

Instructor

Mardé Helbig is a Senior Lecturer at the School of ICT and an associate member of the Institute for Integrated and Intelligent Systems at Griffith University. Her research focuses on solving dynamic multi-objective optimization (DMOO) problems using computational intelligence algorithms. She is the chair of the IEEE Computational Intelligence Society's (IEEE CIS) Chapters sub-committee, co-chair of the IEEE CIS Mentoring sub-committee and a member of the IEEE CIS Women in Computational Intelligence and Young Professionals sub-committees. She has received the 2018/2019 TW Kambule-NSTF: Emerging Researcher award for her research on DMOO.

GriffithUNIVERSITY

https://experts.griffith.edu.au/25256-mard%C3%A9-helbig https://www.griffith.edu.au/institute-integrated-intelligent-systems

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions Slide 2

2

 Dynamic Multi-objective Optimization Benchmarks

 Mathematical Formulation

 minimise : $\mathbf{f}(\mathbf{x}, t) \leftarrow Objective functions$

 subject to: $g_i(\mathbf{x}, t) \leq 0, i=1, ..., n_g \leftarrow Inequality constraints$
 $h_j(\mathbf{x}, t) = 0, j=1, ..., n_h \leftarrow Equality constraints$
 $\mathbf{x} \in [\mathbf{x}_{min}, \mathbf{x}_{max}]^{n_{\mathbf{x}}}$

 Boundary constraints

 Decision variable space

GriffithUNIVERSITY

40

39

Slide 39

Dynamic Multi-objective Optimization

Minimize an additional objective function, which is the sum of

If already optimizing 3 objectives, changes it into a many-

Benchmarks Dealing with Constraints

Adding an objective function

GECCO2021 Tutorial - DMOO: Introduction, Challenges, Applications and Future Directions

constraint violations

* An additional objective

objective problem

GriffithUNIVERSITY

Dynamic Multi-objective Optimization Performance Measures

Be careful when using measures from static MOO [9]:

- Often use hypervolume (Lebesque integral) to measure performance
- · Reference vector is the worst values for each objective

42

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><equation-block>

That will be a lot of figures per study! For each benchmark, different frequency and severity of change!

ps-gr • ps-g

[4]

GriffithUNIVERSITY

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions Slide 50

50

 Challenges in DMOO Decision Making
 Show POF to decision maker and s/he selects a solution:

 May find an even more optimal weight combination
 Find different possibilities where each solution is an "optimal weight combination"

 Find different possibilities where each solution is an "optimal weight combination"

References

[1] Pixabay License. Available online at: https://pixabay.com/vectors/search/blue%20car%20car/

- [2] Guillaume Jackquenot. CC BY-SA 3.0, via Wikimedia Commons. Available online at: https://commons.wikimedia.org/wiki/File:NonConvex.gif#globalusage
- [3] Design Impact. Introduction to scalarization methods for multi-objective optimization. Available online at: https://www.youtube.com/watch?v=yc9NwvlpEpl&t=2089s
- [4] M. Helbig. Solving dynamic multi-objective optimization problems using vector evaluated particle swarm optimization, PhD thesis, University of Pretoria, 2012. Available online at: https://repository.up.ac.za/handle/2263/28161
- [5] M. Helbig and A.P. Engelbrecht. Benchmarks for dynamic multi-objective optimisation algorithms. ACM Computing Surveys, 46(3), 2014. Available online at: <u>https://dl.acm.org/doi/10.1145/2517649</u>
- [6] Petr Krtochvil. CCO Public Domain License. Available online at:

https://www.publicdomainpictures.net/en/view-image.php?image=38393&picture=meerkat-on-watch

[7] M. Helbig. Challenges of applying dynamic multi-objective optimization to real-world problems. Women in Computational Intelligence: Key Advances and Perspectives on Emerging Topics, Women in Engineering and Science, Springer. To be published.

https://www.sciencedirect.com/science/article/abs/pii/S2210650213000539 [9] M. Helbig and A.P. Engelbrecht. Issues with performance measures for dynamic multi-objective optimization. *In Proceedings of the IEEE Symposium Series on Computational Intelligence*, Singapore, 16-19 April, 2013. Available online at: https://ieeexplore.ieee.org/document/6595767 [10] M. Helbig and A.P. Engelbrecht. Analysing the performance of dynamic multi-objective optimization algorithms. In *Proceedings of the IEEE Congress on Evolutionary Computation (CEC)*, Cancun, Mexico, 20-23 June, 2013. Available online at: https://ieeexplore.ieee.org/document/6557767 [11] F. Atiah and M. Helbig. Effects of decision models on dynamic multi-objective optimization algorithms for financial markets. In *Proceedings of IEEE Congress on Evolutionary Computation (CEC)*, pp. 762–770, Wellington, New Zealand, 10-13 June, 2019. Available online at: https://ieeexplore.ieee.org/document/6597744

GriffithUNIVERSITY

[8] M. Helbig and A.P. Engelbrecht. Population-based metaheuristics for continuous boundary-

constrained dynamic multi-objective optimisation problems. Swarm and Evolutionary

80

Slide 80

References (cont.)

Computation, 14:31-47, 2014. Available online at:

GECCO2021 Tutorial - DMOO: Introduction, Challenges, Applications and Future Direction

83

References (cont.)

- [16] J. Eaton, S. Yang and M. Gongora. Ant colony optimization for simulated dynamic multiobjective railway junction rescheduling. *IEEE Transactions on Intelligent Transportation Systems*, 18(11), 2980–2992, 2017. Available online at: <u>https://ieeexplore.ieee.org/document/7875408</u>
- [17] J. Ding, et al. Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 3(1), 36–48, 2019. Available online at: <u>https://ieeexplore.ieee.org/document/8331273</u>
- [18] H.K.K. Hara. Hybrid genetic algorithm for dynamic multi-objective route planning with predicted traffic in a real-world road network. In *Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO)*, pp. 657–664. Atlanta, Georgia, USA, 2008. Available online at: <u>https://dl.acm.org/doi/10.1145/1389095.1389226</u>
- [19] Nations Online Project. Map of Australia. Available online at: https://www.nationsonline.org/oneworld/map/australia-map.htm
- [20] M. Helbig. Visualising the search process for multi-objective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, p. 1560-1561, Kyoto, Japan, 15-19 July, 2018. Available online at: <u>https://dl.acm.org/doi/10.1145/3205651.3208314</u>

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions Slide 82

