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ABSTRACT
Organisms with different body morphology and movement dynam-
ics have distinct abilities to move through the environment. Despite
such truism, there is a lack of general principles that predict which
shapes and dynamics make the organisms more fit to move. Study-
ing a minimal yet embodied soft robot model under the influence of
gravity, we find three features that predict robot locomotion fitness:
(1) A larger body is better. (2) Two-point contact with the ground
is better than one-point contact. (3) Out-of-phase oscillating body
parts increase locomotion fitness. These design principles can guide
the selection rules for evolutionary algorithms to obtain robots with
higher locomotion fitness.
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1 INTRODUCTION
Optimizing soft robot’s shape and dynamics using embodied simu-
lation coupled with evolutionary algorithms is a promising strategy
to obtain good robot candidates in physical applications [4, 6]. Most
recent efforts have been concentrated on developing better search
algorithms [1, 2]. Nevertheless, evolutionary algorithms do not im-
mediately provide the features of the morphology or dynamics that
explain why the algorithm selected a specific robot, other than the
fact that the robot had good fitness. Knowing which characteristics
make a robot more fit could lead to better evolutionary algorithms.

In this work, we use a simple embodied voxel-based soft robots
(VSRs) model to study morphological and dynamical features pre-
dictive of the robot fitness on a flat ground with no obstacles. The
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simplicity of the model allows us to investigate the robot’s charac-
teristics and the corresponding fitness exhaustively. We show that
relatively simple rules correlate with higher locomotion fitness.

2 METHODS
We performed the experiments in the soft-robot physics engine
Voxelyze [3], using a genetic encoding, evolutionary design, and
simulation parameters based on Kriegman et al. [4]. We created the
genotype networks via Compositional Pattern Producing Networks
(CPPNs) [4, 7] with Age-Fitness-Pareto Optimization (AFPO) evolu-
tionary algorithm [5]. CPPNs mutations include addition, modifica-
tion or removal of a node or edge. The 2×2×2 workspace restricted
the robot’s possible design configurations (voxels type and position
in space). It is the minimal space to start analyzing movements. We
expect that results achieved in this minimal setup can be generalized
in larger dimensions. Each one of the 50 independent experiments
(random seeds 1-50) started with a population of 50 robots and
evolved through 2000 generations. In each new generation five new
random individuals compete with the previous population and their
mutations to increase variability in the search space. The simulation
time consists of 1s for the robot settles under gravity and 50s for
fitness evaluation. For the 23 workspace, 50s is sufficient time to
evaluate their steady behavior. Robot’s fitness is the distance of its
center of mass in the x-y plane between its initial and final position
divided by the evaluation time.

The voxels type can be tissue (a flexible but passive material) or
muscle (a flexible and actuated material). A global signal controls
actuation in the muscle voxels at 2Hz sinusoidal signal. The robot’s
genotype is composed of two independent CPPN networks: one for
the design and one for the phase offset of each voxel with respect
to the global signal. Each robot generated in the simulation was
grouped in shapes. Each shape contains robots that have the same
voxels after reflection and rotations (90°, 180° and 270°) in the x-y
plane. Next, we grouped the shapes in structures. Each structure
includes shapes that are the same up to a rotation in the z-direction.

3 RESULTS
Understanding why some shapes are more fit to move compared to
others is essential given that such simulations and their outcomes
are already used in physical environments [4]. We hypothesize the
existence of morphological and dynamical control parameters that
predict the fitness success of locomotion.

Each shape can have different fitness depending on the phase
offset of the oscillating elements. We selected each shape’s maximal
fitness (by varying the phase offset) to analyze the relationship
between shape characteristics and locomotion fitness (Fig.1). The
horizontal axis in Fig.1 measures the number of voxels. Each col-
umn corresponds to different structures. The vertical axis measures
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Figure 1: Relationship between shape characteristics and fit-
ness. Color codes and numbers inside each square indicate
the corresponding fitness.

Shape 16 Shape 24 Shape 14 Shape 12 Shape 6 Shape 7

Figure 2: Robots with largest fitness. The selected robots ex-
hibit Fit𝑚𝑎𝑥 ≥ 8 and Fit𝑚𝑒𝑑𝑖𝑎𝑛 ≥ 6. The robots are ordered by
maximal fitness value from left to right. Color code is the
same as in Fig.1.

the number of voxels in contact with the ground (feet) at the be-
ginning of the simulation, before any gravity-related movement.
Fig.1 shows that shapes with many voxels were more fit for a given
number of feet (see, for example, shapes 14, 12, and 6 in Fig.2). Fig.1
also shows that shapes with one foot were overall more fit than
other shapes (see shapes 16, 24, and 7 in Fig.2). The movement of
shapes with more than one foot and many voxels produces a larger
displacement than the small ones. The one-foot shapes with an
unbalanced distribution of voxels tumble as the simulation begins
and have two contact points with the ground, maximizing the dis-
tance between them. The results indicate that these shapes with
two-point contact in the ground are the fittest.

A locomotion behavior depends on the distribution of phase off-
set values in the voxels. To investigate if shapes with larger fitness
(Fit𝑚𝑎𝑥 ≥ 8 and Fit𝑚𝑒𝑑𝑖𝑎𝑛 ≥ 6) have similar actuation policies, we
analyzed the absolute difference 𝜙 between the phase offset of the
two most distant voxels in their body. Fig.2 represents a subset of
the selected shapes with larger fitness. Fig.3 shows the influence
of 𝜙 on fitness for the corresponding robots in Fig.2. Shapes that
are not shown exhibit a similar relationship between 𝜙 and fitness.
For each one of the six shapes, we plotted the distribution of all
the robots created during the 2000 generations. An alternate phase,
𝜙 ≈ 0.5 (i.e., phase difference ≈ 𝜋 radius), between the most distant
voxels, predicts the fittest robots for all selected shapes (Fig.3). In
particular, the alternating phase is optimal even for shapes as dis-
tinct as 6 and 24. When the phase offset difference between these
extreme voxels tends to zero, the robot’s fitness also tends to zero
(Fig.3). Therefore, the robots with better performance in locomo-
tion, independently of their shapes, have at least two distant voxels
(or groups of voxels) moving out of phase.

Our results indicate that locomotion success is related to having
a sufficient number of voxels to structure a body with at least two
voxels in contact with the ground. Moreover, the two voxels (or
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Figure 3: The phase offset difference (𝜙) of the most distant
voxels in the robot predicts fitness success. Even for differ-
ent shapes, high fitness is concentrated around 𝜙 = 0.5.

groups of voxels) should oscillate in alternating phases at the body’s
extreme locations.

4 CONCLUSION
Soft-robots’ locomotion behavior depends in a complex way on the
entangled body-environment system. Despite that, this work in the
minimal space 23 shows that there are relatively simple morpho-
logical and dynamical characteristics that can predict locomotion
fitness. These results indicate which are the features that the evolu-
tionary algorithm selects during its optimization in our simulations.
However, it is not yet clear whether they can be generalized to
other physical setups and dimensions.
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