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1. Introduction:

 Multi-objective optimization (MOO)

 Dynamic multi-objective optimization (DMOO)

2. Analyzing algorithms’ performance:

 Benchmark functions

 Performance measures

 Analyzing the results

3. Real-world applications

4. Challenges in DMOO field

5. Emerging areas
6. Conclusions
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 Imagine you want to buy a car

Want to have as much comfort as possible and pay as little as possible

More than one goal

Multi-objective optimization problem

Introduction

[1]

Multi-objective Optimization
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Introduction
Multi-objective Optimization
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Goals are in conflict with one another:

 Improving one objective leads to deterioration of another

 A single solution does not exist

 Need a new way to quantify the quality of solution

[1]

Multi-objective Optimization
Introduction
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Pareto-dominance Approach

A

B

Multi-objective Optimization
Introduction

 Assume minimization

 A is better than B w.r.t. 𝐹ଵ, but worse 
than B w.r.t. 𝐹ଶ

 B is better than A w.r.t. 𝐹ଶ, but worse 
than A w.r.t. 𝐹ଵ

 Both deemed as equally good

 A and B are non-dominated solutions

 B is better than C w.r.t. both objectives

 B dominates C or C is dominated by B

C
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Goal is to find a set of optimal trade-off solutions 

Work in 2 spaces:

 Decision space: called the Pareto-optimal set (POS)

 Objective space: called the Pareto-optimal front (POF)

Multi-objective Optimization
Introduction

[1]

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions
Slide 10

Multi-objective Optimization
Introduction

Pareto-optimal 
Front (POF)

𝑓ଵ(cost)

𝑓ଶ(comfort)

Objective Space

Each solution on POF is 
obtained through decision 
variable values in decision 
space

x values
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Multi-objective Optimization
Introduction

Mathematical Formulation

Objective functions

Inequality constraints

Equality constraints

Boundary constraints

minimise :
subject to:

f(x)
𝑔(x) ≤ 0, i=1,…,𝑛
ℎ(x) = 0, j=1,…,𝑛
x ϵ [x, x௫]ೣ

Decision variable space
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Preference-based Approaches: Weighted Sum Approach
M

O
O

P Minimize:
𝑓ଵ
𝑓ଶ
𝑓ଷ
…
𝑓

Subject to 
constraints

H
ig

he
r-l

ev
el

 in
fo Estimate a    

relative  
importance  
vector:

   ሺ𝑤ଵ,𝑤ଶ, …, 
     𝑤)

SO
O

P F =    
𝑤ଵ𝑓ଵ+𝑤ଶ𝑓ଶ+…+𝑤𝑓 SO
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Problems with this approach:
• Choosing weights introduces another 

optimization problem
• Expect a lot of expert knowledge
• Obtain a single solution per run
• Absence of parallel search
• Cannot find solutions in non-convex 

area of POF

Any found solution is Pareto-optimal

Introduction
Multi-objective Optimization

[2]

s.t. Σ𝑤=1
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Preference-based Approaches – ε Constraint Approach

M
O

O
P Minimize:

𝑓ଵ
𝑓ଶ
𝑓ଷ
…
𝑓

Subject to 
constraints
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P Constrain all but one 
objective

SO
O

 
O
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er

 

Problems with this approach:
• Need to know the relevant ε vectors
• Expect a lot of expert knowledge
• Obtain a single solution per run
• Absence of parallel search
• Non-uniformity in Pareto-optimal 

solutions

*

Can find any Pareto-optimal solution

Introduction
Multi-objective Optimization
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Preference-based Approaches – ε Constraint Approach

M
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Problems with this approach:
• Need to know the relevant ε vectors
• Expect a lot of expert knowledge
• Obtain a single solution per run
• Absence of parallel search
• Non-uniformity in Pareto-optimal 

solutions

*

Can find any Pareto-optimal solution

Introduction
Multi-objective Optimization

[3]
Play video
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Population-based Approaches (CI Approaches)

M
O

O
P Minimize:

𝑓ଵ
𝑓ଶ
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…
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Advantages of this approach:
• Population of entities
• Each entity is a possible solution – multiple solutions per run
• Can find solutions in non-convex area of POF
• Do not require expert knowledge to assign weights

Introduction
Multi-objective Optimization
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Population-based Approaches (CI Approaches)

Computational 
Intelligence 
Algorithms

Evolutionary 
Computation

Evolutionary 
Algorithm (EA)

Genetic 
Algorithm (GA)

Differential 
Evolution (DE)

Swarm 
Intelligence

Particle Swarm 
Optimization 

(PSO)

Ant Colony 
Optimization 

(ACO)

Also:
• Hybrids of CIAs
• Hybrids with local search
• Multi-population CIAs

Introduction
Multi-objective Optimization

For a review on CI algorithms for DMOO, refer to [8]
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Crossover Mutation

Population-based Approaches (CI Approaches)

Introduction
Multi-objective Optimization

Each entity is a possible solution
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Population-based Approaches (CI Approaches)

Introduction
Multi-objective Optimization

[4]
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Population-based Approaches (CI Approaches)

Crossover Mutation

Introduction
Multi-objective Optimization
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Population-based Approaches (CI Approaches)

Introduction
Multi-objective Optimization
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Introduction
Dynamic Multi-objective Optimization
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 Many problems in real life are dynamic

 Car example => may become a parent: 

 Priorities change: comfort less important, safety more

 Manufacturing example: Job scheduling of production plant:

 Order’s priority may change – more urgent job come in

 Machine may break down

Introduction
Dynamic Multi-objective Optimization

[1]
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1. Detect change with sentries 

2. Divide population into 2 parts:

 Some explore search space

 Some exploit

 Examples: Quantum PSO, Charged PSO

Detecting a Change

Introduction
Dynamic Multi-objective Optimization

[4]
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Need to deal with two major issues:

1. Outdated memory

2. Diversity loss

Responding to Change

Introduction
Dynamic Multi-objective Optimization
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 Individuals converged to POF in previous environment

 Solutions may not be optimal anymore

 Do not just want to throw knowledge away - change may be small

 But attractors pull other entities to previous good solutions

 Need to address this issue: 

Re-evaluate attractors and stored solutions (archive)

Responding to Change: Outdated Memory

PSO

Re-evaluate pbest

Re-evaluate nbest/gbest

Re-evaluate archive

Introduction
Dynamic Multi-objective Optimization
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 Individuals converged to POF in previous environment

 Do not explore the search space anymore

 Need to address this issue: 

Inject some diversity

Responding to Change: Diversity Loss

PSO

Re-initialize % of particle

Which particles? gbest?

EC

Re-initialize % of individuals

Mutate % of individuals

Introduction
Dynamic Multi-objective Optimization

Which one to use when?
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Population-based Approaches (CI Approaches)

1. Check for a change
2. If a change, respond:

• Inject diversity
• Check selection

Select sentries

Introduction
Dynamic Multi-objective Optimization
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Population-based Approaches (CI Approaches)

1. Check for a change
2. If a change, respond:

• Inject diversity
• Update pbest
• Update nbest/gbest
• Update archive

Select sentries

Introduction
Dynamic Multi-objective Optimization
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Analyzing Algorithms’ Performance
Benchmarks
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Objectives and/or constraints change over time

Do not want to re-start algorithm

Algorithm has to track the changing POS/POF over time

Benchmarks
Dynamic Multi-objective Optimization

POF of dMOP2     [5]

Each line is a POF for 
a specific environment

௦
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Mathematical Formulation

Objective functions

Inequality constraints

Equality constraints

Boundary constraints

minimise :
subject to:

f(x, t)
𝑔(x, t) ≤ 0, i=1,…,𝑛
ℎ(x, t) = 0, j=1,…,𝑛
x ϵ [x, x௫]ೣ

Decision variable space

Benchmarks
Dynamic Multi-objective Optimization
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Farina, Deb and Amato[] identified 4 main types of 
DMOO problems (DMOOPs):

Static/Dynamic

Type POS POF
I Dynamic Static

II Dynamic Dynamic

III Static Dynamic

IV Static Static

DMOO Problem Types
Benchmarks
Dynamic Multi-objective Optimization
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DMOO algorithm has to:
• Detect/determine a change
• Respond to a change

DMOO Problem Example

POF of dMOP2 [5]

Benchmarks
Dynamic Multi-objective Optimization

Frequency of change

Severity of change

Iteration
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In the field of DMOO [5]:
 No standard set of benchmark functions
 Difficult to compare DMOO algorithms

Furthermore:
 Currently mostly only boundary-constrained DMOOPs
 Most real-world problems have constraints [7]
 Additional complexity being added:

 Static objectives, dynamic constraints
 Dynamic objectives, static constraints
 Dynamic objectives, dynamic constraints

Benchmarks
Dynamic Multi-objective Optimization
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 Three main approaches:
 Penalty approaches
 Adapt the Pareto-dominance relation to take into account 

constraint violation
 Add constraint violation as an objective function to minimize

 Constraints can change over time

Benchmarks
Dynamic Multi-objective Optimization

Dealing with Constraints
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Penalty approaches

 Add an additional term to individual’s fitness calculation, i.e. 
constraint violation

 Death penalty – individuals with any constraint violation are 
rejected and no knowledge extracted from them

 Static penalty: 
 Penalty independent of current generation and remains static 

throughout run
 Penalty is typically weighted sum of constraint violations

 Dynamic penalty – generation number is used in penalty 
calculations

 Adaptive penalty – information gathered from search process 
determines amount of penalty

Benchmarks
Dynamic Multi-objective Optimization

Dealing with Constraints
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Adapting Pareto-dominance relation

Solution i is constrained dominant over a solution j if:
 Solution i is feasible and solution j is not
 Both solutions are infeasible, but solution i violates the constraints 

less than solution j
 Both solutions are feasible and i dominates j using Pareto-dominance 

Benchmarks
Dynamic Multi-objective Optimization

Dealing with Constraints
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Adding an objective function

 Minimize an additional objective function, which is the sum of 
constraint violations

 An additional objective
 If already optimizing 3 objectives, changes it into a many-

objective problem

Benchmarks
Dynamic Multi-objective Optimization

Dealing with Constraints
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Analyzing Algorithms’ Performance
Performance Measures

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions
Slide 40

37 38

39 40

827



In the field of DMOO:
 No standard set of performance measures
 Want to compare algorithms:

 Typically just adapt static MOO measures
 Typically report just averages and standard deviation
 BUT, want to understand tracking ability and behaviour of 

algorithm

Performance Measures
Dynamic Multi-objective Optimization
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Be careful when using measures from static MOO [9]:
• Often use hypervolume (Lebesque integral) to measure 

performance
• Reference vector is the worst values for each objective

Performance Measures
Dynamic Multi-objective Optimization
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Be careful when using measures from static MOO (cont.):
What happens if: 
• An algorithm does not detect that a change occurred
• The new environment’s POF results in a lower HV value than the 

previous environment’s POF

HV of algorithm that got stuck will be 
better than the one that tracks the POF

HVR of algorithm that got stuck will be 
greater than one  

indicates that we need to check  
whether algorithm got stuck

Performance Measures
Dynamic Multi-objective Optimization

POF of dMOP2 [5]
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Be careful when using measures from static MOO (cont.):

Outliers will skew distance-based measures such as GD, IGD, etc.

Performance Measures
Dynamic Multi-objective Optimization
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Measures proposed by Camára et al [10]:

What do I learn if we report on the average and standard 
deviation values?

Performance Measures
Dynamic Multi-objective Optimization

Accuracy

Alternative 
accuracy

stability

Also, reactivity
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Be careful when using measures from static MOO (cont.):

Performance Measures
Dynamic Multi-objective Optimization
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Analyzing Algorithms’ Performance
Ensuring a Fair Comparison
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In dynamic environments, how to you 
ensure a fair comparison?
• Give each algorithm a maximum 

#function evaluations per environment?
• Same #entities?
• And if archives are used by one and 

not another? Multiple archives?
• One using sentries and the other not?

Ensuring Fair Comparison
Analyzing Algorithms’ Performance

POF of dMOP2 [5]
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Analyzing Algorithms’ Performance
Analyzing Results
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How can we solve this problem and measure the performance over time?
Can draw figures that show how measure changes over time…

Analyzing Results
Analyzing Algorithms’ Performance

That will be a lot of figures per study!
For each benchmark, different frequency and severity of change!
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[4]

Wins-losses approach A (static) [10]

Algorithm 1
Value1
Value2

…
Value30

Algorithm 2
Value1
Value2

…
Value30

Algorithm n
Value1
Value2

…
Value30

…

Kruskal-Wallis test

Statistical significant difference

Algorithm 
1

Solution1
Solution2

…
Solution30

Algorithm 
2

Solution1
Solution2

…
Solution30

For each pair of algorithms

Pair-wise Mann Whitney U

Statistical 
significant 
difference

Per measure, per benchmark:

Avg of measure:

Alg1 > Alg2: 
Alg1 #wins++
Alg2 #losses--

Each value is avg PM value for environment

Diff=#wins - #losses

For each algorithm

For SOOP: Each value is PM value for run

Analyzing Results
Analyzing Algorithms’ Performance
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Wins-losses approach A (static) [10]Analyzing Results
Analyzing Algorithms’ Performance
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Wins-losses approach B (dynamic) [10]

Algorithm 1
Value1
Value2

…
Value30

Algorithm 2
Value1
Value2

…
Value30

Algorithm n
Value1
Value2

…
Value30

…

Kruskal-Wallis test

Statistical significant difference

Algorithm 1
Solution1
Solution2

…
Solution30

Algorithm 2
Solution1
Solution2

…
Solution30

For each pair of algorithms

Pair-wise Mann Whitney U

Statistical 
significant 
difference

Per measure, per benchmark:

Per environment, 
avg of measure:

Alg1 > Alg2: 
Alg1 #wins++
Alg2 #losses--

Each value is avg PM 
value for environment

Diff=#wins - #losses
For each algorithm

Normalize

Analyzing Results
Analyzing Algorithms’ Performance
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Wins-losses approach B (dynamic) [10]Analyzing Results
Analyzing Algorithms’ Performance

, for each environment:

Normalize values for DMOOP
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Wins-losses approach B (dynamic) [10]Analyzing Results
Analyzing Algorithms’ Performance

Can analyze results for various categories of DMOOPs
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Analyzing Results
Analyzing Algorithms’ Performance

More wins than losses (more statistically significant better results)

More losses than wins (more statistically significant worse results)
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Analyzing Results
Dynamic Multi-objective Optimization

More wins than losses 
(more statistically 
significant better results)

More losses than wins 
(more statistically 
significant worse results)
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Real-world Applications
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Real-world Application Areas:

Costing optimization, e.g. electricity

Design optimization

Solving inverse kinematics (robotics, character animation)

Financial markets – currency exchange/portfolio optimization [11]

Clustering of dynamic data [12]

Real-world Applications
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Real-world Application Areas (cont.):

 Dynamic scheduling:

 Network [13]

 Smart home appliances [14]

 Hydro-thermal power / Greenhouse control [15]

 Railway junction [16]

 Raw ore allocation in mineral processing [17]

 Route planning [18]

Real-world Applications
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Challenges in DMOO
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Decision Making

Algorithm 
Behaviour

Challenges in DMOO
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 Show POF to decision maker and s/he selects 
a solution, or

 Allow decision maker to guide the search 
process by:

 Incorporating their preferences into search

 Limiting search to a certain area of POF

Decision Making

Best way of doing this?

Dynamic – after a change?

Challenges in DMOO

POF of dMOP2 [5]
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Show POF to decision maker and s/he 
selects a solution:
 May find an even more optimal weight 

combination 
 Find different possibilities where each 

solution is an “optimal weight 
combination”

Decision Making
Challenges in DMOO

POF of dMOP2 [5]
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 Not much research here
 Focus more on the algorithms
 How do we assist the decision maker?

Decision Making
Challenges in DMOO

POF of dMOP2 [5]
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 Can allow decision maker to 
indicate preference by selecting a 
region on the POF

 How do we use/deal with this 
preference in new environments?

Preference-based optimization

POF of dMOP2 [5]

Decision Making
Challenges in DMOO
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Best way of doing this?

Dynamic – after a change?

Algorithm Behavior
Challenges in DMOO

Understanding search behavior of algorithm over time –
how do changes affect it?
Understanding when diverging, converging
Understanding behavior of entities over entire run
Visualise this in an understandable manner
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Algorithm Behavior
Challenges in DMOO
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Algorithm Behavior
Challenges in DMOO
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[20]

Emerging Areas
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Many-objective Optimization

Fitness Landscape Analysis

Solving Real-world 
Problems

Emerging Areas

GECCO2021 Tutorial – DMOO: Introduction, Challenges, Applications and Future Directions
Slide 71

More than 3 objectives             many-objective optimization

Pareto-dominance principle cannot be used to guide search

As #objectives increase, #non-dominated solutions increase

Require new approaches to guide the search process

Emerging Areas
Many-objective Optimization

What if we have dynamic many-objective optimization?
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 Why does an algorithm perform well on certain types of problems and 
not on others?

 When trying to solve a problem, which algorithm should I choose?

 Need to categorise the problems, but how?

Emerging Areas
Fitness Landscape Analysis

What if we have dynamic search spaces?
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 Currently algorithms are mostly tested on either benchmark problems or 
real-world problems

No feedback loop, no connection

 Issues identified when solving real-world problems should feed back into 
the research challenges of the field and benchmark problems

Emerging Areas
Solving Real-world Problems
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Conclusions
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Conclusions

Many real-world problems are dynamic in nature

Dynamic MOO (DMOO) has exciting 
challenges/opportunities

Need to apply the algorithms to more real-world problems

Feed the learning back into the field

Emerging areas
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Join Us!

Many research opportunities!

Do you want to join the DMOO community?

Do you want to collaborate?

E-mail me: m.helbig@griffith.edu.au
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Thank you!
Any Questions?
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