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ABSTRACT
Quality-Diversity (QD) algorithms evolve a behaviourally diverse
archive of high-performing solutions. In QD meta-evolution, one
evolves a population of QD algorithms by modifying algorithmic
components (e.g., the behaviour space) to optimise an archive-level
objective, the meta-fitness. This paper investigates which feature-
map is best for defining the behaviour space for an 8-joint robot
arm. Meta-evolution with non-linear feature-maps yields a 15-fold
meta-fitness improvement over linear feature-maps. On a dam-
age recovery test, archives evolved with non-linear feature-maps
outperform traditional MAP-Elites variants.
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1 INTRODUCTION
In quality-diversity (QD) algorithms such as MAP-Elites [9], one
evolves a large archive of behaviourally diverse and high-performing
solutions. An important design choice of a QD algorithm is its be-
haviour space, the features that define the behavioural diversity
across the solutions. Traditionally, behavioural features are chosen
by the user, however, complex and non-intuitive features often
optimise the intended purpose better. Therefore, an automated ap-
proach to the behaviour space may be required.

A promising approach in this regard is QD meta-evolution, in
which a meta-level evolutionary algorithm evolves a population of
QD-algorithms. Contrasting to automated behaviour spaces [2, 4]
and automated operators [5], the meta-level algorithm can modify
any component of the QD algorithm and evaluate how well the
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newly formed QD algorithm performs on a user-defined meta-level
objective. This paper explores QD meta-evolution with modifiable
behaviour space to allow damage recovery in a robot arm.

2 QUALITY-DIVERSITY META-EVOLUTION
WITH FEATURE-MAPS

MAP-Elites (ME) evolves a behaviour-performance map, storing
the highest-fitness controllers for each hypercube in a discretised
behaviour space [9]. Since ME is not explicitly optimised for gen-
eralisation, we use Meta-evolution with CMA-ES [1] to evolve a
population of MEs with generalisation as a meta-objective. The
system performs the following steps:

(1) Sample new meta-genotypes W1, . . . ,Wλ from the multi-
variate normal distribution defined by CMA-ES.

(2) For i ∈ {1, . . . , λ}, use meta-genotypeWi to construct a new
mapMi based on existing solutions in the database.

(3) For i ∈ {1, . . . , λ}, ME(Wi ) further evolvesMi and all newly
generated solutions are stored in the database. In this paper,
Wi parametrises the behaviour space only.

(4) Evaluate each meta-genotype i ∈ {1, . . . , λ} on the meta-
fitness F (Wi ) (see Section 3 for its definition).

(5) CMA-ES updates the mean, covariance, and step size , apply-
ing the (µ/µW , λ)-CMA Evolution Strategy [6].

The system learns how to learn by modifying the behaviour space
to optimise meta-fitness, hereby determining the ME’s initial
behaviour-performance map (step 2) and how its solutions are
selected for reproduction (step 3). At the end of the run, the system
returns the behaviour-performance map with the highest meta-
fitness, which can then be used in the application of interest.

To define the behaviour space based on the meta-genotype, we
generalise the purely linear transformation used in earlier work [1]
to feature-maps. Feature-maps transform base-features b ∈ [0, 1]Nb ,
a large number of behavioural features handcrafted by the user, to
a low-dimensional behavioural descriptor β ∈ [0, 1]D . To prevent
loss of quality-diversity, the database is not a circular buffer as in
prior work but instead it stores the highest-performing solutions for
each coarse-grained bin in the base-behavioural space (see Section
S1 in Supplemental Materials).

The study includes three feature-maps. First, the linear trans-
formation used in earlier work [1] is included:

β =Wb , (1)

where W ∈ RD×Nb . An expanding normalisation is added to in-
crease the coverage of the behaviour space. Second, to demonstrate
the need to combine features, a feature-selector is included,

β = bj1 , . . . ,bjD , (2)
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where ji = argmaxj ∈Nb
Wi j selects for each feature i ∈ {1, . . . ,D}

the base-feature bj with highestWi j . Third, to demonstrate the
need for non-trivial feature-maps, we include a non-linear trans-
formation using a neural network with a single hidden layer,

h(W, b) =W2SNb (W
1b + B1) + B2

β = SNh (h(W, b)) ,
(3)

where SN (x) = 1/(1 + exp (−αsx/(N + 1))) is an elementwise sig-
moid function correcting for the scale of the weighted sum of a
number of N incoming activations; αs is an empirically defined
scaling factor; and now W is composed of a weight matrix from
input to hidden layer, W1 ∈ RNh×Nb , a weight matrix from hid-
den layer to output, W2 ∈ RD×Nh , and the corresponding bias
units B1,B2 ∈ R. Universal approximation theorems [7, 8] imply
that such networks can represent all multi-variate functions over
bounded intervals, assuming a sufficient number of neurons.

3 EXPERIMENT SETUP
We set up 8-joint robot arm experiments that were part of the sem-
inal study of Cully et al. [3]. Each of the robot’s eight joints can
rotate in [−π/2,π/2]rad to position its gripper within a semi-circle
span. The genotype, g, represents the desired angles for the joints.
The fitness f (g) is the negative variance of the angles, discouraging
zigzag motions for energy-efficiency and distributing movement
equally among the joints for robustness to failures.

The meta-fitness F aims for the robot arm to uniformly cover
in as fine-grained manner as possible its entire semi-circle span
regardless of any damage. It is evaluated by taking 10% of the solu-
tions from the behaviour-performance map and then computing
the summed pairwise distance between the gripper positions. This
metric is then averaged across 16 damages in the damage setD, two
angles chosen for each of the eight joints. The use of one positive
and one negative angle randomly chosen in the range of the joint
avoids bias to a particular orientation and reduces the variance of
meta-fitness evaluations over time.

The experiments consider 5 behaviour spaces. Position (2D)
and Polar (2D) use the Cartesian and polar coordinates, respec-
tively. JointPairAngle (4D) is the angle in spanned by connecting
joint i − 2 to joint i for all i ∈ {2, 4, 6, 8}. AngleSum (6D) is the
average value for each consecutive triplet of bottom-level genes.
Meta-evolution (Meta (4D)) concatenates the above into 14 base-
features and maps them onto a 4D feature space.

Experimental parameters are found in Supplemental Materials.

4 RESULTS
The meta-fitness is strongly dependent on the feature-map (see
Figure 1). Linear and feature-selection feature-maps improve rapidly
in meta-fitness early on but stagnate on a plateau for the rest of
meta-evolution. Non-linear feature-maps start slowly but improve
rapidly between 10 and 20 million function evaluations. They reach
the highest meta-fitness of around 15 000m, representing near-
uniform spread for 300 solutions (10% of around 3000 solutions),
and provide a 6-fold improvement over feature-selection and a
15-fold improvement over linear feature-maps. This illustrates the
trade-off of high-complexity functions: non-linear feature-maps
can represent any function but they require more data. Linear

feature-maps yield low meta-fitness because they often output
similar target-features for diverse combinations of base-features.
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Figure 1: Effect of feature-map onmeta-fitness (y-axis;Mean
± SD over 5 replicates) across function evaluations (x-axis).
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(a) Joint 1
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(b) Joint 5
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(c) Joint 8

Figure 2: Test on unseen damages. For each offset (x-axis),
the coverage of the semi-circle span of the robot is shown (y-
axis;Mean± SD across 5 replicates). ForMeta, the behaviour-
performance map is formed from CMA-ES’ mean.

In a test after evolution, individual joints i ∈ {1, . . . , 8} are
damaged by offsets in ϵ ∈ {−1,−0.9, . . . ,−0.1, 0.1, . . . , 0.9, 1}π rad,
resulting in an angle θi ← max(−π/2,min(π/2,θi + ϵ))rad. Meta-
evolution with non-linear feature-map yields the highest coverage
for high-severity damages and otherwise comparable coverage to
Polar and Position (see Figure 2). Therefore, any target position
chosen by the user would likely be reachable after damage.
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