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❖ Antoine Cully is director of the Adaptive and Intelligent 
Robotics Lab (AIRL) and Lecturer (assistant Prof) at 
Imperial College London, UK.  His research is at 
the intersection between artificial intelligence and 
robotics, and aims at increasing the versatility and 
adaptation capabilities of robots.  

❖ Jean-Baptiste Mouret is a senior research scientist 
("directeur de recherche") at Inria, in Nancy, France 
(https://members.loria.fr/jbmouret/). His main interest is to 
leverage machine learning and evolutionary computation 
to make robots more adaptive in the real world. JB 
Mouret co-introduced MAP-Elites and contributed many 
ideas about behavioral diversity in evolutionary robotics. 

❖ Stephane Doncieux is Professor at Sorbonne University, 
in Paris, France. His researches are on open-ended 
learning in robotics with a strong use of evolutionary 
algorithms. He is deputy director of the Institute of 
Intelligent Systems and Robotics (ISIR).

Course Agenda

❖ Evolution beyond optimisation 

❖ Quality and Diversity 

❖ The two strategies to cover a reachable space 

❖ QD algorithms: How does it work? 

❖ Examples of applications 

❖ More recent concepts 

❖ Scaling-up QD 

❖ Brief overview of existing implementations 

❖ Open questions/challenges

What is evolution about ?

❖ Fitness landscape 
metaphor [Wright 1932] 

❖ Evolution as an 
optimisation method: 

Find x maximising F(x)

Wright (1932), The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in evolution. 
Sixth International Congress on Genetics.
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Is that all evolution can do ?

https://commons.wikimedia.org   LadyOfHats

Evolution beyond optimisation

❖ From:  

• Find x maximising F(x) : find the optimal way of solving a 
given problem  

• outcome: single value 

❖ To: 

• Find all possible x of interest  

• outcome: (large) set of points 

(definition of interest comes later…)

Why looking for a large set of points 
instead of a single, optimal, solution ?

❖ « Improved optimization performance; the algorithm often finds 
a better solution than the current state-of-the-art search algorithms 
in complex search spaces because it explores more of the 
feature space, which helps it avoid local optima and thus find 
different, and often better, fitness peaks . »

Traditional EA QD algorithm

Optimal area

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

On the limits of objective-based search

Secretan, Beato, D’Ambrosio, Rodriguez, Campbell, Folsom-Kovarik, Stanley (2011) 
Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolutionary 
Computation journal

Images generated with CPPN  
through an interactive evolution process (PicBreeder)
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On the limit of objective-based search

Woolley, Stanley (2011) On the deleterious effects of a priori objectives on evolution and 

representation. Proc of GECCO.

Goal:

Results with an objective-based search, after 30 000 generations  

with a population size of 150:

(population size = 15)Intermediate steps  

in Picbreeder:

Gaier, Asteroth, Mouret (2019). Are quality diversity algorithms better at generating stepping stones 

than objective-based search? GECCO companion (poster)

Why looking for a large set of points 
instead of a single, optimal, solution ?

Why looking for a large set of points 
instead of a single, optimal, solution ?

❖ « Illuminating the fitness potential of the entire feature 
space,not just the high-performing areas, revealing 
relationships between dimensions of interest and 
performance. »

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Traditional EA QD algorithm

Why looking for a large set of points 
instead of a single, optimal, solution ?

❖ Application to robotics: generating (off-line) a repertoire of 
behaviours to exploit (on-line)

Kim, Coninx, & Doncieux (2021). From exploration to control: learning object manipulation skills 
through novelty search and local adaptation. Robotics and Autonomous Systems.
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Evolution to design behavioural systems

Evaluation
Genotype

Fitness

Random generation

Selection

Variation
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Doncieux, Bredeche, Mouret, Eiben (2015)  Evolutionary robotics: what, why, and where to. 
Front. Robot. AI

❖ applications in robotics, video games, engineering, …

What is a genotype of interest?

Find all possible x of interest 

Introducing an new characterisation of x: 
behaviour descriptor 

Given a set of genotypes , x is 

interesting if it reaches a behaviour that 

is original or better than those of  

Definition of Quality-Diversity 
algorithms: 

Find a set of solutions {xi}:  

1. covering the whole reachable 
behaviour space  

2. with a good (local) quality

!

!

? ??

Evaluation  
of a genotype x

Projection of the trajectory  

in a behaviour space

τ

Covering the whole reachable space

❖ A key feature: evolvability 

« the capability of a system to generate adaptive phenotypic 
variation and to transmit it via an evolutionary process »  

[Hu and Banzhaf, 2010] 

❖ 2 strategies: 2 families of QD algorithms 

• Strategy 1: searching for novelty (Novelty Search) 

• Strategy 2: searching for empty niches (MAP-Elites)

Hu, Banzhaf (2010) Evolvability and speed of evolutionary algorithms in light of recent 
developments in biology. Journal of Artificial Evolution and Applications.

Covering the whole reachable space 
Strategy 1: searching for novelty

❖Novelty search: replace any goal-oriented fitness by a 
measure of novelty in the behaviour space 

❖ Maximize:  

❖  are the k-nearest neighbors in pop+archive 

❖Archive: 

• Samples from past generations 

• Typically augmented with individuals having a high novelty

{μ0, …, μ
k−1}

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation Journal.

ρ(x) =
1

k

k

∑
i=0

dist(x, μ
i
)
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Covering the whole reachable space 
Strategy 1: searching for novelty

❖Novelty search converges towards a uniform sampling in 
the behaviour space

Doncieux, Laflaquière, Coninx (2019). Novelty Search: a Theoretical Perspective. Proc. Of GECCO
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Covering the whole reachable space 
Strategy 1: searching for novelty

❖How does it work ?          Evolvability results from a 
perpetual movement in the behaviour space

Doncieux, Paolo, Laflaquière, Coninx (2020). Novelty Search makes Evolvability Inevitable. Proc. of 

GECCO

Age Distance to parents

Novelty search variants

Getting a good (local) quality 
Strategy 1: searching for novelty

❖ Multi-objective approach: NSLC (Novelty Search with 
Local Competition) 

• Novelty objective: average distance to the k-nearest 
neighbours 

• Local competition objective: number of neighbours 
(among the k nearest) with lower fitness

Lehman, Stanley (2011). Evolving a diversity of virtual creatures through novelty search and local 
competition. Proc. of GECCO.

Covering the whole reachable space 
Strategy 2: MAP-Elites, searching for empty niches

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Behavior space

Mutation + Evaluation

Empty cell,  
the solution is kept
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Getting a good (local) quality 
Strategy 2: MAP-Elites, searching for empty niches

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint

Behavior space
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Non-empty cell,  
the solution is kept 
only if better

Covering the whole reachable space 
Strategy 2: searching for empty niches

❖How does it work ?           

           Evolvability results from a « founder » effect

Lehman, Stanley (2013). Evolvability is inevitable: Increasing evolvability without the pressure to 
adapt. PloS one.

Individuals with a larger 
evolvability have a better 
chance to reach empty cells 

QD algorithms: How does it work?

❖ QD objective: 

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation. 
Pugh, Soros, Stanley. (2016). Quality diversity: A new frontier for evolutionary computation. Frontiers in 
Robotics and AI.

descriptor space

Q
u
a
li
ty

Coverage

QD-algorithm

search space

Collection of diverse and
high-performing solutions

Previously encountered
solution (not stored)

Solution contained
in the collection

Learning in a single optimisation process  
a large collection of diverse and high-performing solutions

❖ Most QD algorithms follow the same few steps:

QD algorithms: How does it work? 
Generic pseudo code

C
o
ll
e
c
ti
o
n

Random Mutation

Evaluation

Stochastic selection

Tentative addition in the 

collection

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation.
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❖ To build a collection of high-performing and diverse solutions, we need to: 

• Measure the performance of solutions 

• Distinguish different types of solutions 

❖ For that, we use:  

• A fitness function, like in most evolutionary algorithms 

• A behavioural descriptor (also called behavioural characterisation)

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation Journal.

QD algorithms: How does it work? 
Behavioural Descriptor and Fitness functions

❖ The fitness function is directly related to the task 

❖ Examples of fitness functions: 

❖ It defines among two similar solutions, which one we will keep.

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature. 

Ecoffet, Huizinga, Lehman, Stanley, Clune (2019). Go-explore: a new approach for hard-

exploration problems. arXiv preprint arXiv:1901.10995.

QD algorithms: How does it work? 
Behavioural Descriptor and Fitness functions

Maximising velocity 
to learn to walk

Maximising high-score  
to learn to play Atari

❖ The behavioural descriptor characterises certain aspects of the solutions: 

• It defines the “types of solutions” 

❖ The behavioural descriptor is not necessarily linked to the task 

❖ Several solutions are likely to have the same behavioural descriptor, but 
with different fitness values

Kim, Coninx, Doncieux (2019). From exploration to control: learning object manipulation skills through 
novelty search and local adaptation. arXiv preprint arXiv:1901.00811.

QD algorithms: How does it work? 
Behavioural Descriptor and Fitness functions

x/y final position Key-points of the trajectory

❖ The grid-based container 

• Discretises the behavioural descriptor space into a set of cells 

• Addition mechanism:  

• Each new solution goes to the cell corresponding to its BD.  

• If the cell is empty the new solution is added to the grid 

• If the cell is already occupied, the solution with the best 
fitness is kept 

• Hyper-parameter: size of the cells (or resolution of the grid) 

• Advantage: Easy to implement 

• Drawback: Density not necessarily uniform

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909.

QD algorithms: How does it work? 
The container
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❖ MAP-Elites = Grid container + Uniform random selection 

❖ It is an easy to implement, yet powerful algorithm

QD algorithms: How does it work? 
One specific instance: MAP-Elites

Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909. 
Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature. 

Initialisation: 

randomly generated solutions

Mutation

…

Example: planar arm

end-effector

x

y

see notebook

[Notebook] https://github.com/jbmouret/map_elites_tutorial/

blob/main/map_elites.ipynb 


[collab] https://colab.research.google.com/github/jbmouret/

map_elites_tutorial/blob/main/map_elites.ipynb 

• Search space:  (n-dimensional)


• Behavior space: (x,y) (2-dimensional)
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Example: planar arm

[Notebook] https://github.com/jbmouret/map_elites_tutorial/blob/main/map_elites.ipynb 


[collab] https://colab.research.google.com/github/jbmouret/map_elites_tutorial/blob/main/map_elites.ipynb 

end-effector

x

y

Example: planar arm

Archive initialization

[Notebook]  


[collab]  
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Example: planar arm

❖ There are two different ways to store the solutions in QD:

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation. 
Mouret, Clune (2015). Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909. 

Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation Journal.

QD algorithms: How does it work? 
Different container types

• The grid 
(from MAP-Elites)

• The unstructured archive 
(from Novelty Search)

❖ The unstructured archive 

• Based on the distance between solutions in behavioural descriptor 
space 

• Main principle of the addition mechanism: 

• Each new solution goes to its exact location in the behavioural 
descriptor space 

• If the nearest solution already in the archive is further than a 
predefined value “l”, then the solution is added (case A) 

• Otherwise, only the best of the two overlapping solutions it kept in the 
archive (case B)

QD algorithms: How does it work? 
Different container types

A

B

C
l

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation. 
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation.

❖ The unstructured archive 

• In practice, the addition mechanism needs to be more complex 

• The erosion problem: 

• In certain cases, for instance when it is easier to have a high fitness 
in the center of the archive, the structure of the fitness might cause 
solutions with a high fitness to frequently remove solutions that were 
novel. 

• To solve this problem we use ε-dominance: 

• A solution replaces an existing one if: 

• it has a better fitness and a higher novelty than the existing one 

• Or, it is making an higher-improvement on the quality or novelty 
than the decrease it is causing on the other score (up to a certain 
value)

QD algorithms: How does it work? 
Different container types

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation. 
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation Journal.

Natural direction of  

higher fitness

Quality

Novelty

I1

I2

Zone dominating I1

Q1

N1

xQ1

xN1

C
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❖ The unstructured archive 

• Hyper-parameter: l value (comparable to cell size) and k (to compute 
the novelty score. 

• Advantages:  

• The archive can have an arbitrary shape 

• Maximal density set by l 

• Drawbacks:  

• Implementation more complex 

• More hyper-parameters

QD algorithms: How does it work? 
Different container types

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation. 
Lehman, Stanley (2010). Abandoning Objectives: Evolution Through the Search for Novelty Alone. 
Evolutionary Computation Journal.

❖ The selector is used to select the individual that will be mutated and 
and evaluated in the next generation  

❖ The simplest, yet very effective one:  

• Uniform random selection over the solutions in the container. 

❖ Alternatively the selection can be proportionally biased 
according to a score 

• The fitness 

• The novelty 

• The curiosity score

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation.

QD algorithms: How does it work? 
Different selector types

C
o
ll
e
c
ti
o
n

Random 

Mutation

Evaluation

Stochastic 

selection

Tentative addition 

in the collection

❖ The score dynamically captures solutions that are likely to generation 
offspring that will improve the archive. 

QD algorithms: How does it work? 
Different selector types

Individual 
curiosity_score=0

Offspring add to the collection

Offspring not add to the collection

Individual 
curiosity_score +1

Individual 
curiosity_score -0.5

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation.

❖ Other approaches exists, for instance using a population of solutions in 
parallel to the archive and using this population for the selection. 

❖ However, it has been shown that selecting directly from the archive is 
better.  

❖ Certain bias, like the novelty or fitness, might cause undesired effects.

QD algorithms: How does it work? 
Different selector types

Population-based

Selection wrt Fitness

Curiosity-based Selection

(over the entire collection)No Selection
Random Selection

(over the entire collection)
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(novelty and local quality)
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Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in 
Evolutionary Computation.
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❖ Different aspects used to compare QD algorithms: 

• The diversity of the solutions in the container 

• Usual metric: archive size  

• The performance of the solution in the container 

• Usual metric: Max, or mean fitness value 

• The convergence speed of these two points. 

• Often, these different information are gathered in 
the QD-Score:  
the sum of the fitness of all the solutions in the 
archive (assumed to be strictly positive)  

• The trade-off between these different aspects can 
be represented in a Pareto-front

Pugh, Soros, Stanley. (2016). Quality diversity: A new frontier for evolutionary computation. Frontiers in Robotics and AI. 
Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE Trans. in Evolutionary 
Computation. 
Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies Correlation. Proc. of GECCO. 

Quantifying performance

❖ QD algorithm: unstructured archive + random uniform selector 

❖ Behavioural descriptor: X/Y position of the robot after 3 seconds 

❖ Fitness: angular error at the end of the trajectory wrt. an ideal circular 
trajectory 

Cully, Mouret (2015). Evolving a Behavioral Repertoire for a Walking Robot. Evolutionary Computation J.. 
Cully, Mouret (2013). Behavioral repertoire learning in robotics. Proc. of GECCO.

Examples of applications: 
Learning to walk in every direction
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Learning several solutions 
simultaneously is more effective than  

learning them one by one.

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature. 

Examples of applications: 
Discovering multiple ways to walk as fast as possible

Leg used less than 10% of the time

❖ QD algorithm: MAP-Elites (grid + random uniform selector) 

❖ Behavioural descriptor: proportion of time that each leg is in contact with 
the ground (6D) 

❖ Fitness: Traveled distance in 5 seconds

Cully, Clune, Tarapore, Mouret (2015). Robots that can adapt like animals. Nature. 

Examples of applications: 
Discovering multiple ways to walk as fast as possible

❖ Among the 13k different ways to walk the robot has learned 
some of them are quite creative:

The robot autonomously learned to flip on its back and walk on its knees

725



Ecarlat, et al. (2015). Learning a high diversity of object manipulations through an evolutionary-based 
babbling." IROS. 2015.

Examples of applications: 
Another examples of QD’s creativity 
(Learning to push cube)

❖ QD algorithm: MAP-Elites (grid + random uniform selector) 

❖ Behavioural descriptor: final position of the cube 

❖ Fitness: Energy efficiency of the movement 

❖ Gripper is forced in close position

Ecarlat, et al. (2015). Learning a high diversity of object manipulations through an evolutionary-based 
babbling." IROS. 2015.

Examples of applications: 
Another examples of QD’s creativity 
(Learning to push cube)

❖ QD algorithm: MAP-Elites (grid + random uniform selector) 

❖ Behavioural descriptor: final position of the cube 

❖ Fitness: Energy efficiency of the movement 

❖ Gripper is forced in close position

❖ Use MAP-Elites to generate a variety 
of levels for video games like bullet 
hell games or Super Mario. 

Khalifa, Lee, Nealen, Togelius (2018). Talakat: Bullet hell generation through constrained map-elites. Proc. 
of GECCO. 
Schrum, Volz, Risi (2020). CPPN2GAN: Combining compositional pattern producing networks and gans for 
large-scale pattern generation. Proc. of GECCO. 

Examples of applications: 
Content generation in video games

❖ This diversity of levels can be 
used by game designers 
(interactive MAP-Elites). 

❖ Or directly by games to 
automatically adjust the 
difficulty to the players

Alvarez, Dahlskog, Font, Togelius (2019). Empowering quality diversity in dungeon design with interactive 
constrained MAP-Elites. In 2019 IEEE Conference on Games (CoG). 
González-Duque, Palm, Ha, Risi (2020). Finding Game Levels with the Right Difficulty in a Few Trials 
through Intelligent Trial-and-Error. Proc. of IEEE Conference on Games (CoG)

Examples of applications: 
Content generation in video games
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❖ Generating a collection of diverse shapes for grasping 
tasks with different level of difficulty.

Morrison, Corke, Leitner (2020). Egad! an evolved grasping analysis dataset for diversity and 
reproducibility in robotic manipulation. IEEE Robotics and Automation Letters.

Examples of applications: 
Generation of examples for robot training

❖ MAP-Elites is used to generate 
a collection of images 

❖ The BD is the class label 
predicted by a neural network 
trained on a separate dataset 
(ImageNet ) 

❖ The fitness is the confidence 
level of the network 

❖ Here, the network has an 
average confidence of 99.12%

Nguyen, Yosinski, Clune (2015). Deep neural networks are easily fooled: High confidence predictions for 
unrecognizable images. IEEE CVPR.

Examples of applications: 
Generation of adversarial examples

❖ https://quality-diversity.github.io 
A community website to gather a list of paper 

❖ Add your papers to the list! 

Examples of applications: 

❖ The recent popularity of QD algorithms led to several research directions to 
push them further. 

• Advanced containers 

• Containers with sliding boundaries 

• Hierarchical containers 

• Automatic BD definition from high-dimensional data 

• Pre-learning of BD  

• Online learning of BD 

• Meta-learning of BD

More recent concepts
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❖ MAP-Elites with sliding boundaries 

❖ Instead of using cells of fixed size, the cells can be adjusted based on the 
distribution of evolved individuals. 

❖ A buffer of the last N evaluated individuals is maintained in a queue data 
structure. 

❖ Periodically, the boundary lines for the map are recalculated. 

Fontaine, Lee, Soros, De Mesentier Silva, Togelius, Hoover (2019). Mapping hearthstone deck spaces 
through MAP-elites with sliding boundaries. Proc. of GECCO.

More recent concepts 
Advanced containers

❖ The diversity of behaviours in an archive can form a space of primitive solutions 

❖ Combining multiple primitives can lead to more advanced solutions 

❖ We can use QD to learn a repertoire of such advanced solutions too. 

❖ Advantage: It reduces the dimensionality of the optimisation problems.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

More recent concepts 
Hierarchical BR 

Robot

1st layer2nd layer3rd layer4th layer

Controls

Controls

❖ Layer 1: 

• Robotic arm with 8 degrees of freedom:  

• Controller: the final angular position of each motor (8 parameters). 

• Behavioural descriptor: Final position of the robot’s gripper (2 dimensions). 

• Fitness: minimising variance of the angular positions.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

More recent concepts 
Hierarchical BR 

More recent concepts 
Hierarchical BR 

❖ Layer 3: Drawing Arcs and Circles 

• Controller:  
5 line behaviours (10 parameters). 

• Behavioural descriptor:  
Expected center, radius and  
length of the arc (3 dimensions)

❖ Layer 2: Drawing Lines 

• Controller: 
deltaX deltaY to be done in BD 

• Behavioural descriptor: 
Length and direction of the line

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.
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❖ The BD definition requires a certain expertise. Several works attempts to 
remove this requirement

More recent concepts 
Automatic BD definition

Final position of the cube (X, Y, Z)Final position of the Robot (X, Y)

Percentage of time that each leg is  

in contact with the ground

Final position of 

the gripper (X, Y)

Length and direction 

of the line

Radius, center and  

length of the arc

❖ If a dataset of features from the expected solution exists,  

• A dimensionality reduction algorithm (PCA or Auto-Encoder) can automatically learn 
a low-dimensional representation of these features that can serve as a BD-space.  

❖ Example: if we want trajectories that look like digits, we can use a dataset of hand-
written digits and learn latent space that will be use as a BD-space

More recent concepts 
Automatic BD definition

Σ

Latent Space DecoderEncoderRobot's 

trajectory

B/W image

generation

Reconstructed

image

0

1

2

3

4

5

6

7

8

9

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

❖ This works with the Hierarchical BD context too:

More recent concepts 
Automatic BD definition Σ

Latent Space DecoderEncoderRobot's 

trajectory

B/W image

generation

Reconstructed

image

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of GECCO.

❖ Alternatively, the AURORA algorithm proposes to learn the BD space during the 
QD evolutionary process: 

• The information contained in the archive is used as dataset to train the 
dimensionality reduction algorithm 

• AURORA executes a few QD steps and a few training steps of the Auto-Encoder.

Cully (2019). Autonomous Skill Discovery with Quality-diversity and Unsupervised Descriptors. Proc of 

GECCO.

More recent concepts 
Automatic BD definition

Sample

Training

Repertoire

Descriptor

Robot Dataset

Selection
& Mutation

Sensory
Data

Dimensionality
Reduction
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❖ AURORA makes the generation of the descriptor automatic 

❖ It can be used to automatically discover the capabilities of robots. 

More recent concepts 
Automatic BD definition

End of the movement

Latent space

(behavioral descriptor)

Puck trajectories Reconstructed

Trajectories
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Y
Ymax

Xmax

F

AURORA-AE

Incremental

Ground Truth:

Hand-coded

Cully (2019). Autonomous Skill Discovery with Quality-diversity and Unsupervised Descriptors. Proc of 

GECCO.

❖ The TAXONS algorithm extends this concept to high-dimensional data 
(images) and introduces a new selection mechanism based on the 
reconstruction error. 

Paolo, Laflaquiere, Coninx, Doncieux. (2019). Unsupervised Learning and Exploration of Reachable 
Outcome Space. algorithms.

More recent concepts 
Automatic BD definition

❖ Learning behaviour-performance maps with meta-evolution 

❖ The optimal BD definition can be learned by meta-learning on meta 
objective (for instance, adaptation capability).  

❖ CMA-ES is used to generate potential linear combinations of BD definitions 
that are then used to evolve repertoires. These repertoires are evaluated on 
a meta objective which guides the CMA-ES population towards better 
combinations. 

❖ To mitigate the expensive evaluation cost, a database stores all the 
solutions that have been evaluated from the beginning (genotype, fit, and all 
BDs). Thanks to that, maps with new combinations can easily be re-created, 
which enables them to some meta evolution for a reasonable cost. 

❖ (Dedicated talk at GECCO’20)

Bossens, Tarapore, Mouret (2020). Learning behaviour-performance maps with meta-evolution. Proc. of 
GECCO. 

More recent concepts 
Automatic BD definition

Scaling-up quality diversity algorithms

❖ Scaling-up to more complex tasks or accelerating QD 

➔ non-uniform selection of the parents: better parents 

➔ cf selectors for curiosity, etc. 

➔ better variation operators: fewer mutations  

➔ surrogate models: fewer calls to the fitness 

❖ Scaling up to high-dimensional diversity spaces 
(behavioral space) 

➔ distance-based archive 

➔ Centroidal Voronoi grid (CVT)
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Scaling-up: better operators

❖ Mutation and cross-over operators have a long history in 
evolutionary computation 

❖ One of the most successful approach for optimization is 
CMA-ES (and derivatives) 

• resample a population at each step (no cross-over/mut.) 
• adapts the mutation strengths for each dimension by 

adapting the covariance matrix 

❖ Can we do the same for QD algorithms (e.g., MAP-Elites)?  
➔ It is not straightforward: each niche/cell follows a slightly 

different gradient 
➔ We want to derive some knowledge from the whole map

Hansen, Müller, Koumoutsakos (2003). Reducing the time complexity of the derandomized 

evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation.

variation operators

Looking at the genome: is there a pattern?

❖ Well spread in the task space ≠ well spread in genome! 
❖ There is a structure in the genome space: how to exploit it?  

!

!2

1

x

y

parameters


(genotype)

behavior space

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies 

Correlation. Proc. of GECCO.

 fit(x) = − (θ1 − μ)2
− (θ2 − μ)2

μ = 0.5 × (θ1 + θ2)

variation operators

The Elite Hypervolume

❖ High-performing solutions do not follow a simple 
rule (no simple distribution) 

❖ … but they occupy the Elite Hypervolume 

❖ In the real world: species occupy different niches 
but share many genes (60% between fly and 
humans)

cies, each

mimic this

diverse

insight

part of

niches; simi-

“elite

features.

concept

spread

variation

interspecies

Behavior

P
e
rf

o
rm

a
n
c
e

Genotype Space

Gene 1
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e
 2

Elite Hypervolume

Adams, et al. (2000). The genome sequence of Drosophila melanogaster. Science. 


Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies 

Correlation. Proc. of GECCO.


genotype space

behavior space

variation operators

Leveraging the hypervolume

❖ What is a good variation operator? 
➔  highly likely to generate an individual in the elite hypervolume

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies 

Correlation. Proc. of GECCO.

➔ directional variation (∼ cross-over)

A (Iso)

p1

p2

σ1 = 0.02
σ2 = 0.0

B (LineDD)

p1

p2

σ1 = 0.0
σ2 = 0.2

C (Iso+LineDD)

p1

p2

σ1 = 0.02
σ2 = 0.2

❖ if we take two points from a convex volume, any point on 
the segment is in the volume too

x
(t+1)
i

= x
(t )
i
+ σ1N (0, I) + σ2 (x

(t )
j
− x

(t )
i

)N (0, 1)

random perturbation 
for each dimension

weight a single perturbation 
by the difference between 
the parents

variation operators
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Directional variation

➔ Cross-over very useful in archive-based QD algorithms!
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variation operators

Vassiliades, Mouret (2018). Discovering the Elite Hypervolume by Leveraging Interspecies 

Correlation. Proc. of GECCO.

Learning the hypervolume: the DDE

❖ Concept: learn the shape of the hypervolmme with a variational 
auto-encoder 

❖ generate new individuals that follows “the recipe” of successful 
individiduals 

❖ Problem: the auto-encoder (esp. at the beginning) cannot find 
solutions that do not follow the rules (yet) 

❖ exploration/exploitation trade-off for the representation

ExploitExplore

Improve Archive with

Operators Balanced By Bandit

Expand Archive

with Mutation

Refine Archive
with DDE

Learn DDE from Archive

Gaier, Asteroth, Mouret (2020). 

Discovering Representations for Black-

box Optimization. Proc. of GECCO.

variation operators

Learning the hypervolume: the DDE
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Gaier, Asteroth, Mouret (2020). Discovering Representations for Black-box Optimization. Proc. 

of GECCO.

❖ Unknown if it works well on other tasks (with less regularity) 

❖ The resulting auto-encoder can be used as a encoding for future optimizations

variation operators

Learning the hypervolume: PoMS

Rakicevic, Cully, Kormushev (2021). Policy Manifold Search for Improving Diversity-based 

Neuroevolution. Proc. of GECCO.

❖ Policy Manifold Search (PoMS): Explicitly encoding the hypervolume with AE 

❖ The latent space can be directly explored as a learned generative encoding. 

❖ However, mutations have to be regularised based on the decoder’s jacobian 
to avoid deleterious mutations. 

variation operators

PoMS w/ regularisation

PoMS w/o regularisation

IsoLineDD
DDE
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Evolutionary strategies

❖ Evolutionary strategies (fixed ): 

• sample a new population n by adding Gaussian noise  

• update the mean of the population by weighting the 

perturbation by the fitness:   

❖ Surprisingly effective for deep reinforcement learning 

❖ ES for MAP-Elites: (alternate between) 
1. sample a cell with best novelty, optimize for novelty with ES 
2. sample a cell with best fitness, optimize for fitness with ES

σ

ϵi

θt+1 = θt +
1

nσ

n

∑
i=1

f(θi
t)ϵi

Colas, Huizinga, Madhavan, Clune (2020). Scaling MAP-Elites to Deep Neuroevolution. Proc. of 

GECCO.

Salimans, Ho, Chen, Sidor, Sutskever (2017). Evolution strategies as a scalable alternative to 

reinforcement learning. arXiv preprint arXiv:1703.03864.
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variation operators
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Controller: 2-layer neural network (256 nodes) ➔ 105 parameters 
Behavior space: 4D (gaits)

❖ No comparison with directional 
mutation  or cross-over (for now) 

❖ More emphasis on exploitation

mean fitness

coverage

Colas, Huizinga, Madhavan, Clune (2020). Scaling MAP-Elites to Deep Neuroevolution. Proc. of 

GECCO.

variation operators

❖ Combining Policy Gradient (TD3) and MAP-Elites 

❖ GA variation operator: Undirected exploration 

❖ PG variation operator: Directed exploration

Policy Gradient Assisted MAP-Elites

Derive Fitness Gradient

Update Archive

Train Critic

MAP-Elites

Archive

Experience 

Replay Buffer

Environment

PG
variation

GA
variation

Nilsson, Cully (2021). Policy Gradient Assisted MAP-Elites. Proc. of GECCO.

Improved critic
More effective 

search

Archive

ff

Archive

Successful 
examples

Better gradient 
estimate

Better 
solutions

variation operators

Policy Gradient Assisted MAP-Elites
variation operators

❖ QDGym: 

Fitness: same as in the original Gym environments

Behavioural Descriptor : proportion of time that each 
leg is in contact with the ground

❖ Policy: 

Feedforward Network

[state dim., 128, 128, action dim.] ~ 20k parameters

Nilsson, Cully (2021). Policy Gradient Assisted MAP-Elites. Proc. of GECCO.
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❖ Emitters, introduced by Fontaine et al. are advanced mechanism to 
generate potential solutions in MAP-Elites 

❖ Covariance Matrix Adaptation MAP-Elites (CMA-ME) proposes emitters 
based on CMA-ES to follow specific objectives: 

Fontaine, Togelius, Nikolaidis, Hoover (2020). Covariance Matrix Adaptation for the Rapid Illumination of 
Behavior Space. Proc. of GECCO.

Optimising the fitness Random walk in the BD space Improving the collection

variation operators

Emitter-based QD

❖ Multi-Emitters MAP-Elites (ME-MAP-Elites) introduces heterogenous pools of 
emitters 

❖ A bandit algorithm (UCB-1) picks a different set of emitters at each generation 
depending on their predicted effectiveness. 

❖ ME-MAP-Elites combines the CMA-ME emitters to look for the local highest 
fitness, and randomly explore the BD space, but also adds an unbiased emitters 
that reproduce MAP-Elites’s exploration mechanism.

Cully (2021). Multi-Emitter MAP-Elites: Improving quality, diversity and convergence speed with 
heterogeneous sets of emitters. Proc. of GECCO.

Emitter selection Batch generation

Update based on 
archive improvements

Emitter pool

variation operators

Emitter-based QD

Emitter-based QD

❖ Results show that ME-MAP-Elites offers a significant 
improvement of the coverage, quality and convergence speed

Emitter selection Batch generation

Update based on 
archive improvements

Emitter pool

variation operators
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Cully (2021). Multi-Emitter MAP-Elites: Improving quality, diversity and convergence speed with 
heterogeneous sets of emitters. Proc. of GECCO.

Surrogate models for quality diversity

❖ QD algorithms often need 100k to 1M evaluations to be 
effective 

❖ This is not possible in many applications: robotics, 
aerodynamics, complex simulations 

❖ … but QD is very interesting for engineering 

surrogate models

 We interviewed 18 architects and manufacturing design professionals. […] Contrary to 

our expectations, we found that the computed optimum was often used as the 

starting point for design exploration, not the end product. (Bradner, 2014 — 

Autodesk)

”

“

❖ Classic solution in optimization: use a surrogate model 
➔ use a few expensive “precise evaluations” to learn a cheaper 
predictor (e.g. a neural network) of the fitness 
➔ use the predicted fitness in the algorithm

Bradner, Iorio, Davis (2014). Parameters tell the design story: Ideation and abstraction in design 

optimization. Simulation Series.
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SAIL: Surrogate Assisted Elimination

❖ Use Gaussian processes to 
model the fitness (mean and 
uncertainty) 

❖ Create an acquisition map with 
the Upper Confidence Bound 
(UCB) 

 

❖ Select solutions to be evaluated 
in the acquisition map (uniformly) 

❖ At the end: create the final map 
with the mean of the model

UCB(x) = μ(x) + βσ(x)

high-performing
user.

design
eval-

(SAIL),
intelligent

of

models
-

each
each

MAP-Elites,
The

in
CMA-

solu-

0) Sample design space

1) Construct model 

2) Maximize acquisition function 

3) Sample acquisition map

4) Maximize performance estimation

Gaier, Asteroth, Mouret (2018). Data-efficient design exploration through surrogate-assisted 

illumination. Evolutionary computation.
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SAIL: Surrogate Assisted Elimination

❖ SAIL for the map = number of evaluations of 
CMA-ES for one cell 

❖ Nice property: quickly generate a prediction map 
at any resolution!
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surrogate models

❖ Challenges: 
• do not scale well with the number of parameters (hard to model if > 10) 
• Gaussian processes query is in O(N2) in the number of samples

Gaier, Asteroth, Mouret (2018). Data-efficient design exploration through surrogate-assisted 

illumination. Evolutionary computation.

BOP-Elites

❖ Use a GP to predict the behavioral descriptor (the niche) 

❖ Use Expected Improvement for the second GP (fitness) 

❖ Combine in an acquisition function: 

❖ Optimize EJIE to select the next point

Kent, Branke (2021). Bop-elites, a bayesian optimisation algorithm for quality-diversity search. arXiv 

preprint arXiv:2005.04320. 2020 May 8. / GECCO 2021 poster

EIc(x) = E [max(f(x)− f(ê), 0)] (4)

= (f̄(x)− f(ê))Φ

✓

f̄(x)− f(ê)

s(x)

◆

+ s(x)φ

✓

f̄(x)− f(ê)

s(x)

◆

(5)

P(x ∈ c|D) = Φ

✓

ḡ(x)− bu

s0(x)

◆

− Φ

✓

ḡ(x)− bl

s0(x)

◆

EJIE(x) =

C
X

i=1

P(x ∈ ci)EIci(x).

surrogate models
Scaling up to  
high-dimensional behavioral spaces

❖ We mostly use QD in low-dimensional spaces (2D) 

❖ … but there are many high-dimensional (< 2) behavioral 
descriptions 

• naturally high-dimensional problems 

• trajectories of robots 

• sensory-motor flux 

❖ A grid in 6D, 5 bins per dimension: 56 cells = 15625 

… 12D, 5 bins per dimension: 512 = 244 million 

… 36 D, 2 bins per dimensions: 236 = 68 billions 

➔ We need to make the number of bins/cells independent from 
the dimensionality!

Doncieux, Mouret (2010). Behavioral diversity measures for evolutionary robotics. In IEEE 

congress on evolutionary computation.
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Option 1: Distance-based containers

❖ Option 1: use a container based on distance (not a grid) 

(archive-based container vs grid-based container) 

❖ A solution is added to the archive  
• if the distance to its nearest neighbor is > l 
• or if is better than its k nearest neighbors 

❖ In practice use ε-dominance (see the modular framework 
section) 

❖ Drawbacks: need to decide l (not always intuitive) and k 

❖ Benefits: the behavior space can have any shape

High-dimensional behavioral space

Cully, Demiris (2017). Quality and diversity optimization: A unifying modular framework. IEEE 

Transactions on Evolutionary Computation.

Option 2: Centroidal Voronoi Tesselation

❖ Classic way to create a grid in computer 
graphics: Centroidal Voronoi Tesselation 

➔ specify the number of cells 

➔ get the grid with cells of equal volumes 

❖ Works in any dimension 

❖ Already implemented in many libraries: 
only need k-means 

❖ Needs to be generated once, then we can 
use any grid-based QD algorithm

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the 

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary 

Computation.

High-dimensional behavioral space

Implementing CVT-MAP-Elites

❖ Using the CVT in MAP-Elites: 

•  we need to know the closest centroid to know the cell 
➔ in low-dimensional space: use a KD-tree (computer graphics) 
➔ in high-dimensional space (> 10): sort by distance

High-dimensional behavioral space

❖ Computing the CVT using the LLoyd relaxation: 
1. choose the number of cells (k) 
2. sample N random points (N >> number cells) 
3. run k-means on the points (classic clustering alg.) 

(this uses the distance between the points) 

➔ get k centroids (sites) 
➔ the drawing is a Delaunay diagram from the 

centroids (from any computer graphics library), 

but it is not needed for CVT-MAP-Elites centroid

Voronoi cell 
(points closest  
to centroid)

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the 

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary 

Computation.

CVT-MAP-Elites

❖ Descriptor: sub-sampling of the trajectory 

❖ Conclusion: almost no change in performance when we 
increase the dimensionality

High-dimensional behavioral space

(a) (b)

(c)

Vassiliades, Chatzilygeroudis, Mouret (2017). Using centroidal voronoi tessellations to scale up the 

multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary 

Computation.
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Overview of QD implementations

❖ QD algorithms are easy to implement (this is a strength!) 

• easiest: grid-based MAP-Elites + directional mutation 

• more flexible: CVT-MAP-Elites 

❖ Most research group implemented their own version 

❖ That said, implementations can: 
• help you start 
• give you good baselines 
• give you ‘complex' options 
• be faster (better implementation, parallelization)

Python: notebook

❖ https://github.com/jbmouret/map_elites_tutorial 

❖ Objective: learning the principles of QD 

❖ Use this: 
• as a teaching tool 

❖ Support: 
• 2-D grid-based MAP-Elites 
• nothing else!

implementations

Python: reference implementations

❖ https://github.com/resibots/pymap_elites 

❖ Objective: straightforward implementations that are easy 
to transform (1 page of code for the algorithm) 

❖ Use this: 
• as a library for MAP-Elites 
• as a starting point to ‘hack’ your ideas 

❖ Support: 
• Parallel fitness evaluations (multiprocessing module) 
• CVT-MAP-Elites with directional mutation and KD-Tree 
• Multi-task MAP-Elites 
• “not bad” default settings 
• basic plotting (matplotlib)

implementations

Example
implementations

import numpy as np

import math

import map_elites.cvt as cvt_map_elites

import map_elites.common as cm_map_elites

# the function to optimize

def rastrigin(xx):

    x = xx * 10 - 5 # scaling to [-5, 5]

    f = 10 * x.shape[0] + (x * x - 10 * np.cos(2 * math.pi * x)).sum()

    return -f, np.array([xx[0], xx[1]])

px = cm_map_elites.default_params.copy()

px["dump_period"] = 100000

# we use 1M evaluations (this is a hard function)

# map in 2D, genotype in 10D

archive = cvt_map_elites.compute(2, 10, rastrigin, 

n_niches=10000, max_evals=1e6, log_file=open('cvt.dat', 'w'), params=px)

> python3 examples/cvt_rastrigin.py

> python3 plot/plot_progress.py cvt.dat

> python3 plot/plot_2d_map.py  centroids_10000_2.dat archive_1000100.dat
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Reference for CVT-MAP-Elites
# directional variation

def iso_dd(x, y, params):

    assert(x.shape == y.shape)

    p_max = np.array(params["max"])

    p_min = np.array(params["min"])

    a = np.random.normal(0, params['iso_sigma'], size=len(x))

    b = np.random.normal(0, params['line_sigma'])

    z = x.copy() + a + b * (x - y)

    return np.clip(z, p_min, p_max)

def __add_to_archive(s, centroid, archive, kdt):

    niche_index = kdt.query([centroid], k=1)[1][0][0]

    niche = kdt.data[niche_index]

    n = cm.make_hashable(niche)

    s.centroid = n

    if n in archive:

        if s.fitness > archive[n].fitness:

            archive[n] = s

            return 1

        return 0

    else:

        archive[n] = s

        return 1

# map-elites algorithm (CVT variant)

def compute(dim_map, dim_x, f,

            n_niches=1000,

            max_evals=1e5,

            params=cm.default_params,

            log_file=None,

            variation_operator=iso_dd):

    """

    # setup the parallel processing pool

    num_cores = multiprocessing.cpu_count()

    pool = multiprocessing.Pool(num_cores)

    # create the CVT

    c = cm.cvt(n_niches, dim_map,

              params['cvt_samples'], params['cvt_use_cache'])

    kdt = KDTree(c, leaf_size=30, metric='euclidean')

    cm.__write_centroids(c)

  

 archive = {} # init archive (empty)

 n_evals = 0 # number of evaluations since the beginning

 b_evals = 0 # number evaluation since the last dump 

# main loop

    while (n_evals < max_evals):

        to_evaluate = []

        # random initialization

        if len(archive) <= params['random_init'] * n_niches:

            for i in range(0, params['random_init_batch']):

                x = np.random.uniform(low=params[‘min'], \

           high=params['max'], size=dim_x)

                to_evaluate += [(x, f)]

        else:  # variation/selection loop

            keys = list(archive.keys())

            # we select all the parents at the same 

# time because randint is slow

            rand1 = np.random.randint(len(keys), \

     size=params[‘batch_size'])

        rand2 = np.random.randint(len(keys), \

     size=params['batch_size'])

            for n in range(0, params['batch_size']):

                # parent selection

                x = archive[keys[rand1[n]]]

                y = archive[keys[rand2[n]]]

                # copy & add variation

                z = variation_operator(x.x, y.x, params)

                to_evaluate += [(z, f)]

        # evaluation of the fitness for to_evaluate

        s_list = cm.parallel_eval(__evaluate, to_evaluate, pool, 

params)

        # natural selection

        for s in s_list:

            __add_to_archive(s, s.desc, archive, kdt)

        # count evals

        n_evals += len(to_evaluate)

        b_evals += len(to_evaluate)

  

    return archive

implementations

Python: qdpy

❖ pip install qdpy or https://gitlab.com/leo.cazenille/qdpy  

❖ “framework”, implements: MAP-Elites, CVT-MAP-Elites, NSLC, SAIL, … 

❖ a good choice if you do not plan to “hack" the implementations

from qdpy import algorithms, containers, benchmarks, plots

# Create container and algorithm. Here we use MAP-Elites, by illuminating a Grid container by evolution.

grid = containers.Grid(shape=(64,64), max_items_per_bin=1, fitness_domain=((0., 1.),), 

 features_domain=((0., 1.), (0., 1.)))

algo = algorithms.RandomSearchMutPolyBounded(grid, budget=60000, batch_size=500,

        dimension=3, optimisation_task="maximisation")

# Create a logger to pretty-print everything and generate output data files

logger = algorithms.AlgorithmLogger(algo)

# Define evaluation function

eval_fn = algorithms.partial(benchmarks.illumination_rastrigin_normalised,

        nb_features = len(grid.shape))

# Run illumination process !

best = algo.optimise(eval_fn)

# Print results info

print(algo.summary())

# Plot the results

plots.default_plots_grid(logger)

print("All results are available in the '%s' pickle file." % logger.final_filename)

implementations

Python: pyRIBS

❖ https://pyribs.org   

❖ pip install ribs 

❖ official implementation of Covariance Matrix Adaptation 
MAP-Elites (CMA-ME)

Sferesv2: C++

❖ https://github.com/sferes2/sferes2  

❖ Implements the generic framework for QD 

❖ Template-based C++11, parallelization with TBB or MPI 

❖ Fast: 1 minute for 1M Rastrigin (CVT-ME) vs 5 minutes in Python 

❖ Complex genotypes (neuro-evolution) 

❖ Experimental framework (variants, cluster submission, etc.) 

❖ Highly customizable:

implementations

// defines MAP-Elites (grid container, uniform selection) 

template <typename Phen, typename Eval, typename Stat, typename Modifier, typename Params>

using MapElites 

= qd::QualityDiversity<Phen, Eval, Stat, Modifier,

            selector::Uniform<Phen, Params>, container::Grid<Phen, Params>, Params>;

// defines CVT-MAP-Elites (CVT container, uniform selection)

template <typename Phen, typename Eval, typename Stat, typename Modifier, typename Params>

using CvtMapElites

 = qd::QualityDiversity<Phen, Eval, Stat, Modifier, selector::Uniform<Phen, Params>,

                container::CVT<Phen, container::SortBasedStorage<int>, Params>, Params>;

Mouret, Doncieux (2010). Sferesv2: Evolvin’ in the multi-core world. In IEEE Congress on 

Evolutionary Computation.
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Sferesv2: C++

int main(int argc, char **argv) 

{

    using namespace sferes;

    typedef Rastrigin<Params> fit_t;

    typedef gen::EvoFloat<10, Params> gen_t;

    typedef phen::Parameters<gen_t, fit_t, Params> phen_t;

    typedef eval::Parallel<Params> eval_t;

    typedef boost::fusion::vector<

        stat::BestFit<phen_t, Params>, 

        stat::QdContainer<phen_t, Params>, 

        stat::QdProgress<phen_t, Params>

        >

        stat_t; 

    typedef modif::Dummy<> modifier_t;

    typedef qd::MapElites<phen_t, eval_t, stat_t, modifier_t, Params>

        qd_t;

    qd_t qd;

    run_ea(argc, argv, qd);

   return 0;

}

FIT_QD(Rastrigin){

    public : 

    template <typename Indiv> 

    void eval(Indiv & ind){

        // TODO compute Rastrigin function       

        this->_value = -f;

        std::vector<double> data = {ind.gen().data(0), ind.gen().data(1)};

        this->set_desc(data);

    }

};

Open questions and challenges

❖ Relationship between QD and multitask optimization 

• Example of MT: learning to grasp k different objects 

• QD: f(x) ➔ f, b       Multi-task: f(x, t) ➔ f 

• QD algorithms can be modified for multi-task  

• Multi-task more general, but QD exploits a “trick” that 
makes it effective 

Mouret, Maguire (2020).  Quality Diversity for Multi-task Optimization. Proc of GECCO.

Open questions and challenges
❖ Noise in the fitness…and in the behavior 

• Many fitness functions are noisy (robots, games) 

• Elitist algorithms (like MAP-Elites) do not tolerate noise well 

• Classic EC: noisy fitness, QD: noise in fitness AND behavior 

• Justesen et al.: works well for noisy fitness, not yet for noisy 
behaviors 

• Flageat et al.: works well for noisy behaviors and fitness, but 
might miss the best solutions (lack of elitism)

Justesen, Risi, Mouret (2019). MAP-Elites for noisy domains by adaptive sampling. GECCO 2019 

companion (poster)

Flageat, Cully (2020). Fast and stable MAP-Elites in noisy domains using deep grids. Proc. of Alife.
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Open questions and challenge

❖ How to perform QD optimization with a gradient? 
(Nilsson et al. 2021) 

❖ How to exploit high-dimensional maps? 

❖ Hierarchical QD (Howard et al. 2019, Cully 2018) 

❖ Novel uses of QD? 

• e.g., learning generative encodings for future 
optimizations (Gaier et al, 2020) 

• for now, mostly robotics and games: what else?

Howard, Eiben, Kennedy, Mouret, Valencia, Winkler (2019). Evolving embodied intelligence from 

materials to machines. Nature Machine Intelligence.

Gaier, Asteroth, Mouret (2020). Discovering Representations for Black-box Optimization. Proc. of 

GECCO.

Cully, Demiris (2018). Hierarchical Behavioral Repertoires with Unsupervised Descriptors. Proc. of 

GECCO.
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