
Learning Assignment Order in an Ant Colony Optimiser for the
University Course Timetabling Problem

James Sakal
js1188@exeter.ac.uk
University of Exeter

UK

Jonathan E. Fieldsend
J.E.Fieldsend@exeter.ac.uk

University of Exeter
UK

Edward Keedwell
E.C.Keedwell@exeter.ac.uk

University of Exeter
UK

ABSTRACT
Previous studies have employed Ant Colony Optimisation to solve
the University Course Timetabling task — which requires the order
of lecture assignments to be defined for its construction graph. Vari-
ous heuristic or random ordering techniques have been proposed in
the literature, but uncertainty remains regarding the best approach
for this. We investigate the effect that permuting assignment order
has on the quality of timetable produced. As part of this we de-
velop a novel MAX-MIN Ant System including dynamic constraint
handling and partial function evaluations. We also explore algo-
rithm variants with and without Local Search and employ a form
of transfer learning to identify appropriate permutations. We find
that between smaller problems in the International Timetabling
Competition 2007 benchmark, timetabling performance can be im-
proved using such an approach. However we find that we lose
this performance gain when attempting to transfer to considerably
larger problems — indicating that similar structures are required
when using a ‘learnt’ permutation approach in such a framework.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms.

KEYWORDS
Timetabling and scheduling, ant algorithms, combinatorial optimi-
sation, empirical study.

ACM Reference Format:
James Sakal, Jonathan E. Fieldsend, and Edward Keedwell. 2021. Learning
Assignment Order in an Ant Colony Optimiser for the University Course
Timetabling Problem. In 2021 Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459534

1 INTRODUCTION
The University Course Timetabling Problem (UCTP) refers to gen-
erating a workable university timetable by assigning lectures to
discrete locations in time and space. It is a well studied problem in
combinatorial optimisation, known to be computationally hard [6].

A popular metaheuristic for such discrete optimisation problems
is Ant Colony Optimisation (ACO). One of the first applications of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459534

ACO to the UCTP can be found in [6]. In our study, we develop a
system based around a variant of ACO known as MAX-MIN Ant
System (MMAS). One unavoidable design choice is the order of
lecture assignments in the construction graph. While some consid-
eration has been given to heuristic approaches in the literature ([3],
[5]), we employ machine learning techniques. Our experiments are
conducted on a standardised problem formulation proposed by the
International Timetabling Competition (ITC) 2007 Track 3 [2].

2 METHOD
We develop a system based on the components below.

Representation: Our construction graph is comprised of |P | ×
|L|×|R|+2 nodes, whereP,L andR are the sets of periods, lectures
and rooms respectively. This is encoded as a 3D matrix, plus start
and end nodes. Rather than connect nodes by edges, we employ an
edgeless graph in which pheromone is deposited directly on nodes.
As [5] notes, this treatment, a permutation-based ACO, removes
the combinatorial complexity and memory issues associated with
handling a large matrix of edge values.

ACO Formulation: At each iteration, 𝑘 ants independently be-
gin trails at the start node, 𝑠 , before visiting exactly one node in each
sequential lecture plane and terminating at end node 𝑒 . Every node
in the main matrix corresponds to a distinct placing of a lecture, and
thus a single ant trail encodes a complete solution. Timetables are
scored using a weighted sum of soft and hard constraint violations
— a single objective that we seek to minimise. Pheromone values are
bounded by parameters 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 and initialised to the latter.
We employ an elite update strategy for adjusting these values, using
either the iteration best or global best ant.

Dynamic Constraint Handling (DCH): For hard constraints
that are known a priori, pheromone values for the relevant nodes
are set to zero. Other hard constraints are dependent on previous
lecture assignments. These are handled dynamically by assigning
the relevant nodes a value that is a fraction of 𝜏𝑚𝑖𝑛 . This guarantees
complete assignment of lectures while permitting the search to
move through infeasible space.

Partial function evaluations: When evaluating a given so-
lution, we make smart decisions by abandoning at the earliest
opportunity those which cannot yield the iteration best score.

Local Search (LS): Our routine attempts to improve on the elite
ant solution.We adopt 3 of the specialised neighbourhood operators
from chapter 5.3 of [4]: timeMove, roomMove and lectureMove, as
well as a swap operator perRoomSwap which attempts to swap the
room and period of two randomly chosen lectures. When activated,
LS is called periodically during a run of iterations.

Course assignment order:Ourmotivation for determining the
order of lecture assignments in a construction graph lies in a desire

77

https://doi.org/10.1145/3449726.3459534
https://doi.org/10.1145/3449726.3459534

GECCO ’21 Companion, July 10–14, 2021, Lille, France James Sakal, Jonathan E. Fieldsend, and Edward Keedwell

to assign ‘harder’ lectures earlier — while a wider choice of feasible
placement options remains open. We first build a training set of
eleven 5-course instances using our problem instance generator, all
of which have at least one solution with no constraint violations
at all. For each course 𝐶𝑖 in the set of courses C in an instance,
values for eight impactful features are extracted and normalised.
The features capture both characteristics inherent to a course such
as number of lectures, as well as inter-course relationships such as
the conflict density between curriculum memberships. As we are
interested in the relative position of courses in a permutation, we
cross the 8 features with position indices 1 . . . 5 and concatenate
these vectors, yielding a single feature vector of length 8 × 5 =

40 for each permutation. Without LS, we observe that, over the
permutation space of size 5! = 120, certain clusters of permutations
converge to a perfect solution more efficiently than others. Such
variation occurred across all training set instances.

For our predictor, the target is the sample mean (over 30 trials) of
the number of full function evaluations taken to find a zero violation
score. If none has been found within 150s CPU time, we take the
number of full function evaluations completed to that point. We
train a set of regression models on 5 cross-validated folds using
the standard CART node-splitting technique [1]. Minimum leaf
size is used for termination and we optimise over this parameter.
An average loss (mean squared error) over all folds of 0.0373 is
achieved, with a minimum leaf size of 15.

In order to use this model to make predictions about larger
unseen problems with |C| > 5, we apply a mapping:

1
|Q𝑖 |

∑
𝐶∈Q𝑖

feat → ifeat (1)

where Q𝑖 is the set of courses comprising the 𝑖𝑡ℎ quintile of a per-
mutation, by position, for 𝑖 = 1 . . . 5, feat is the normalised value
of a generic feature, and ifeat is the subsequent positional feature.
By way of this averaging, we obtain a standard 40-feature vector
irrespective of |C|. Every such vector has an associated fitness —
namely the normalised prediction value returned by the model. We
may then search the course permutation space for permutations of
high fitness. While the size of this space (|C|!) is large, the fitness
landscape is simplified by the discrete decision tree and mapping
inherent to our models.

We locate regions of ‘good’ permutations using a simple genetic
algorithm (GA). This is built on the partially matched crossover
(PMX) operator [7], which tends to respect the absolute positions
of courses within a permutation, and a mutation operator which
switches the positions of two randomly chosen courses. The fittest
permutation is returned after 750 generations of the GA, which
was found to be sufficient time for convergence.

3 RESULTS AND CONCLUSIONS
Three small problems (|C| = 30, 30, 47) and three large problems
(|C| = 79, 99, 74) were used. Tables 1 and 2 show results for the
predictor and a baseline in which perms were chosen at random,
over 50 repetitions of 100k full function evaluation runs.

The best ‘mean best solution score’ (shaded) indicates superior
performance of the predictor on the smaller problems - with sta-
tistical significance on comp11 (p-value 6.5 × 10−5) and comp18

Table 1: Performance on small problems

Variant Value comp01 comp11 comp18

randPerm Mean best solution score 78 152 278
S.d. best solution score 30 23 19

predictor Mean best solution score 71 134 266
S.d. best solution score 19 15 17

Table 2: Performance on large problems

Variant Value comp04 comp17 comp19

randPerm Mean best solution score 2873 2860 1425
S.d. best solution score 117 514 206

predictor Mean best solution score 2932 3802 1592
S.d. best solution score 131 243 497

(3.1 × 10−3). Complex feature relationships of the larger problems
(whose sizes were 15.8×- 19.8× greater than our training problems)
proved harder to capture. This may indicate the importance of sim-
ilarity in size or structure between training problems and those we
wish to predict for. Restricting training size to 5-course problems
enabled testing of all permutations, with the trade-off that some fea-
tures could only take a small number of discrete values. In further
experiments incorporating LS, we observed a flattening of results
across the board. We note that LS can incur a high computational
cost and its benefits must be weighed up against this.

In summary, we developed anMMAS system that was able to find
feasible solutions to all problems tested. Smart function evaluations
enabled efficient use of budget, while DCH guaranteed complete
solutions and helped guide the search towards feasibility. In the
non-LS variant, our predictor model was able to improve average
scores when compared to picking a random lecture assignment
order, provided the problems were not excessively larger in size.

REFERENCES
[1] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. 1983. Classification and

Regression Trees. Wadsworth International Group.
[2] Luca di Gaspero, Andrea Schaerf, and Barry McCollum. 2007. The Second Interna-

tional Timetabling Competition : Curriculum-based Course Timetabling (Track 3).
Electrical Engineering (2007) Track 3 (2007), 1–21.

[3] Vatroslav Dino Matijaš, Goran Molnar, Marko Čupić, Domagoj Jakobović, and
Bojana Dalbelo Bašić. 2010. University course timetabling using ACO: A case study
on laboratory exercises. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6276
LNAI, PART 1 (2010), 100–110.

[4] T. Müller. 2009. ITC2007 solver description: A hybrid approach. Annals of Opera-
tions Research 172, 1 (2009), 429–446. https://doi.org/10.1007/s10479-009-0644-y

[5] Clemens Nothegger, Alfred Mayer, Andreas Chwatal, and Günther R. Raidl. 2012.
Solving the post enrolment course timetabling problem by ant colony optimization.
Annals of Operations Research 194, 1 (2012), 325–339.

[6] Olivia Rossi-Doria, Michael Sampels, Mauro Birattari, Marco Chiarandini, Marco
Dorigo, Luca M. Gambardella, Joshua Knowles, Max Manfrin, Monaldo Mastrolilli,
Ben Paechter, Luis Paquete, and Thomas Stützle. 2003. A Comparison of the
Performance of Different Metaheuristics on the Timetabling Problem. Lecture Notes
in Computer Science, Volume 2740, pp 329-351.

[7] S. N. Sivanandam and S. N. Deepa. 2008. Introduction to Genetic Algorithms.
Springer, Berlin, Heidelberg, New York.

78

https://doi.org/10.1007/s10479-009-0644-y

	Abstract
	1 Introduction
	2 Method
	3 Results and Conclusions
	References

