevergrad , are all installed on the samemachine3. The bench-
mark server requires an NVIDIA GPU supporting NVIDIA CUDA

2github.com/VCL3D/PerformanceCapture/releases/tag/1.0
3Currently only Microsoft Windows 10 Operating System is supported

7

https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://vcl3d.github.io/nevergrad/
https://doi.org/10.1145/3449726.3463281
https://facebookresearch.github.io/nevergrad/
https://github.com/VCL3D/PerformanceCapture/releases/tag/dataset_1.0
https://doi.org/10.1145/3449726.3463281
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://www.rabbitmq.com/
https://facebookresearch.github.io/nevergrad/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://facebookresearch.github.io/nevergrad/
https://www.rabbitmq.com/
https://facebookresearch.github.io/nevergrad/
https://github.com/VCL3D/PerformanceCapture/releases/tag/1.0


GECCO ’21 Companion, July 10–14, 2021, Lille, France A. Doumanoglou et al.

v9.2 and OpenGL v4.6. Regarding the�∇ nevergrad Python side, com-
patibility is ensured with Python v3.8.2with additional dependen-
cies on aio-pika v6.6.1, py7zr v0.11.3 and multivolumefile
v0.1.2 Python packages.

Before running the benchmark, users should edit the uri entry
in /nevergrad/functions/perfcap3d/configuration/
rmqsettings.json to match the RabbitMQ connection string of
their RabbitMQ setup. The only thing to edit is the username and
password, corresponding to the RabbitMQ server account.

Benchmark execution is accomplished via the standard�∇ never-
grad benchmark command: python -m nevergrad.benchmark
perfcap. On the first run, the�∇ nevergrad Python client will au-
tomatically download the benchmark server executable and the
dataset (≥ 30𝐺𝐵 free disk space required) and install the resources
in /nevergrad/functions/perfcap3d/resources folder.

2.3 Configuration Files
For each one of the 11 human performances included in the re-
leased dataset, we created one respective experiment configuration
file, named experimentX.json, X ∈ {1, 2, ..., 11}, and located in
/nevergrad/functions/perfcap3d/configuration. One bench-
mark experiment configuration file contains several parameters
related to that experiment. Running the perfcap benchmark, con-
sists of executing all individual experiments one by one for 10 opti-
mizers and 3 different budgets, which, nonetheless, is configurable
in the source-code. The included experiment configuration files
contain the parameter values that we used for the local experiments
described in [1]. However, new experiments can be added at will, by
adding their configuration file to the aforementioned folder. Each
experiment configuration file contains a reference to a .perfproj
project file containing metadata about the multi-view recorded
performance and the skinned 3D template mesh. Additionally, a
reference to the target frame index of the recorded performance is
provided and individual weights for the linear combination of ob-
jective function error terms. Finally, these files also include values
defining the initial pose of the 3D template, and extensive configu-
ration, on the overall degrees of freedom (i.e. variables) of each joint,
the variable bounds, the variable mutation variances, and boolean
flags indicating whether mutation variances are mutable by them-
selves. When the relative_search_space is set to true, all pose
variables are considered relative to the initial pose, while in all cases,
the pose values for the degrees of freedom excluded by each joint
are fixed to the respective values from the initial pose. Essentially,
the experiment configuration files cover the parametrization of
the objective function in the number of variables, variable bounds,
error terms and mutation variances.

2.4 Data Viewing, Error Term Visualizations
and Debugging

When the benchmark server executable (performance_capture
.exe) is run without the --benchmark_server flag, and no other
command line arguments, it can be used to load a .perfproj file
in order to inspect recorded data and see some visualizations of
selected individual error terms. Apart from integrating a typical
player functionality to allow 3D viewing of the performance capture
data, the application can be used to view and inspect the created
3D template at its initial pose, as well as visualize in 2D and 3D the

values of the individual objective function error terms. Through
manual manipulation and editing of the template’s pose parameters,
the users are able to trigger objective function evaluations and
visualizations of the selected error terms. This functionality aims
to serve as a means for researchers and practitioners to familiarize
with the problem and debug potential issues when developing new
or evaluating existing optimization algorithms.
3 EXPERIMENT RESULTS & LOGGING
Each individual instance of an experiment run, receives an
experiment_tag_id, uniquely identifying the optimizer, budget
and repetition number, under which the experiment was run.
The experiment_id_tag is also appended in the�∇ nevergrad logs
and is an identifier which can help in associating�∇ nevergrad logs
with benchmark server logs.

For each finished instance of an experiment identified by
experiment_tag_id, the benchmark server writes 3 kinds of logs
(all located in /nevergrad/functions/perfcap3d/resources/
benchmark_server):

• /logs/{experiment_tag_id}.json: for each iteration of
the optimization, this file contains the objective function
query point (animation pose), the individual error term val-
ues, and the aggregated (weighed) error value, of the objec-
tive function at this query point.

• /live_meshes/experiment_{experiment_id}.ply: the 3D
mesh that corresponds to the target frame of the performance
that the animated template should fit. The experiment_id
values can be found in experiment_{X}.json configuration
files.

• /animated_meshes/{experiment_tag_id}.ply: these files
contain the animated template 3D mesh at the optimizer’s
recommendation pose, after the end of the optimization.

4 FUTURE EXTENSIONS
Running the benchmark on other operating systems, requires a
distributed setup, which however, is not currently supported in an
automated way and can be considered for future extension. Another
potential future extension regards treating the problem as a multi-
objective optimization problem by splitting the objective function
to its individual error terms. This is straightforward to accomplish
and does not require any modification to the performance capture
benchmark server executable.

5 ACKNOWLEDGEMENT
This work has been supported by the EU funded H2020 Program:
INFINITY, Grant Agreement 883293.

REFERENCES
[1] A. Doumanoglou, P. Drakoulis, K. Chrstaki, N. Zioulis, V. Sterzentsenko, A.

Karakottas, D. Zarpalas, and P. Daras. 2021. Zeroth-Order Optimizer Benchmark-
ing for 3D Performance Capture: A real-world use case analysis. In Proceedings of
the Genetic and Evolutionary Computation Conference 2021 (GECCO ’21).

[2] Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13.

[3] RabbitMQ 2021. - Messaging that just works. https://www.rabbitmq.com/.
[4] J. Rapin and O. Teytaud. 2018. Nevergrad - A gradient-free optimization platform.

https://GitHub.com/FacebookResearch/Nevergrad.
[5] Vladimiros Sterzentsenko, Antonis Karakottas, Alexandros Papachristou, Nikolaos

Zioulis, Alexandros Doumanoglou, Dimitrios Zarpalas, and Petros Daras. 2018.
A low-cost, flexible and portable volumetric capturing system. In 2018 14th Inter-
national Conference on Signal-Image Technology & Internet-Based Systems (SITIS).
IEEE, 200–207.

8

https://facebookresearch.github.io/nevergrad/
https://github.com/mosquito/aio-pika
https://github.com/miurahr/py7zr
https://github.com/miurahr/multivolume
https://github.com/miurahr/multivolume
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://facebookresearch.github.io/nevergrad/
https://www.rabbitmq.com/
https://GitHub.com/FacebookResearch/Nevergrad

	Abstract
	1 Introduction
	2 Software
	2.1 Benchmark Application Components
	2.2 Installation, Requirements & Execution
	2.3 Configuration Files
	2.4 Data Viewing, Error Term Visualizations and Debugging

	3 Experiment Results & Logging
	4 Future Extensions
	5 Acknowledgement
	References

