
Quality-Diversity Optimisation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
GECCO ’21 Companion, Lille, France
© 2021 Copyright held by the owner/author(s).
10.1145/3449726.3461403...$15.00

Stéphane Doncieux
ISIR, Sorbonne Université,

CNRS UMR 7222, F-75252, Paris

stephane.doncieux@upmc.fr

Antoine Cully
Imperial College London

London, UK

a.cully@imperial.ac.uk

Jean-Baptiste Mouret
Inria Nancy - Grand Est,

CNRS, Université de Lorraine,

F-54600, France

jean-baptiste.mouret@inria.fr

http://gecco-2021.sigevo.org/

Instructors

❖ Antoine Cully is director of the Adaptive and Intelligent
Robotics Lab (AIRL) and Lecturer (assistant Prof) at
Imperial College London, UK. His research is at
the intersection between artificial intelligence and
robotics, and aims at increasing the versatility and
adaptation capabilities of robots.

❖ Jean-Baptiste Mouret is a senior research scientist
("directeur de recherche") at Inria, in Nancy, France
(https://members.loria.fr/jbmouret/). His main interest is to
leverage machine learning and evolutionary computation
to make robots more adaptive in the real world. JB
Mouret co-introduced MAP-Elites and contributed many
ideas about behavioral diversity in evolutionary robotics.

❖ Stephane Doncieux is Professor at Sorbonne University,
in Paris, France. His researches are on open-ended
learning in robotics with a strong use of evolutionary
algorithms. He is deputy director of the Institute of
Intelligent Systems and Robotics (ISIR).

Course Agenda

❖ Evolution beyond optimisation

❖ Quality and Diversity

❖ The two strategies to cover a reachable space

❖ QD algorithms: How does it work?

❖ Examples of applications

❖ More recent concepts

❖ Scaling-up QD

❖ Brief overview of existing implementations

❖ Open questions/challenges

What is evolution about ?

❖ Fitness landscape
metaphor [Wright 1932]

❖ Evolution as an
optimisation method:

Find x maximising F(x)

Wright (1932), The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in evolution.
Sixth International Congress on Genetics.

715

Is that all evolution can do ?

https://commons.wikimedia.org LadyOfHats

Evolution beyond optimisation

❖ From:

• Find x maximising F(x) : find the optimal way of solving a
given problem

• outcome: single value

❖ To:

• Find all possible x of interest

• outcome: (large) set of points

(definition of interest comes later…)

Why looking for a large set of points
instead of a single, optimal, solution ?

❖ « Improved optimization performance; the algorithm often finds
a better solution than the current state-of-the-art search algorithms
in complex search spaces because it explores more of the
feature space, which helps it avoid local optima and thus find
different, and often better, fitness peaks . »

Traditional EA QD algorithm

Optimal area

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

On the limits of objective-based search

Secretan, Beato, D’Ambrosio, Rodriguez, Campbell, Folsom-Kovarik, Stanley (2011)
Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolutionary
Computation journal

Images generated with CPPN
through an interactive evolution process (PicBreeder)

716

On the limit of objective-based search

Woolley, Stanley (2011) On the deleterious effects of a priori objectives on evolution and

representation. Proc of GECCO.

Goal:

Results with an objective-based search, after 30 000 generations

with a population size of 150:

(population size = 15)Intermediate steps

in Picbreeder:

Gaier, Asteroth, Mouret (2019). Are quality diversity algorithms better at generating stepping stones

than objective-based search? GECCO companion (poster)

Why looking for a large set of points
instead of a single, optimal, solution ?

Why looking for a large set of points
instead of a single, optimal, solution ?

❖ « Illuminating the fitness potential of the entire feature
space,not just the high-performing areas, revealing
relationships between dimensions of interest and
performance. »

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Traditional EA QD algorithm

Why looking for a large set of points
instead of a single, optimal, solution ?

❖ Application to robotics: generating (off-line) a repertoire of
behaviours to exploit (on-line)

Kim, Coninx, & Doncieux (2021). From exploration to control: learning object manipulation skills
through novelty search and local adaptation. Robotics and Autonomous Systems.

717

Evolution to design behavioural systems

Evaluation
Genotype

Fitness

Random generation

Selection

Variation

8.3

00110100111

Termination

Initial conditionsEvaluation

Genotype

Phenotype

Behavior

Environment

Fitness

Doncieux, Bredeche, Mouret, Eiben (2015) Evolutionary robotics: what, why, and where to.
Front. Robot. AI

❖ applications in robotics, video games, engineering, …

What is a genotype of interest?

Find all possible x of interest

Introducing an new characterisation of x:
behaviour descriptor

Given a set of genotypes , x is

interesting if it reaches a behaviour that

is original or better than those of

Definition of Quality-Diversity
algorithms:

Find a set of solutions {xi}:

1. covering the whole reachable
behaviour space

2. with a good (local) quality

!

!

? ??

Evaluation
of a genotype x

Projection of the trajectory

in a behaviour space

τ

Covering the whole reachable space

❖ A key feature: evolvability

« the capability of a system to generate adaptive phenotypic
variation and to transmit it via an evolutionary process »

[Hu and Banzhaf, 2010]

❖ 2 strategies: 2 families of QD algorithms

• Strategy 1: searching for novelty (Novelty Search)

• Strategy 2: searching for empty niches (MAP-Elites)

Hu, Banzhaf (2010) Evolvability and speed of evolutionary algorithms in light of recent
developments in biology. Journal of Artificial Evolution and Applications.

Covering the whole reachable space
Strategy 1: searching for novelty

❖Novelty search: replace any goal-oriented fitness by a
measure of novelty in the behaviour space

❖ Maximize:

❖ are the k-nearest neighbors in pop+archive

❖Archive:

• Samples from past generations

• Typically augmented with individuals having a high novelty

{μ0, …, μ
k−1}

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation Journal.

ρ(x) =
1

k

k

∑
i=0

dist(x, μ
i
)

718

Covering the whole reachable space
Strategy 1: searching for novelty

❖Novelty search converges towards a uniform sampling in
the behaviour space

Doncieux, Laflaquière, Coninx (2019). Novelty Search: a Theoretical Perspective. Proc. Of GECCO

Random genotypes

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

p
o
rt

io
n
 o

f
in

d
iv

id
u
a
ls

 i
n
 b

in

NS, behavior = final locat ion
Generat ion 100

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

P
ro

p
o
rt

io
n
 o

f
in

d
iv

id
u
a
ls

 i
n
 b

in

(a) (b)

(b)

0 2500 5000 7500 10000 12500 15000 17500

0.00000

0.00005

0.00010

0.00015

0.00020

Number of generations

exit region
deadend region
start area
theoretical value

(a)

0 200 400 600 800 1000

0.00

0.02

0.04

0.06

0.08

Number of generations

exit region
deadend region
start area
theoretical value

Covering the whole reachable space
Strategy 1: searching for novelty

❖How does it work ? Evolvability results from a
perpetual movement in the behaviour space

Doncieux, Paolo, Laflaquière, Coninx (2020). Novelty Search makes Evolvability Inevitable. Proc. of

GECCO

Age Distance to parents

Novelty search variants

Getting a good (local) quality
Strategy 1: searching for novelty

❖ Multi-objective approach: NSLC (Novelty Search with
Local Competition)

• Novelty objective: average distance to the k-nearest
neighbours

• Local competition objective: number of neighbours
(among the k nearest) with lower fitness

Lehman, Stanley (2011). Evolving a diversity of virtual creatures through novelty search and local
competition. Proc. of GECCO.

Covering the whole reachable space
Strategy 2: MAP-Elites, searching for empty niches

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Behavior space

Mutation + Evaluation

Empty cell,
the solution is kept

719

Getting a good (local) quality
Strategy 2: MAP-Elites, searching for empty niches

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Behavior space
M

u
ta

ti
o

n
 +

 E
v
a

lu
a

ti
o

n

Non-empty cell,
the solution is kept
only if better

Covering the whole reachable space
Strategy 2: searching for empty niches

❖How does it work ?

 Evolvability results from a « founder » effect

Lehman, Stanley (2013). Evolvability is inevitable: Increasing evolvability without the pressure to
adapt. PloS one.

Individuals with a larger
evolvability have a better
chance to reach empty cells

QD algorithms: How does it work?

❖ QD objective:

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.
Pugh, Soros, Stanley. (2016). Quality diversity: A new frontier for evolutionary computation. Frontiers in
Robotics and AI.

descriptor space

Q
u
a
li
ty

Coverage

QD-algorithm

search space

Collection of diverse and
high-performing solutions

Previously encountered
solution (not stored)

Solution contained
in the collection

Learning in a single optimisation process
a large collection of diverse and high-performing solutions

❖ Most QD algorithms follow the same few steps:

QD algorithms: How does it work?
Generic pseudo code

C
o
ll
e
c
ti
o
n

Random Mutation

Evaluation

Stochastic selection

Tentative addition in the

collection

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.

720

❖ To build a collection of high-performing and diverse solutions, we need to:

• Measure the performance of solutions

• Distinguish different types of solutions

❖ For that, we use:

• A fitness function, like in most evolutionary algorithms

• A behavioural descriptor (also called behavioural characterisation)

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation Journal.

QD algorithms: How does it work?
Behavioural Descriptor and Fitness functions

❖ The fitness function is directly related to the task

❖ Examples of fitness functions:

❖ It defines among two similar solutions, which one we will keep.

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature.

Ecoffet, Huizinga, Lehman, Stanley, Clune (2019). Go-explore: a new approach for hard-

exploration problems. arXiv preprint arXiv:1901.10995.

QD algorithms: How does it work?
Behavioural Descriptor and Fitness functions

Maximising velocity
to learn to walk

Maximising high-score
to learn to play Atari

❖ The behavioural descriptor characterises certain aspects of the solutions:

• It defines the “types of solutions”

❖ The behavioural descriptor is not necessarily linked to the task

❖ Several solutions are likely to have the same behavioural descriptor, but
with different fitness values

Kim, Coninx, Doncieux (2019). From exploration to control: learning object manipulation skills through
novelty search and local adaptation. arXiv preprint arXiv:1901.00811.

QD algorithms: How does it work?
Behavioural Descriptor and Fitness functions

x/y final position Key-points of the trajectory

❖ The grid-based container

• Discretises the behavioural descriptor space into a set of cells

• Addition mechanism:

• Each new solution goes to the cell corresponding to its BD.

• If the cell is empty the new solution is added to the grid

• If the cell is already occupied, the solution with the best
fitness is kept

• Hyper-parameter: size of the cells (or resolution of the grid)

• Advantage: Easy to implement

• Drawback: Density not necessarily uniform

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.

QD algorithms: How does it work?
The container

721

❖ MAP-Elites = Grid container + Uniform random selection

❖ It is an easy to implement, yet powerful algorithm

QD algorithms: How does it work?
One specific instance: MAP-Elites

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.
Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature.

Initialisation:

randomly generated solutions

Mutation

…

Example: planar arm

end-effector

x

y

see notebook

[Notebook] https://github.com/jbmouret/map_elites_tutorial/

blob/main/map_elites.ipynb

[collab] https://colab.research.google.com/github/jbmouret/

map_elites_tutorial/blob/main/map_elites.ipynb

• Search space: (n-dimensional)

• Behavior space: (x,y) (2-dimensional)

[α1, ⋯, α
n
]

Im
a

g
e

 c
re

d
it

:

J
a
m

it
 (
W

ik
im

e
d

ia
 c

o
m

m
o

n
s
))

Example: planar arm

[Notebook] https://github.com/jbmouret/map_elites_tutorial/blob/main/map_elites.ipynb

[collab] https://colab.research.google.com/github/jbmouret/map_elites_tutorial/blob/main/map_elites.ipynb

end-effector

x

y

Example: planar arm

Archive initialization

[Notebook]

[collab]

722

Example: planar arm

❖ There are two different ways to store the solutions in QD:

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.
Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation Journal.

QD algorithms: How does it work?
Different container types

• The grid
(from MAP-Elites)

• The unstructured archive
(from Novelty Search)

❖ The unstructured archive

• Based on the distance between solutions in behavioural descriptor
space

• Main principle of the addition mechanism:

• Each new solution goes to its exact location in the behavioural
descriptor space

• If the nearest solution already in the archive is further than a
predefined value “l”, then the solution is added (case A)

• Otherwise, only the best of the two overlapping solutions it kept in the
archive (case B)

QD algorithms: How does it work?
Different container types

A

B

C
l

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation.

❖ The unstructured archive

• In practice, the addition mechanism needs to be more complex

• The erosion problem:

• In certain cases, for instance when it is easier to have a high fitness
in the center of the archive, the structure of the fitness might cause
solutions with a high fitness to frequently remove solutions that were
novel.

• To solve this problem we use ε-dominance:

• A solution replaces an existing one if:

• it has a better fitness and a higher novelty than the existing one

• Or, it is making an higher-improvement on the quality or novelty
than the decrease it is causing on the other score (up to a certain
value)

QD algorithms: How does it work?
Different container types

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation Journal.

Natural direction of

higher fitness

Quality

Novelty

I1

I2

Zone dominating I1

Q1

N1

xQ1

xN1

C

723

❖ The unstructured archive

• Hyper-parameter: l value (comparable to cell size) and k (to compute
the novelty score.

• Advantages:

• The archive can have an arbitrary shape

• Maximal density set by l

• Drawbacks:

• Implementation more complex

• More hyper-parameters

QD algorithms: How does it work?
Different container types

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation Journal.

❖ The selector is used to select the individual that will be mutated and
and evaluated in the next generation

❖ The simplest, yet very effective one:

• Uniform random selection over the solutions in the container.

❖ Alternatively the selection can be proportionally biased
according to a score

• The fitness

• The novelty

• The curiosity score

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.

QD algorithms: How does it work?
Different selector types

C
o
ll
e
c
ti
o
n

Random

Mutation

Evaluation

Stochastic

selection

Tentative addition

in the collection

❖ The score dynamically captures solutions that are likely to generation
offspring that will improve the archive.

QD algorithms: How does it work?
Different selector types

Individual
curiosity_score=0

Offspring add to the collection

Offspring not add to the collection

Individual
curiosity_score +1

Individual
curiosity_score -0.5

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.

❖ Other approaches exists, for instance using a population of solutions in
parallel to the archive and using this population for the selection.

❖ However, it has been shown that selecting directly from the archive is
better.

❖ Certain bias, like the novelty or fitness, might cause undesired effects.

QD algorithms: How does it work?
Different selector types

Population-based

Selection wrt Fitness

Curiosity-based Selection

(over the entire collection)No Selection
Random Selection

(over the entire collection)

Pareto-based Selection

(novelty and local quality)

A
r
c
h

iv
e
-b

a
s
e
d

C
o
ll
e
c
ti

o
n

G
r
id

-b
a
s
e
d

C
o
ll
e
c
ti

o
n

Left Right

F
ro

n
t

B
a
c
k

-1m

1m

1m
-1m-180 -160 -140 -120 -100 -80 -60 -40 -20 0

Quality (degree)

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in
Evolutionary Computation.

724

❖ Different aspects used to compare QD algorithms:

• The diversity of the solutions in the container

• Usual metric: archive size

• The performance of the solution in the container

• Usual metric: Max, or mean fitness value

• The convergence speed of these two points.

• Often, these different information are gathered in
the QD-Score:
the sum of the fitness of all the solutions in the
archive (assumed to be strictly positive)

• The trade-off between these different aspects can
be represented in a Pareto-front

Pugh, Soros, Stanley. (2016). Quality diversity: A new frontier for evolutionary computation. Frontiers in Robotics and AI.
Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in Evolutionary
Computation.
Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO.

Quantifying performance

❖ QD algorithm: unstructured archive + random uniform selector

❖ Behavioural descriptor: X/Y position of the robot after 3 seconds

❖ Fitness: angular error at the end of the trajectory wrt. an ideal circular
trajectory

Cully, Mouret (2015). Evolving a Behavioral Repertoire for a Walking Robot. Evolutionary Computation J..
Cully, Mouret (2013). Behavioral repertoire learning in robotics. Proc. of GECCO.

Examples of applications:
Learning to walk in every direction

Number of evalutations (kilo evaluations)

S
p
a
rs

e
n
e
ss

 (
cm

)

Sparseness Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Number of evaluations (kilo evaluations)m
e
d
ia

n
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

(d
e
g
re

e
) Orientation error Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

BR-Evolution
Control Experiment Nearest
Control Experiment Orientation

BR-Evolution
Control Experiment Nearest
Control Experiment Orientation

Learning several solutions
simultaneously is more effective than

learning them one by one.

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature.

Examples of applications:
Discovering multiple ways to walk as fast as possible

Leg used less than 10% of the time

❖ QD algorithm: MAP-Elites (grid + random uniform selector)

❖ Behavioural descriptor: proportion of time that each leg is in contact with
the ground (6D)

❖ Fitness: Traveled distance in 5 seconds

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature.

Examples of applications:
Discovering multiple ways to walk as fast as possible

❖ Among the 13k different ways to walk the robot has learned
some of them are quite creative:

The robot autonomously learned to flip on its back and walk on its knees

725

Ecarlat, et al. (2015). Learning a high diversity of object manipulations through an evolutionary-based
babbling." IROS. 2015.

Examples of applications:
Another examples of QD’s creativity
(Learning to push cube)

❖ QD algorithm: MAP-Elites (grid + random uniform selector)

❖ Behavioural descriptor: final position of the cube

❖ Fitness: Energy efficiency of the movement

❖ Gripper is forced in close position

Ecarlat, et al. (2015). Learning a high diversity of object manipulations through an evolutionary-based
babbling." IROS. 2015.

Examples of applications:
Another examples of QD’s creativity
(Learning to push cube)

❖ QD algorithm: MAP-Elites (grid + random uniform selector)

❖ Behavioural descriptor: final position of the cube

❖ Fitness: Energy efficiency of the movement

❖ Gripper is forced in close position

❖ Use MAP-Elites to generate a variety
of levels for video games like bullet
hell games or Super Mario.

Khalifa, Lee, Nealen, Togelius (2018). Talakat: Bullet hell generation through constrained map-elites. Proc.
of GECCO.
Schrum, Volz, Risi (2020). CPPN2GAN: Combining compositional pattern producing networks and gans for
large-scale pattern generation. Proc. of GECCO.

Examples of applications:
Content generation in video games

❖ This diversity of levels can be
used by game designers
(interactive MAP-Elites).

❖ Or directly by games to
automatically adjust the
difficulty to the players

Alvarez, Dahlskog, Font, Togelius (2019). Empowering quality diversity in dungeon design with interactive
constrained MAP-Elites. In 2019 IEEE Conference on Games (CoG).
González-Duque, Palm, Ha, Risi (2020). Finding Game Levels with the Right Difficulty in a Few Trials
through Intelligent Trial-and-Error. Proc. of IEEE Conference on Games (CoG)

Examples of applications:
Content generation in video games

726

❖ Generating a collection of diverse shapes for grasping
tasks with different level of difficulty.

Morrison, Corke, Leitner (2020). Egad! an evolved grasping analysis dataset for diversity and
reproducibility in robotic manipulation. IEEE Robotics and Automation Letters.

Examples of applications:
Generation of examples for robot training

❖ MAP-Elites is used to generate
a collection of images

❖ The BD is the class label
predicted by a neural network
trained on a separate dataset
(ImageNet)

❖ The fitness is the confidence
level of the network

❖ Here, the network has an
average confidence of 99.12%

Nguyen, Yosinski, Clune (2015). Deep neural networks are easily fooled: High confidence predictions for
unrecognizable images. IEEE CVPR.

Examples of applications:
Generation of adversarial examples

❖ https://quality-diversity.github.io
A community website to gather a list of paper

❖ Add your papers to the list!

Examples of applications:

❖ The recent popularity of QD algorithms led to several research directions to
push them further.

• Advanced containers

• Containers with sliding boundaries

• Hierarchical containers

• Automatic BD definition from high-dimensional data

• Pre-learning of BD

• Online learning of BD

• Meta-learning of BD

More recent concepts

727

❖ MAP-Elites with sliding boundaries

❖ Instead of using cells of fixed size, the cells can be adjusted based on the
distribution of evolved individuals.

❖ A buffer of the last N evaluated individuals is maintained in a queue data
structure.

❖ Periodically, the boundary lines for the map are recalculated.

Fontaine, Lee, Soros, De Mesentier Silva, Togelius, Hoover (2019). Mapping hearthstone deck spaces
through MAP-elites with sliding boundaries. Proc. of GECCO.

More recent concepts
Advanced containers

❖ The diversity of behaviours in an archive can form a space of primitive solutions

❖ Combining multiple primitives can lead to more advanced solutions

❖ We can use QD to learn a repertoire of such advanced solutions too.

❖ Advantage: It reduces the dimensionality of the optimisation problems.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

More recent concepts
Hierarchical BR

Robot

1st layer2nd layer3rd layer4th layer

Controls

Controls

❖ Layer 1:

• Robotic arm with 8 degrees of freedom:

• Controller: the final angular position of each motor (8 parameters).

• Behavioural descriptor: Final position of the robot’s gripper (2 dimensions).

• Fitness: minimising variance of the angular positions.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

More recent concepts
Hierarchical BR

More recent concepts
Hierarchical BR

❖ Layer 3: Drawing Arcs and Circles

• Controller:
5 line behaviours (10 parameters).

• Behavioural descriptor:
Expected center, radius and
length of the arc (3 dimensions)

❖ Layer 2: Drawing Lines

• Controller:
deltaX deltaY to be done in BD

• Behavioural descriptor:
Length and direction of the line

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

728

❖ The BD definition requires a certain expertise. Several works attempts to
remove this requirement

More recent concepts
Automatic BD definition

Final position of the cube (X, Y, Z)Final position of the Robot (X, Y)

Percentage of time that each leg is  

in contact with the ground

Final position of 

the gripper (X, Y)

Length and direction 

of the line

Radius, center and  

length of the arc

❖ If a dataset of features from the expected solution exists,

• A dimensionality reduction algorithm (PCA or Auto-Encoder) can automatically learn
a low-dimensional representation of these features that can serve as a BD-space.

❖ Example: if we want trajectories that look like digits, we can use a dataset of hand-
written digits and learn latent space that will be use as a BD-space

More recent concepts
Automatic BD definition

Σ

Latent Space DecoderEncoderRobot's

trajectory

B/W image

generation

Reconstructed

image

0

1

2

3

4

5

6

7

8

9

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

❖ This works with the Hierarchical BD context too:

More recent concepts
Automatic BD definition Σ

Latent Space DecoderEncoderRobot's

trajectory

B/W image

generation

Reconstructed

image

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

❖ Alternatively, the AURORA algorithm proposes to learn the BD space during the
QD evolutionary process:

• The information contained in the archive is used as dataset to train the
dimensionality reduction algorithm

• AURORA executes a few QD steps and a few training steps of the Auto-Encoder.

Cully (2019). Autonomous Skill Discovery with Quality-diversity and Unsupervised Descriptors. Proc of

GECCO.

More recent concepts
Automatic BD definition

Sample

Training

Repertoire

Descriptor

Robot Dataset

Selection
& Mutation

Sensory
Data

Dimensionality
Reduction

729

❖ AURORA makes the generation of the descriptor automatic

❖ It can be used to automatically discover the capabilities of robots.

More recent concepts
Automatic BD definition

End of the movement

Latent space

(behavioral descriptor)

Puck trajectories Reconstructed

Trajectories

A
U

R
O

R
A

-P
C

A
A

U
R

O
R

A
-A

E

Final positions

of the puck

There is no reconstruction

with Hand-coded

H
a
n
d
-c

o
d
e
d

x

Y
Ymax

Xmax

F

AURORA-AE

Incremental

Ground Truth:

Hand-coded

Cully (2019). Autonomous Skill Discovery with Quality-diversity and Unsupervised Descriptors. Proc of

GECCO.

❖ The TAXONS algorithm extends this concept to high-dimensional data
(images) and introduces a new selection mechanism based on the
reconstruction error.

Paolo, Laflaquiere, Coninx, Doncieux. (2019). Unsupervised Learning and Exploration of Reachable
Outcome Space. algorithms.

More recent concepts
Automatic BD definition

❖ Learning behaviour-performance maps with meta-evolution

❖ The optimal BD definition can be learned by meta-learning on meta
objective (for instance, adaptation capability).

❖ CMA-ES is used to generate potential linear combinations of BD definitions
that are then used to evolve repertoires. These repertoires are evaluated on
a meta objective which guides the CMA-ES population towards better
combinations.

❖ To mitigate the expensive evaluation cost, a database stores all the
solutions that have been evaluated from the beginning (genotype, fit, and all
BDs). Thanks to that, maps with new combinations can easily be re-created,
which enables them to some meta evolution for a reasonable cost.

❖ (Dedicated talk at GECCO’20)

Bossens, Tarapore, Mouret (2020). Learning behaviour-performance maps with meta-evolution. Proc. of
GECCO.

More recent concepts
Automatic BD definition

Scaling-up quality diversity algorithms

❖ Scaling-up to more complex tasks or accelerating QD

➔ non-uniform selection of the parents: better parents

➔ cf selectors for curiosity, etc.

➔ better variation operators: fewer mutations

➔ surrogate models: fewer calls to the fitness

❖ Scaling up to high-dimensional diversity spaces
(behavioral space)

➔ distance-based archive

➔ Centroidal Voronoi grid (CVT)

730

Scaling-up: better operators

❖ Mutation and cross-over operators have a long history in
evolutionary computation

❖ One of the most successful approach for optimization is
CMA-ES (and derivatives)

• resample a population at each step (no cross-over/mut.)
• adapts the mutation strengths for each dimension by

adapting the covariance matrix

❖ Can we do the same for QD algorithms (e.g., MAP-Elites)?
➔ It is not straightforward: each niche/cell follows a slightly

different gradient
➔ We want to derive some knowledge from the whole map

Hansen, Müller, Koumoutsakos (2003). Reducing the time complexity of the derandomized

evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation.

variation operators

Looking at the genome: is there a pattern?

❖ Well spread in the task space ≠ well spread in genome!
❖ There is a structure in the genome space: how to exploit it?

!

!2

1

x

y

parameters

(genotype)

behavior space

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies

Correlation. Proc. of GECCO.

 fit(x) = − (θ1 − μ)2
− (θ2 − μ)2

μ = 0.5 × (θ1 + θ2)

variation operators

The Elite Hypervolume

❖ High-performing solutions do not follow a simple
rule (no simple distribution)

❖ … but they occupy the Elite Hypervolume

❖ In the real world: species occupy different niches
but share many genes (60% between fly and
humans)

cies, each

mimic this

diverse

insight

part of

niches; simi-

“elite

features.

concept

spread

variation

interspecies

Behavior

P
e
rf

o
rm

a
n
c
e

Genotype Space

Gene 1

G
e
n
e
 2

Elite Hypervolume

Adams, et al. (2000). The genome sequence of Drosophila melanogaster. Science.

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies

Correlation. Proc. of GECCO.

genotype space

behavior space

variation operators

Leveraging the hypervolume

❖ What is a good variation operator?
➔ highly likely to generate an individual in the elite hypervolume

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies

Correlation. Proc. of GECCO.

➔ directional variation (∼ cross-over)

A (Iso)

p1

p2

σ1 = 0.02
σ2 = 0.0

B (LineDD)

p1

p2

σ1 = 0.0
σ2 = 0.2

C (Iso+LineDD)

p1

p2

σ1 = 0.02
σ2 = 0.2

❖ if we take two points from a convex volume, any point on
the segment is in the volume too

x
(t+1)
i

= x
(t)
i
+ σ1N (0, I) + σ2 (x

(t)
j
− x

(t)
i

)N (0, 1)

random perturbation
for each dimension

weight a single perturbation
by the difference between
the parents

variation operators

731

Directional variation

➔ Cross-over very useful in archive-based QD algorithms!

0 20 40 60 80 100

Evaluations (x103)

2000

4000

6000

8000

10000

A
rc
hi
ve
S
iz
e

Schwefel Function

0 20 40 60 80 100

Evaluations (x103)

2000

3000

4000

5000

6000

7000
Arm Repertoire

0 100 200 300 400 500

Evaluations (x103)

2000

3000

4000

5000

6000

7000
Hexapod Locomotion

0 20 40 60 80 100

Evaluations (x103)

−40000

−30000

−20000

−10000

M
ea
n
A
rc
hi
ve
F
it
ne
ss

0 20 40 60 80 100

Evaluations (x103)

−30

−25

−20

−15

−10

−5

0

0 100 200 300 400 500

Evaluations (x103)

0.16

0.24

0.32

0.40

0 20 40 60 80 100

Evaluations (x103)

−2000

−1500

−1000

−500

0

M
ax
A
rc
hi
ve
F
it
ne
ss

0 20 40 60 80 100

Evaluations (x103)

−10

−8

−6

−4

−2

0

0 100 200 300 400 500

Evaluations (x103)

0.6

0.8

1.0

1.2

9720 9780 9840 9900 9960
Archive Size

−10000

−7500

−5000

−2500

M
ea
n
A
rc
hi
ve
F
it
ne
ss

6000 6500 7000 7500
Archive Size

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

4000 5000 6000 7000
Archive Size

0.28

0.32

0.36

0.40

Iso+LineDD (proposed approach)

LineDD

Line

Iso

IsoDD

IsoSA

Global Correlation

SBX

Schwefel function: 12-D ➔ 2D

f(y) = −

n

∑
i=1

(
i

∑
j=1

yj)

Hexapod: 36-D ➔ 6-D

Arm: 12-D ➔ 2D

variation operators

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies

Correlation. Proc. of GECCO.

Learning the hypervolume: the DDE

❖ Concept: learn the shape of the hypervolmme with a variational
auto-encoder

❖ generate new individuals that follows “the recipe” of successful
individiduals

❖ Problem: the auto-encoder (esp. at the beginning) cannot find
solutions that do not follow the rules (yet)

❖ exploration/exploitation trade-off for the representation

ExploitExplore

Improve Archive with

Operators Balanced By Bandit

Expand Archive

with Mutation

Refine Archive
with DDE

Learn DDE from Archive

Gaier, Asteroth, Mouret (2020).

Discovering Representations for Black-

box Optimization. Proc. of GECCO.

variation operators

Learning the hypervolume: the DDE

Arm - 20D

M
ea

n
 A

rc
h

iv
e

F
it

n
es

s
C

o
v
er

ag
e

Arm - 200D Arm - 1000D

0 2 4 6 8 10
Evaluations (×105)

-1

-0.8

-0.6

-0.4

-0.2

0

0.1

0.5

0.75

0.99

0 2 4 6 8 10
Evaluations (×105)

0 2 4 6 8 10
Evaluations (×105)

-1

-0.8

-0.6

-0.4

-0.2

0

0.1

0.5

0.75

0.99

0 2 4 6 8 10
Evaluations (×105)

0 2 4 6 8 10
Evaluations (×105)

-1

-0.8

-0.6

-0.4

-0.2

0

0.1

0.5

0.75

0.99

0 2 4 6 8 10
Evaluations (×105)

MAP-Elites ME-Line DDE-XOver DDE-Elites

Gaier, Asteroth, Mouret (2020). Discovering Representations for Black-box Optimization. Proc.

of GECCO.

❖ Unknown if it works well on other tasks (with less regularity)

❖ The resulting auto-encoder can be used as a encoding for future optimizations

variation operators

Learning the hypervolume: PoMS

Rakicevic, Cully, Kormushev (2021). Policy Manifold Search for Improving Diversity-based

Neuroevolution. Proc. of GECCO.

❖ Policy Manifold Search (PoMS): Explicitly encoding the hypervolume with AE

❖ The latent space can be directly explored as a learned generative encoding.

❖ However, mutations have to be regularised based on the decoder’s jacobian
to avoid deleterious mutations.

variation operators

PoMS w/ regularisation

PoMS w/o regularisation

IsoLineDD
DDE

732

Evolutionary strategies

❖ Evolutionary strategies (fixed):

• sample a new population n by adding Gaussian noise

• update the mean of the population by weighting the

perturbation by the fitness:

❖ Surprisingly effective for deep reinforcement learning

❖ ES for MAP-Elites: (alternate between)
1. sample a cell with best novelty, optimize for novelty with ES
2. sample a cell with best fitness, optimize for fitness with ES

σ

ϵi

θt+1 = θt +
1

nσ

n

∑
i=1

f(θi
t)ϵi

Colas, Huizinga, Madhavan, Clune (2020). Scaling MAP-Elites to Deep Neuroevolution. Proc. of

GECCO.

Salimans, Ho, Chen, Sidor, Sutskever (2017). Evolution strategies as a scalable alternative to

reinforcement learning. arXiv preprint arXiv:1703.03864.

perturbation
applied

fitness of i

variation operators

Evolutionary strategies

ME�

eri-

es,

ES

ob-

and

in

thus

vari-

optimizes

NSRA�

is

leans

stag-

when

this

xploita-

not

practice,

mixing

case.

0 100 200 300 400 500
Generations

1000

2000

3000

4000

5000

3e
rfo

rP
an

ce

0E-ES exSlore-exSloit
0E-ES exSloit

0E-ES exSlore
0E-GA

(a)

0 100 200 300 400 500
Generations

100

101

102

103

104

So

Su
la

te
G

ce
lls

0E-ES exSlore-exSloit
0E-ES exSloit

0E-ES exSlore
0E-GA

(b)

Controller: 2-layer neural network (256 nodes) ➔ 105 parameters
Behavior space: 4D (gaits)

❖ No comparison with directional
mutation or cross-over (for now)

❖ More emphasis on exploitation

mean fitness

coverage

Colas, Huizinga, Madhavan, Clune (2020). Scaling MAP-Elites to Deep Neuroevolution. Proc. of

GECCO.

variation operators

❖ Combining Policy Gradient (TD3) and MAP-Elites

❖ GA variation operator: Undirected exploration

❖ PG variation operator: Directed exploration

Policy Gradient Assisted MAP-Elites

Derive Fitness Gradient

Update Archive

Train Critic

MAP-Elites

Archive

Experience

Replay Buffer

Environment

PG
variation

GA
variation

Nilsson, Cully (2021). Policy Gradient Assisted MAP-Elites. Proc. of GECCO.

Improved critic
More effective

search

Archive

ff

Archive

Successful
examples

Better gradient
estimate

Better
solutions

variation operators

Policy Gradient Assisted MAP-Elites
variation operators

❖ QDGym:

Fitness: same as in the original Gym environments

Behavioural Descriptor : proportion of time that each
leg is in contact with the ground

❖ Policy:

Feedforward Network

[state dim., 128, 128, action dim.] ~ 20k parameters

Nilsson, Cully (2021). Policy Gradient Assisted MAP-Elites. Proc. of GECCO.

733

❖ Emitters, introduced by Fontaine et al. are advanced mechanism to
generate potential solutions in MAP-Elites

❖ Covariance Matrix Adaptation MAP-Elites (CMA-ME) proposes emitters
based on CMA-ES to follow specific objectives:

Fontaine, Togelius, Nikolaidis, Hoover (2020). Covariance Matrix Adaptation for the Rapid Illumination of
Behavior Space. Proc. of GECCO.

Optimising the fitness Random walk in the BD space Improving the collection

variation operators

Emitter-based QD

❖ Multi-Emitters MAP-Elites (ME-MAP-Elites) introduces heterogenous pools of
emitters

❖ A bandit algorithm (UCB-1) picks a different set of emitters at each generation
depending on their predicted effectiveness.

❖ ME-MAP-Elites combines the CMA-ME emitters to look for the local highest
fitness, and randomly explore the BD space, but also adds an unbiased emitters
that reproduce MAP-Elites’s exploration mechanism.

Cully (2021). Multi-Emitter MAP-Elites: Improving quality, diversity and convergence speed with
heterogeneous sets of emitters. Proc. of GECCO.

Emitter selection Batch generation

Update based on
archive improvements

Emitter pool

variation operators

Emitter-based QD

Emitter-based QD

❖ Results show that ME-MAP-Elites offers a significant
improvement of the coverage, quality and convergence speed

Emitter selection Batch generation

Update based on
archive improvements

Emitter pool

variation operators

CMA-ME opt
Variants

CMA-ME dir

CMA-ME imp

MAP-Elites

ME-MAP-Elites uniform

ME-MAP-Elites UCB

SphereRastrigin-multiRastrigin-proj

A
rc

h
iv

e
 s

iz
e

B
e
s
t

fi
tn

e
s
s

Q
D

-S
c
o
re

Generations Generations Generations

e

Cully (2021). Multi-Emitter MAP-Elites: Improving quality, diversity and convergence speed with
heterogeneous sets of emitters. Proc. of GECCO.

Surrogate models for quality diversity

❖ QD algorithms often need 100k to 1M evaluations to be
effective

❖ This is not possible in many applications: robotics,
aerodynamics, complex simulations

❖ … but QD is very interesting for engineering

surrogate models

 We interviewed 18 architects and manufacturing design professionals. […] Contrary to

our expectations, we found that the computed optimum was often used as the

starting point for design exploration, not the end product. (Bradner, 2014 —

Autodesk)

”

“

❖ Classic solution in optimization: use a surrogate model
➔ use a few expensive “precise evaluations” to learn a cheaper
predictor (e.g. a neural network) of the fitness
➔ use the predicted fitness in the algorithm

Bradner, Iorio, Davis (2014). Parameters tell the design story: Ideation and abstraction in design

optimization. Simulation Series.

734

SAIL: Surrogate Assisted Elimination

❖ Use Gaussian processes to
model the fitness (mean and
uncertainty)

❖ Create an acquisition map with
the Upper Confidence Bound
(UCB)

❖ Select solutions to be evaluated
in the acquisition map (uniformly)

❖ At the end: create the final map
with the mean of the model

UCB(x) = μ(x) + βσ(x)

high-performing
user.

design
eval-

(SAIL),
intelligent

of

models
-

each
each

MAP-Elites,
The

in
CMA-

solu-

0) Sample design space

1) Construct model

2) Maximize acquisition function

3) Sample acquisition map

4) Maximize performance estimation

Gaier, Asteroth, Mouret (2018). Data-efficient design exploration through surrogate-assisted

illumination. Evolutionary computation.

predicted mean uncertainty

surrogate models

x

p
re

d
ic

te
d

 f
it
n

e
s
s μ(x) σ(x)

SAIL: Surrogate Assisted Elimination

❖ SAIL for the map = number of evaluations of
CMA-ES for one cell

❖ Nice property: quickly generate a prediction map
at any resolution!

co-
3)
of

of
individuals

individu-
lines

X
up

Z
up

 5

 4

 3

 2

 1

 0

Fig. 3. Design Space Overview with SAILCMA-ES SA-CMA-ES SAIL MAP-Elites

10 2 10 3

Precise Evaluations

99%

90%

 0%
10 4 10 5

Optimization Performance Per Precise Evaluation

P
er

ce
n

ta
g

e
o

f
O

p
ti

m
u

m

98.9% SA-CMA-ES 98.5% CMA-ES

91.9% MAP-Elites

98.5% CMA-ES (Bin)
97.6% SAIL

Log scale!

surrogate models

❖ Challenges:
• do not scale well with the number of parameters (hard to model if > 10)
• Gaussian processes query is in O(N2) in the number of samples

Gaier, Asteroth, Mouret (2018). Data-efficient design exploration through surrogate-assisted

illumination. Evolutionary computation.

BOP-Elites

❖ Use a GP to predict the behavioral descriptor (the niche)

❖ Use Expected Improvement for the second GP (fitness)

❖ Combine in an acquisition function:

❖ Optimize EJIE to select the next point

Kent, Branke (2021). Bop-elites, a bayesian optimisation algorithm for quality-diversity search. arXiv

preprint arXiv:2005.04320. 2020 May 8. / GECCO 2021 poster

EIc(x) = E [max(f(x)− f(ê), 0)] (4)

= (f̄(x)− f(ê))Φ

✓

f̄(x)− f(ê)

s(x)

◆

+ s(x)φ

✓

f̄(x)− f(ê)

s(x)

◆

(5)

P(x ∈ c|D) = Φ

✓

ḡ(x)− bu

s0(x)

◆

− Φ

✓

ḡ(x)− bl

s0(x)

◆

EJIE(x) =

C
X

i=1

P(x ∈ ci)EIci(x).

surrogate models
Scaling up to
high-dimensional behavioral spaces

❖ We mostly use QD in low-dimensional spaces (2D)

❖ … but there are many high-dimensional (< 2) behavioral
descriptions

• naturally high-dimensional problems

• trajectories of robots

• sensory-motor flux

❖ A grid in 6D, 5 bins per dimension: 56 cells = 15625

… 12D, 5 bins per dimension: 512 = 244 million

… 36 D, 2 bins per dimensions: 236 = 68 billions

➔ We need to make the number of bins/cells independent from
the dimensionality!

Doncieux, Mouret (2010). Behavioral diversity measures for evolutionary robotics. In IEEE

congress on evolutionary computation.

735

Option 1: Distance-based containers

❖ Option 1: use a container based on distance (not a grid)

(archive-based container vs grid-based container)

❖ A solution is added to the archive
• if the distance to its nearest neighbor is > l
• or if is better than its k nearest neighbors

❖ In practice use ε-dominance (see the modular framework
section)

❖ Drawbacks: need to decide l (not always intuitive) and k

❖ Benefits: the behavior space can have any shape

High-dimensional behavioral space

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE

Transactions on Evolutionary Computation.

Option 2: Centroidal Voronoi Tesselation

❖ Classic way to create a grid in computer
graphics: Centroidal Voronoi Tesselation

➔ specify the number of cells

➔ get the grid with cells of equal volumes

❖ Works in any dimension

❖ Already implemented in many libraries:
only need k-means

❖ Needs to be generated once, then we can
use any grid-based QD algorithm

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary

Computation.

High-dimensional behavioral space

Implementing CVT-MAP-Elites

❖ Using the CVT in MAP-Elites:

• we need to know the closest centroid to know the cell
➔ in low-dimensional space: use a KD-tree (computer graphics)
➔ in high-dimensional space (> 10): sort by distance

High-dimensional behavioral space

❖ Computing the CVT using the LLoyd relaxation:
1. choose the number of cells (k)
2. sample N random points (N >> number cells)
3. run k-means on the points (classic clustering alg.)

(this uses the distance between the points)

➔ get k centroids (sites)
➔ the drawing is a Delaunay diagram from the

centroids (from any computer graphics library),

but it is not needed for CVT-MAP-Elites centroid

Voronoi cell
(points closest
to centroid)

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary

Computation.

CVT-MAP-Elites

❖ Descriptor: sub-sampling of the trajectory

❖ Conclusion: almost no change in performance when we
increase the dimensionality

High-dimensional behavioral space

(a) (b)

(c)

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary

Computation.

736

Overview of QD implementations

❖ QD algorithms are easy to implement (this is a strength!)

• easiest: grid-based MAP-Elites + directional mutation

• more flexible: CVT-MAP-Elites

❖ Most research group implemented their own version

❖ That said, implementations can:
• help you start
• give you good baselines
• give you ‘complex' options
• be faster (better implementation, parallelization)

Python: notebook

❖ https://github.com/jbmouret/map_elites_tutorial

❖ Objective: learning the principles of QD

❖ Use this:
• as a teaching tool

❖ Support:
• 2-D grid-based MAP-Elites
• nothing else!

implementations

Python: reference implementations

❖ https://github.com/resibots/pymap_elites

❖ Objective: straightforward implementations that are easy
to transform (1 page of code for the algorithm)

❖ Use this:
• as a library for MAP-Elites
• as a starting point to ‘hack’ your ideas

❖ Support:
• Parallel fitness evaluations (multiprocessing module)
• CVT-MAP-Elites with directional mutation and KD-Tree
• Multi-task MAP-Elites
• “not bad” default settings
• basic plotting (matplotlib)

implementations

Example
implementations

import numpy as np

import math

import map_elites.cvt as cvt_map_elites

import map_elites.common as cm_map_elites

the function to optimize

def rastrigin(xx):

 x = xx * 10 - 5 # scaling to [-5, 5]

 f = 10 * x.shape[0] + (x * x - 10 * np.cos(2 * math.pi * x)).sum()

 return -f, np.array([xx[0], xx[1]])

px = cm_map_elites.default_params.copy()

px["dump_period"] = 100000

we use 1M evaluations (this is a hard function)

map in 2D, genotype in 10D

archive = cvt_map_elites.compute(2, 10, rastrigin,

n_niches=10000, max_evals=1e6, log_file=open('cvt.dat', 'w'), params=px)

> python3 examples/cvt_rastrigin.py

> python3 plot/plot_progress.py cvt.dat

> python3 plot/plot_2d_map.py centroids_10000_2.dat archive_1000100.dat

737

Reference for CVT-MAP-Elites
directional variation

def iso_dd(x, y, params):

 assert(x.shape == y.shape)

 p_max = np.array(params["max"])

 p_min = np.array(params["min"])

 a = np.random.normal(0, params['iso_sigma'], size=len(x))

 b = np.random.normal(0, params['line_sigma'])

 z = x.copy() + a + b * (x - y)

 return np.clip(z, p_min, p_max)

def __add_to_archive(s, centroid, archive, kdt):

 niche_index = kdt.query([centroid], k=1)[1][0][0]

 niche = kdt.data[niche_index]

 n = cm.make_hashable(niche)

 s.centroid = n

 if n in archive:

 if s.fitness > archive[n].fitness:

 archive[n] = s

 return 1

 return 0

 else:

 archive[n] = s

 return 1

map-elites algorithm (CVT variant)

def compute(dim_map, dim_x, f,

 n_niches=1000,

 max_evals=1e5,

 params=cm.default_params,

 log_file=None,

 variation_operator=iso_dd):

 """

 # setup the parallel processing pool

 num_cores = multiprocessing.cpu_count()

 pool = multiprocessing.Pool(num_cores)

 # create the CVT

 c = cm.cvt(n_niches, dim_map,

 params['cvt_samples'], params['cvt_use_cache'])

 kdt = KDTree(c, leaf_size=30, metric='euclidean')

 cm.__write_centroids(c)

 archive = {} # init archive (empty)

 n_evals = 0 # number of evaluations since the beginning

 b_evals = 0 # number evaluation since the last dump

main loop

 while (n_evals < max_evals):

 to_evaluate = []

 # random initialization

 if len(archive) <= params['random_init'] * n_niches:

 for i in range(0, params['random_init_batch']):

 x = np.random.uniform(low=params[‘min'], \

 high=params['max'], size=dim_x)

 to_evaluate += [(x, f)]

 else: # variation/selection loop

 keys = list(archive.keys())

 # we select all the parents at the same

time because randint is slow

 rand1 = np.random.randint(len(keys), \

 size=params[‘batch_size'])

 rand2 = np.random.randint(len(keys), \

 size=params['batch_size'])

 for n in range(0, params['batch_size']):

 # parent selection

 x = archive[keys[rand1[n]]]

 y = archive[keys[rand2[n]]]

 # copy & add variation

 z = variation_operator(x.x, y.x, params)

 to_evaluate += [(z, f)]

 # evaluation of the fitness for to_evaluate

 s_list = cm.parallel_eval(__evaluate, to_evaluate, pool,

params)

 # natural selection

 for s in s_list:

 __add_to_archive(s, s.desc, archive, kdt)

 # count evals

 n_evals += len(to_evaluate)

 b_evals += len(to_evaluate)

 return archive

implementations

Python: qdpy

❖ pip install qdpy or https://gitlab.com/leo.cazenille/qdpy

❖ “framework”, implements: MAP-Elites, CVT-MAP-Elites, NSLC, SAIL, …

❖ a good choice if you do not plan to “hack" the implementations

from qdpy import algorithms, containers, benchmarks, plots

Create container and algorithm. Here we use MAP-Elites, by illuminating a Grid container by evolution.

grid = containers.Grid(shape=(64,64), max_items_per_bin=1, fitness_domain=((0., 1.),),

 features_domain=((0., 1.), (0., 1.)))

algo = algorithms.RandomSearchMutPolyBounded(grid, budget=60000, batch_size=500,

 dimension=3, optimisation_task="maximisation")

Create a logger to pretty-print everything and generate output data files

logger = algorithms.AlgorithmLogger(algo)

Define evaluation function

eval_fn = algorithms.partial(benchmarks.illumination_rastrigin_normalised,

 nb_features = len(grid.shape))

Run illumination process !

best = algo.optimise(eval_fn)

Print results info

print(algo.summary())

Plot the results

plots.default_plots_grid(logger)

print("All results are available in the '%s' pickle file." % logger.final_filename)

implementations

Python: pyRIBS

❖ https://pyribs.org

❖ pip install ribs

❖ official implementation of Covariance Matrix Adaptation
MAP-Elites (CMA-ME)

Sferesv2: C++

❖ https://github.com/sferes2/sferes2

❖ Implements the generic framework for QD

❖ Template-based C++11, parallelization with TBB or MPI

❖ Fast: 1 minute for 1M Rastrigin (CVT-ME) vs 5 minutes in Python

❖ Complex genotypes (neuro-evolution)

❖ Experimental framework (variants, cluster submission, etc.)

❖ Highly customizable:

implementations

// defines MAP-Elites (grid container, uniform selection)

template <typename Phen, typename Eval, typename Stat, typename Modifier, typename Params>

using MapElites

= qd::QualityDiversity<Phen, Eval, Stat, Modifier,

 selector::Uniform<Phen, Params>, container::Grid<Phen, Params>, Params>;

// defines CVT-MAP-Elites (CVT container, uniform selection)

template <typename Phen, typename Eval, typename Stat, typename Modifier, typename Params>

using CvtMapElites

 = qd::QualityDiversity<Phen, Eval, Stat, Modifier, selector::Uniform<Phen, Params>,

 container::CVT<Phen, container::SortBasedStorage<int>, Params>, Params>;

Mouret, Doncieux (2010). Sferesv2: Evolvin’ in the multi-core world. In IEEE Congress on

Evolutionary Computation.

738

Sferesv2: C++

int main(int argc, char **argv)

{

 using namespace sferes;

 typedef Rastrigin<Params> fit_t;

 typedef gen::EvoFloat<10, Params> gen_t;

 typedef phen::Parameters<gen_t, fit_t, Params> phen_t;

 typedef eval::Parallel<Params> eval_t;

 typedef boost::fusion::vector<

 stat::BestFit<phen_t, Params>,

 stat::QdContainer<phen_t, Params>,

 stat::QdProgress<phen_t, Params>

 >

 stat_t;

 typedef modif::Dummy<> modifier_t;

 typedef qd::MapElites<phen_t, eval_t, stat_t, modifier_t, Params>

 qd_t;

 qd_t qd;

 run_ea(argc, argv, qd);

 return 0;

}

FIT_QD(Rastrigin){

 public :

 template <typename Indiv>

 void eval(Indiv & ind){

 // TODO compute Rastrigin function

 this->_value = -f;

 std::vector<double> data = {ind.gen().data(0), ind.gen().data(1)};

 this->set_desc(data);

 }

};

Open questions and challenges

❖ Relationship between QD and multitask optimization

• Example of MT: learning to grasp k different objects

• QD: f(x) ➔ f, b Multi-task: f(x, t) ➔ f

• QD algorithms can be modified for multi-task

• Multi-task more general, but QD exploits a “trick” that
makes it effective

Mouret, Maguire (2020). Quality Diversity for Multi-task Optimization. Proc of GECCO.

Open questions and challenges
❖ Noise in the fitness…and in the behavior

• Many fitness functions are noisy (robots, games)

• Elitist algorithms (like MAP-Elites) do not tolerate noise well

• Classic EC: noisy fitness, QD: noise in fitness AND behavior

• Justesen et al.: works well for noisy fitness, not yet for noisy
behaviors

• Flageat et al.: works well for noisy behaviors and fitness, but
might miss the best solutions (lack of elitism)

Justesen, Risi, Mouret (2019). MAP-Elites for noisy domains by adaptive sampling. GECCO 2019

companion (poster)

Flageat, Cully (2020). Fast and stable MAP-Elites in noisy domains using deep grids. Proc. of Alife.

and thus

e moved

implementation of this

drifts. Our

cell while

moved to

second

observed

�erence

Ours

n=100

n=10

n=1

Flageat et al.Justesen et al.

Open questions and challenge

❖ How to perform QD optimization with a gradient?
(Nilsson et al. 2021)

❖ How to exploit high-dimensional maps?

❖ Hierarchical QD (Howard et al. 2019, Cully 2018)

❖ Novel uses of QD?

• e.g., learning generative encodings for future
optimizations (Gaier et al, 2020)

• for now, mostly robotics and games: what else?

Howard, Eiben, Kennedy, Mouret, Valencia, Winkler (2019). Evolving embodied intelligence from

materials to machines. Nature Machine Intelligence.

Gaier, Asteroth, Mouret (2020). Discovering Representations for Black-box Optimization. Proc. of

GECCO.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of

GECCO.

739

