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ABSTRACT
This paper proposes a methodology to analyze complex systems’
self-organizing characteristics by utilizing a double-layer ant swarm
algorithm. The basic components comprising a complex system
are defined as interacting nodes, and each node hosts multiple
ants, which motions represent possible traces of the corresponding
node. A representative group-state for the entire complex system is
formed by randomly selecting one ant from all nodes. The method-
ology further proposes constructing a fitness function to guide the
random ant-group moving with reduced entropy generation at the
system level. Simultaneously, ants within a single node move by
pheromone-based coordination. The proposed methodology is used
to analyze Abelian Sandpile Model (ASM). Two types of coordinat-
ing algorithms, stochastic greedy and chaotic, are constructed to
evaluate the methodologies’ robustness. The results demonstrate
that both coordinating algorithms can successfully capture ASM’s
collective characteristics, such as average sandpile height and re-
cursive rates for different heights, although these two algorithms
represent different searching dynamics.
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1 INTRODUCTION
Agent-based models have demonstrated remarkable efficacy in
analyzing complex systems’ collective behaviors. However, few
developed algorithms are mature or widely adaptive to different
application scenarios [9]. This paper proposes a methodology to
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construct a double-layer ant swarm for complex systems that con-
siders both local information exchange among ant agents and the
entire community’s influence on the individual ant. The so-called
double-layer swarm includes a node layer (macro-scale) and a sub-
swarm layer (micro-scale). Figure 1 schematically illustrates the
structure of the proposed double-layer ant swarm. Multiple swarm
agents (i.e., ants) are assigned to a single node, that each agent
represents a possible state for the node. Only agents assigned to the
same node can be neighbors, in which sense every node contains a
sub-swarm de facto.

One agent is randomly selected at each iteration from each node
to form a representative set, which stands for a possible macrostate
for the entire system. A fitness function applies to this tempo-
rary set and achieves the corresponding entropy information. This
fitness function guides the ants moving along the direction that
lowers the whole system’s entropy production, similar to Artificial
Potential Function (APF), but no velocity information is needed.
This method utilizes the ideas proposed by Prigogine [8] and Ku-
gler & Turvey [6] that self-organizing could be the result of the
competitions among several disorder procedures coupled to a multi-
agent system (MAS), and it represents the equilibrium state with
maximum system entropy or minimal entropy production (i.e., en-
tropy variation rate). Within this double-layer structure, the fitness
function coordinates interactions among nodes (macro-scale), but
pheromone-based coordination only works within the sub-swarm
(micro-scale). To verify the proposed methodology’s effectiveness,

Figure 1: Schematic structure of the double-layer ant swarm.

we select Abelian Sandpile Model (ASM) as the exemplary case. A
stochastic greedy algorithm with discrete state space and a chaotic
algorithm with continuous state space are constructed under the
double-layer swarm framework. The results and corresponding
comparisons can provide insight into the essential mechanism uti-
lized to capture the emergence of self-organizing characteristics.

79

https://doi.org/10.1145/3449726.3459502
https://doi.org/10.1145/3449726.3459502


GECCO ’21 Companion, July 10–14, 2021, Lille, France J. Zhang and P. Cheng

2 ALGORITHMS FOR ASM
A classical 2DASMof size𝑀×𝑀 is a simple self-organizing complex
system with its collective behavior fully analytical and tractable
[2, 3, 7]. There are four possible grain heights at each site of the
𝑀 × 𝑀 lattice, i.e., 𝑠 ∈ {0, 1, 2, 3}. The threshold ℎ𝑐 is 4, beyond
which a topple would occur, throwing out grains from this site.
An ant swarm of size 𝑁 (i.e., there are 𝑁 ants in total) is uni-
formly assigned to the 𝑀 × 𝑀 sandpile (𝑀 × 𝑀 nodes in total),
that each node has 𝑙𝑎𝑠𝑔𝑛 ants and 𝑁 = 𝑀2𝑙𝑎𝑠𝑔𝑛 . The state at each
site is discrete and finite, i.e., 𝑠 ∈ {0, 1, 2, 3}. States on all sites
form the space S. The state at each site is denoted as 𝑠 (𝑖, 𝑗) and a
set 𝐴 =

{
𝑠 (𝑖, 𝑗)

��𝑖 = 1, 2, . . . , 𝑀 ; 𝑗 = 1, 2, . . . , 𝑀
}
represents a possible

configuration of the sandpile system. The position of the 𝑘𝑡ℎ ant,
which belongs to the lattice (𝑖, 𝑗), can be represented as 𝑝𝑘 = 𝑠 (𝑖, 𝑗) ,
and accordingly ℎ (𝑖, 𝑗) = 𝑝𝑘 .

In the discreet Stochastic Greedy Algorithm (SGA), there are
four parameters involved in the iteration for each ant: position 𝑝𝑘
for 𝑘𝑡ℎ ant, where 𝑘 = 1, . . . , 𝑁 ; trail possibility 𝑡𝑟𝑘,𝑠 for 𝑘𝑡ℎ ant
moving to 𝑠 , where 𝑠 ∈ {0, 1, 2, 3}, and ∑3

𝑠=0 𝑡𝑟𝑘,𝑠 = 1;pheromone
𝜑𝑘,𝑠 for 𝑘𝑡ℎ ant at 𝑠 , where 𝑠 ∈ {0, 1, 2, 3} and 𝑡𝑟𝑘,𝑠 =

𝜑𝑘,𝑠∑3
𝑠=0 𝜑𝑘,𝑠

.
At the beginning the iteration, the entire ant swarm will be ini-

tialized with random positions and all pheromone value is set to
the same positive constant 𝐶 , i.e., 𝜑𝑘,𝑠 = 𝐶 > 0. Then a represen-
tative set 𝐴∗ is formed by randomly selecting one ant from every
node. 𝐴∗ =

{
ℎ∗(𝑖, 𝑗)

��𝑖 = 1, 2, . . . , 𝑀 ; 𝑗 = 1, 2, . . . , 𝑀
}
, and ℎ∗(𝑖, 𝑗) = 𝑝𝑘∗ ,

where 𝑘∗ is not a consecutive number serie.Dropping a sand grain
on a random site on 𝐴∗ will cause the local height to rise by 1 or
trigger toppling, which induces enthalpy and entropy changes to
the system. Two fitness functions are built to measure this change,
representing different observations:

𝐹1 (𝑘) = 𝑠𝑎(𝑖, 𝑗) (1)

𝐹2 (𝑘) = (𝑆𝑎 + 1) ×
��ℎ𝑘,𝑡 − ℎ𝑘,𝑡+1

��
ℎ𝑐

(2)

where 𝑆𝑎 is the avalanche scale for the toppling event, that:{
𝑠𝑎 = 0, if no toppling at site (𝑖, 𝑗)
𝑠𝑎 = size of avalanche, if toppling triggered at site(𝑖, 𝑗) (3)

Within site (𝑖, 𝑗), the best position is determined by the ant having
the largest 𝐹1 (or 𝐹2) value. The ants at site (𝑖, 𝑗) are denoted by
𝑘 (𝑖, 𝑗), the ant with the largest 𝐹1 is 𝑘𝑏 (𝑖, 𝑗), and its position is
𝑠 [𝑘𝑏 (𝑖, 𝑗)]. All ants assigned to this node will have their pheromone
updated by:

𝜑𝑘 (𝑖, 𝑗),𝑠 [𝑘𝑏 (𝑖, 𝑗) ] = 𝐹1
(
𝑘𝑏 (𝑖, 𝑗)

)
(4)

Equation 4 will change the trail probability of all ants within the
same node. Moreover, between iteration steps, 𝑡 and 𝑡 + 1, the
pheromone will evaporate by:

𝜑𝑘,𝑠 (𝑡 + 1) = (1 − 𝜌)𝜑𝑘,𝑠 (𝑡) (5)

A double-layer ant swarm based on continuous space is further built
by utilizing the Chaotic Ant Swarm (CAS) algorithm developed by
Li et al. [4, 5]. In this algorithm, s is relaxed to a continuous real
number range, i.e., 𝑠 ∈ [0, 4), that a state larger than 3 is allowed in
the model, attempting to free the ants’ searching space around 3.

Table 1: Hight Distribution for Experiments

𝑃0 𝑃1 𝑃2 𝑃3

Analytical Value 7.40% 17.40% 30.60% 44.60%

SGA+𝐹1 7.87% 15.34% 27.31% 49.48%
SGA+𝐹2 8.19% 14.56% 26.69% 50.56%
CAS+𝐹2 4.6% 17.9% 34.3% 43.1%

Similar behavior equations for ants as in [4, 5] are adopted and 𝐹2
is the fitness function.

3 RESULTS AND CONCLUSIONS
Developed algorithms evaluate sandpile’s average height and dis-
tribution of the four heights and get an excellent match to the
analytical results. For a 121x121 sandpile, SGA achieves an aver-
age height of 2.17 with 𝐹1 and 2.19 with 𝐹2. CAS with 𝐹2 gets an
average height of 2.12. The analytical value is 2.125. Table 1 lists
the distribution of the four heights. It is found that SGA intends to
over-estimate the occurrence of height 3, and 𝐹2 with additional
observable involved for entropy elongates the convergence but has
negligible impacts on the results. CAS’ results are slightly better
than SGA’s, and more statistical information regarding the self-
organizing sandpile can be retrieved. The results demonstrate the
proposed double-layer ant swarm is open to different mathemati-
cal schemes for both the macro-scale (node layer) and micro-scale
(sub-swarm layer) coordinations. This paper proposes an energy-
related enthalpy concept as an approximation of entropy while
constructing the fitness function. The comparison between two
different fitness functions demonstrates the robustness of the pro-
posed methodology, which is crucial to real systems applications.
A good example is a self-organizing thermodynamic system (SOTS)
[1] that utilizes two-phase fluid and heat flow in an interconnected
microchannel network as a passive heat transfer device for elec-
tronic systems. Preliminary results have verified the effectiveness
of the algorithm. Complete investigations are planned in the short
future.
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