
Runtime Analysis of Population-based Evolutionary
Algorithms1

Advanced Tutorial at GECCO 2021

Per Kristian Lehre
University of Birmingham

Birmingham B15 2TT, UK
P.K.Lehre@cs.bham.ac.uk

Pietro S. Oliveto
University of Sheffield
Sheffield S1 4DP, UK

P.Oliveto@sheffield.ac.uk

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
GECCO ’21 Companion, July 1014, 2021, Lille, France Copyright 2021 Associa-
tion for Computing Machinery. ACM ISBN 978-1-4503-8351-6/21/07 USD 15.00
https://doi.org/10.1145/3449726.3461423

1For the latest version of these slides, please go to http://www.cs.bham.ac.uk/~lehrepk/gecco2021

1 / 73

Evolutionary Algorithms

OffspringPopulation
Initialisation
Termination

Recombination
Mutation

Selection Parents

2 / 73

Aims and Goals of this Tutorial

I The scope of this tutorial is restricted to population-based
I generational, non-elitist EAs (first part), and
I steady-state, elitist EAs (second part).

I This tutorial will provide an overview of
I the goals of runtime analysis of EAs
I selected, generally applicable techniques

I You should attend if you wish to
I theoretically understand the behaviour and performance of the EAs you

design
I familiarise yourself with some of the techniques used
I pursue research in the area

I enable you or enhance your ability to
1. understand theoretically population-dynamics of EAs on different problems
2. perform time complexity analysis of population-based EAs on common toy

problems
3. have the basic skills to start independent research in the area

3 / 73

Outline

Introduction
Runtime Analysis
Drift Analysis

Upper bounds for Non-elitist, Generational EAs
The Level Based Theorem
(µ,λ) GA on OneMax
Noisy and Uncertain Fitness

Lower Bounds for Non-elitist, Generational EAs
Negative Drift Theorem for Populations
Mutation-Selection Balance
Self-adaptation
Negative Drift with Crossover

Upper Bounds for Elitist, Steady-state EAs
(1+1) EA and Artificial Fitness Levels
(µ+1) Genetic Algorithm and OneMax
(µ+1) Genetic Algorithm and Jump

4 / 73
856

http://www.cs.bham.ac.uk/~lehrepk/gecco2021

Black Box Optimisation Algorithms and Runtime

Function class F

Photo: E. Gerhard (1846).

f(x1), f(x2), f(x3), ... x1, x2, x3, ...f(x1), f(x2), f(x3), ..., f(xt) x1, x2, x3, ..., xt

A

f

I An unknown optimisation problem f is
chosen, possiby adversarily, from a
problem class F known to the algorithm.

I For every t ∈ N, using the obtained
information (x1, f(x1)), . . . , (xt, f(xt)),
the algorithm queries a new search point
xt+1 to obtain f(xt+1) from the oracle.

Definition
The runtime of algorithm A on fitness function2 f : {0, 1}n → R is

TA,f := min
t∈N
{t | ∀y ∈ {0, 1}n, f(xt) ≥ f(y)} .

The worst case expected runtime of algorithm A on problem class F is

TA,F := max
f∈F

E
[
TA,f

]
Droste, Jansen, and Wegener [2006]

2This definition assumes that the objective is to maximise the fitness function.

5 / 73

Runtime Analysis of Evolutionary Algorithms

6 / 73

Analysis of Evolutionary Algorithms
I Infinite population size

I Markov chain analysis He and Yao [2003]
I No parent population, or monomorphic populations

I (1+1) EA
I (1+λ) EA Jansen, Jong, and Wegener [2005]
I (1,λ) EA Rowe and Sudholt [2012]

I Fitness-level techniques
I (µ+1) EA Witt [2006]
I (N+N) EAs Chen, He, Sun, Chen, and Yao [2009]
I non-elitist EAs with unary variation operators Lehre [2011b], Dang and

Lehre [2014]
I (µ+1) GA Corus and Oliveto [2017]

I Stochastic dominance Doerr [2018]
I Drift analysis and martingale theory

I Fitness proportionate selection Neumann, Oliveto, and Witt [2009a],
Oliveto and Witt [2014, 2015]

I Family trees
I (µ+1) EA Witt [2006]
I (µ+1) IA Zarges [2009]

I Multi-type branching processes Lehre and Yao [2012]
I Negative drift theorem for populations Lehre [2011a]

I Level-based analysis Corus, Dang, Eremeev, and Lehre [2014]

7 / 73

Drift Analysis

8 / 73
857

What is Drift3 Analysis?

I Prediction of the long term behaviour of a process X
I hitting time, stability, occupancy time etc.

from properties of ∆.
3NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

9 / 73

Additive Drift Theorem

b0 Yk = d(Xk)

ε

(C1+) ∀k E [Yk+1 − Yk | Yk > 0] ≤ −ε
(C1−) ∀k E [Yk+1 − Yk | Yk > 0] ≥ −ε

Theorem (He and Yao [2001], Jägersküpper [2007], Jägersküpper [2008])

Given a stochastic process Y1, Y2, . . . over an interval [0, b] ⊂ R.
Define T := min{k ≥ 0 | Yk = 0}, and assume E [T] <∞.

I If (C1+) holds for an ε > 0, then E [T | Y0] ≤ b/ε.

I If (C1−) holds for an ε > 0, then E [T | Y0] ≥ Y0/ε.

10 / 73

LeadingOnes

LeadingOnes(x) :=
n∑
i=1

i∏
j=1

xj

x =

Leading 1-bits︷ ︸︸ ︷
1111111111111111

Remaining bits︷ ︸︸ ︷
0∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ .

Left-most 0-bit

11 / 73

Runtime Analysis of (1,λ) EA on LeadingOnes

Theorem
The (1,λ) EA with λ = n optimises LeadingOnes in O(n2) expected time.

Proof

I Distance: let d(x) = n− i where i is the number of leading ones;

I Drift:

E [d(Xt)− d(Xt+1)|d(Xt) = n− i]

≥ 1 ·
(

1−
(

1− 1

n

(
1− 1

n

)n−1)λ)
− n ·

(
1−

(
1− 1

n

)n)λ
= c1 − n · cn2 = Ω(1)

Hence,

E [T] ≤ λ · max distance

drift
= λ · n

Ω(1)
= O(n2)

12 / 73
858

Some Drift Theorems

ba Yk

E [Yk+1 − Yk | Fk]

Drift Condition4 Statement Note

E
[
Yk+1 | Fk

]
≤ Yk − ε0 E [τa] ≤ Additive drift [He and Yao, 2001, Jägersküpper, 2008]

Pr (τa > B) ≤ [Hajek, 1982]
Pr
(
τb < B

)
≤ Negative drift [Hajek, 1982, Oliveto and Witt, 2010]

E
[
Yk+1 | Fk

]
≥ Yk − ε0 ≤ E [τa] Additive drift (lower b.) [He and Yao, 2001, Jägersküpper, 2007]

E
[
Yk+1 | Fk

]
≤ Yk E [τa] ≤ Supermartingale [Neumann, Sudholt, and Witt, 2009b]

E
[
Yk+1 | Fk

]
≤ δYk E [τa] ≤ Multiplicative drift [Doerr, Johannsen, and Winzen, 2010, Fischer, Olbrich,

and Vöcking, 2008]
Pr (τa > B) ≤ [Doerr and Goldberg, 2010]

E
[
Yk+1 | Fk

]
≥ δYk ≤ E [τa] Multiplicative drift (lower b.) [Lehre and Witt, 2012]

E
[
Yk+1 | Fk

]
≤ h(Yk) E [τa] ≤ Variable drift [Johannsen, 2010]

E
[
Yk+1 | Fk

]
≤ h(Yk) Pr (τa > B) ≤ [Lehre and Witt, 2014]

Pr
(
τb < B

)
≤ [Lehre and Witt, 2014]

E

[
e
λYk+1 | Fk

]
≤ eλYk

α0
Pr
(
τb < B

)
≤ Population drift [Lehre, 2011a]

4Some drift theorems need additional conditions.

13 / 73

Outline of a Non-elitist, Generational Evolutionary Algorithm5

Parents

1

01 11 0

0

1

0

0

0

0

0

1

1

1

Population

New IndividualOffspring

1: initialise a population P0 of λ individuals uniformly at random.
2: for t = 0, 1, 2, . . . until termination condition do
3: evaluate the individuals in population Pt.
4: for i = 1 to λ do
5: select two parents from population Pt.
6: recombine the two parents.
7: mutate the offspring and add it to population Pt+1.

5Pseudo-code adapted from ?.

14 / 73

A Model of Non-elitist, Generational EAs

Parents

1

01 11 0

0

1

0

0

0

0

0

1

1

1

Population

New IndividualOffspring

Wide range of evolutionary algorithms...

I selection mechanisms (ranking selection, (µ, λ)-selection, tournament selection,
...)

I fitness models (deterministic, stochastic, dynamic, partial, ...)

I variation operators

I search spaces (e.g. bitstrings, permutations, ...)

We will describe many of these with a general mathematical model.

15 / 73

A Model of Non-elitist, Generational EAs

0

1

0

0

0

0

0

1

1

1

Population

New Individual

Require: Search space X and random operator D : Xλ → X
1: P0 ∼ Unif(Xλ)
2: for t = 0, 1, 2, . . . until termination condition do
3: for i = 1 to λ do
4: Pt+1(i) ∼ D(Pt)

15 / 73
859

Why consider non-elitism?

I Biological plausibility

I Mathematical tractability (disputed)
I Beneficial in uncertain environments

I Noisy optimisation [Dang and Lehre, 2016a]
I Dynamical optimisation [Dang, Jansen, and Lehre, 2017b]

I Help populations overcome local optima
I Exponential speedup with self-adaptation on a a peaked problem [Dang and

Lehre, 2016d]
I Non-elitist EAs excel in fitness landscapes with sparse deceptive regions and

dense valleys (GECCO’2021 Theory Track)

I Appropriate algorithm configuration critical with non-elitism.
I Both (µ,λ) EA and (µ+λ) EA optimises Jumpin6 Θ(nk) [Doerr, 2020]

6Under certain conditions on µ, λ, and k.

16 / 73

Level-based Theorem7

7Corus, Dang, Eremeev, and Lehre [2018]

17 / 73

Level-based Analysis

Problem

I Given any target set B ⊂ X (e.g. global optima), let

TB := min{λt | Pt ∩B 6= ∅}

where P0, P1, . . . are the populations generated by the algorithm.

I How does E [TB] depend on D and λ? Informally, how much time does
the algorithm require to discover the target set.

Level-based Theorem (LBT)

I If D and λ satisfy certain conditions,
then LBT provides an upper bound for E [TB].

18 / 73

Level Partitioning of Search Space X

Definition
(A1, . . . , Am) is a level-partitioning of search space X if

I
⋃m
j=1Aj = X (together, the levels cover the search space)

I Ai ∩Aj = ∅ whenever i 6= j (the levels are nonoverlapping)

I the last level Am covers the optima for the problem

We write A≥j to denote everything in level j and higher, i.e.,

A≥j :=
m⋃
i=j

Ai.

19 / 73
860

Notation

I For any population P = (y1, . . . , yλ) ∈ Xλ and j ∈ [m], let

|P ∩A≥j | := |{i | yi ∈ A≥j}|,

i.e, the number of individuals in P that is in subset A≥j .

Example

|P ∩A≥4| = 5 where A≥4 corresponds to the red region.

20 / 73

Current level of a population P wrt γ0 ∈ (0, 1)

Definition
The unique integer j ∈ [m− 1] such that

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

Example

Current level wrt γ0 = 1
2

is4.

21 / 73

Level-based Theorem [Corus, Dang, Eremeev, and Lehre, 2018]

≥ γ(1 + δ)

≥ zj

y ∼ D(P)

AmA≥1 A≥j A≥j+1 · · ·

P

γ0λ γλ

If for all populations P ∈ Xλ, an individual y ∼ D(P) has

Pr
(
y ∈ A≥j+1

)
≥ zj, (G1)

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ), (G2)

where j ∈ [m− 1] is the current level of population P , i.e.,

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1| = γλ,

and the population size λ is bounded from below by

λ ≥
(

4

γ0δ2

)
ln

(
128m

zminδ2

)
, (G3)

then the algorithm reaches the last level Am in expected time

E [TAm] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

22 / 73

Applications of Level-based Theorem

Parents Offspring

1

2

3

M

I EAs with crossover operator

I (Corus, Dang, Eremeev, Lehre, PPSN’14)

I Theory-led design of EAs

I Shortest paths with genetic algorithms
(Corus & Lehre, MIC’15)

I Optimisation under uncertainty

I Stochastic fitness functions
(Dang & Lehre, FOGA’15)

I Partially observable fitness functions
(Dang & Lehre, GECCO’14)

I Dynamic fitness functions
(Dang, Jansen, Lehre, GECCO’15)

I Estimation of Distribution Algorithms (EDAs)

I UMDA (Dang & Lehre, GECCO’15)
(Nguyen & Lehre, GECCO’17)

I PBIL (Lehre & Nguyen, PPSN’18)
I GOMEA (Hoog, 2016)

I Self-adaptive EAs

I Self-adaptation of mutation rates
(Dang & Lehre, PPSN’16), (Case& Lehre,
TEVC2020)

23 / 73
861

Level-based Theorem via Multiplicative Up-drift8

Theorem ([Doerr and Ktzing, 2020] via multiplicative up-drift)

If (G1), (G2), and (G3b): λ ≥ 256
γ0δ

ln(8t0) where

t0 :=
7000

δ

m+
1

1− γ0

m−1∑
j=1

log2

(
2γ0λ

1 + zλ
D0

)
+

1

λ

m−1∑
j=1

1

zj


the E [T] = 8λt0.

Theorem ([Corus et al., 2018])

If (G1), (G2), and (G3): λ ≥
(

4
γ0δ2

)
ln
(

128m
zminδ

2

)
then

E [T] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

8Note that “multiplicative up-drift” was already used in Corus et al. [2018] (Corollary 22).

24 / 73

Suggested recipe for application of level-based theorem

1. Find a partition (A1, . . . , Am) of X that reflects the state of the
algorithm, and where Am consists of all goal states.

2. Find parameters γ0 and δ and a configuration of the algorithm (e.g.,
mutation rate, selective pressure) such that whenever
|P ∩A≥j+1| = γλ > 0, condition (G2) holds, i.e.,

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ)

3. For each level j ∈ [m− 1], estimate a lower bound zj ∈ (0, 1) such
that whenever |P ∩A≥j+1| = 0, condition (G1) holds, i.e.,

Pr
(
y ∈ A≥j+1

)
≥ zj

4. Calculate the sufficient population size λ from condition (G3).

5. Read off the bound on expected runtime.

25 / 73

The Level-Based Theorem (LBT) is “tight”9

Theorem
For any valid set of parameters Θ = (A, γ0, δ, z) for LBT,
there exists a mapping Dslow satisfying (G1) and (G2) of LBT st.

E [TAm] ≥
(

2

3δ

)m−2∑
j=1

(
λ ln

(
γ0δλ

1/δ + 2zjδλ

)
+

1

zj

)

E [TAm] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

9Corus, Dang, Eremeev and Lehre (IEEE TEVC 2018) https://arxiv.org/abs/1407.7663

26 / 73

More info about D required for more precise bounds

All algorithms

Algorithms satisfying LBT

Logical structure of LBT

For all parameter settings Θ, and all
mappings D ∈ A(Θ)

E [TD] ≤ f(Θ) + ε.

Also, there exists D ∈ A(Θ) st

E [TD] ≥ f(Θ)− ε

Assume you have applied the LBT to your algorithm, how precise is the bound?

I The only LBT knows about your algorithm D is that it satisfies the conditions for
the parameters Θ. (Many other processes satisfy the conditions for the same Θ.)

I The lower bound implies that the LBT gives the best possible (±ε) runtime
bound for your algorithm given the information that is available.

I Some algorithms in A(Θ), including yours, could be faster than f(Θ).
However, more information about the algorithm required to prove so, i.e.,

I a more precise set of parameters Θ′, or
I a different way of characterising algorithms than A(Θ)

27 / 73
862

https://arxiv.org/abs/1407.7663

Example application – (µ,λ) GA on Onemax

M
S

C

x1

x2

z
y

OneMax(x) :=
n∑
i=1

xi.

(µ,λ) Genetic Algorithm (GA)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select a parent x from population Pt acc. to (µ, λ)-selection
Select a parent y from population Pt acc. to (µ, λ)-selection
Apply uniform crossover to x and y, i.e. z := crossover(x, y)
Create Pt+1(i) by flipping each bit in z with probability χ/n.

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and λ

µ
> 2eχ(1 + δ) for any

constant δ > 0, then the expected runtime of (µ,λ) GA on OneMax is O(nλ).

28 / 73

(µ, λ)-selection mechanism

1. Sort the current population P = (x1, . . . , xλ) such that

f(x1) ≥ f(x2) ≥ . . . ≥ f(xλ)

2. return Unif(x1, . . . , xµ)

29 / 73

Partition of Search Space into Levels

Partition into m := n+ 1 levels A0, . . . , An

Aj := {x ∈ {0, 1}n | Onemax(x) = j}

30 / 73

Analysis of Crossover Operator

Parents Offspring

Proof.
Assume that x ∈ A≥j+1 and y ∈ A≥j , and w.l.o.g. that |u| ≥ |v|

2j + 1 ≤ |x|+ |y|
= |u|+ |v|
≤ 2|u|.

Therefore Pr
(
u ∈ A≥j+1

)
= 1 and

Pr
(

crossover(x, y) ∈ A≥j+1 | x ∈ A≥j+1 and y ∈ A≥j
)
≥

1

2
=: ε.

31 / 73
863

Verification of Condition (G2)

Assume that |P ∩ A≥j | ≥ γ0λ > |P ∩ A≥j+1| where 0 < γ < γ0 := µ/λ.

M
S

C

x1

x2

z
y

If λ ≥ 2µ
(
1− χ

n

)−n
(1 + δ) ≈ 2µeχ , we have

Pr
(
z ∈ A≥j+1

)
= Pr

(
x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
Pr

(
z ∈ A≥j+1 | x1 ∈ A≥j ∧ x2 ∈ A≥j+1

)
≥ 1 ·

γλ

µ
· (1/2) ≥ γ(1 + δ)

(
1−

χ

n

)−n

hence, we get

Pr
(
y ∈ A≥j+1

)
= Pr

(
z ∈ A≥j+1

)
Pr

(
y ∈ A≥j+1 | z ∈ A≥j+1

)
≥ Pr

(
z ∈ A≥j+1

) (
1−

χ

n

)n
≥ γ(1 + δ).

32 / 73

Verification of Condition (G1)

Assume that |P ∩ A≥j | ≥ γ0λ > |P ∩ A≥j+1| where 0 ≤ γ < γ0 := µ/λ.

M
S

C

x1

x2

z
y

We have

Pr
(
z ∈ A≥j

)
= Pr

(
x1 ∈ A≥j ∧ x2 ∈ A≥j

)
Pr

(
z ∈ A≥j | x1 ∈ A≥j ∧ x2 ∈ A≥j

)
≥ 1 · 1/2

hence, we get

Pr
(
y ∈ A≥j+1

)
= Pr

(
z ∈ A≥j

)
Pr

(
y ∈ A≥j+1 | z ∈ A≥j

)
≥ Pr

(
z ∈ A≥j

)
· (n− j) ·

(χ
n

) (
1−

χ

n

)n−1

≥ (χ/2) · (1− j/n)

(
1−

χ

n

)n−1

≥
(1− δ)χ

2eχ
· (1− j/n) =: zj

33 / 73

Application of the Level-based Theorem

If for all populations P ∈ Xλ, an individual y ∼ D(P) has

Pr
(
y ∈ A≥j+1

)
≥ zj, (G1)

Pr
(
y ∈ A≥j+1

)
≥ γ(1 + δ), (G2)

where j ∈ [m− 1] is the current level of population P , i.e.,

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1| = γλ,

and the population size λ is bounded from below by

λ ≥
(

4

γ0δ2

)
ln

(
128m

zminδ2

)
, (G3)

then the algorithm reaches the last level Am in expected time

E [TAm] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

34 / 73

Bounding the first term (first attempt, imprecise)

n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
<

n−1∑
j=0

ln

(
6δλ

4

)
= O(n ln(λ)).

I This upper bound is imprecise because it does not exploit that the upgrade
probabilities zj are large for small j.

35 / 73
864

Bounding the first term (second attempt, more precise)

n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
<

n−1∑
j=0

ln

(
6

zj

)

using ln(a) + ln(b) = ln(ab) and defining c := 12eχ

(1−δ)χ

= ln

n−1∏
j=0

cn

n− j

 = ln

(
(cn)n

n!

)

and using the lower bound n! > (n/e)n

< ln

(
(cn)nen

nn

)
= n ln(ec) = O(n).

36 / 73

Bounding the second term

Recall the definition of the n-th Harmonic number

Hn :=
n∑
i=1

1

i
= O(ln(n)).

The second term can therefore be bounded as

n−1∑
j=0

1

zj
= O

n−1∑
j=0

n

n− j

 = O(n ln(n))

37 / 73

Completing the proof

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and λ

µ
> 2eχ(1 + δ)

for any constant δ > 0, then the expected runtime of (µ,λ) GA on OneMax
is

(
8

δ2

)λ n−1∑
j=0

ln

(
6δλ

4 + zjδλ

)
+

n−1∑
j=0

1

zj


= O(nλ) +O(n lnn) = O(nλ).

38 / 73

Uncertainty in Comparison-based PSVAs

1

2

3

M

Sources of uncertainty

1. Droste noise model (Droste, 2004)

2. Partial evaluation

3. Noisy fitness (Prügel-Bennet, Rowe, Shapiro, 2015)

Sufficient with mutation rate δ/(3n) and

Pr (x choosen | f(x) > f(y)) ≥ 1

2
+ δ with 1/δ ∈ poly(n)

Dang and Lehre [2015] and Dang and Lehre [2016b]

39 / 73
865

Lower Bounds

40 / 73

Lower Bounds

Problem
Consider a sequence of populations P1, . . . over a search space X , and a
target region A ⊂ X (e.g., the set of optimal solutions), let

TA := min{ λt | Pt ∩A 6= ∅ }

We would like to prove statements on the form

Pr (TA ≤ t(n)) ≤ e−Ω(n). (1)

I i.e., with overwhelmingly high probability, the target region A has not
been found in t(n) evaluations

I lower bounds often harder to prove than upper bounds

I will present an easy to use method that is applicable in many situations

41 / 73

Algorithms considered for lower bounds

Definition (Non-elitist EA with selection and mutation)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select parent x from population Pt according to psel

Flip each position in x independently with probability χ/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by mutating the parent)

Assumptions

I population size λ ∈ poly(n), i.e. not exponentially large

I bitwise mutation with probability χ/n, but no crossover.

I results hold for any non-elitist selection scheme psel

that satisfy some mild conditions to be described later.

42 / 73

Reproductive rate10

Definition
For any population P = (x1, . . . , xλ) let psel(xi) be the probability that
individual xi is selected from the population P

I The reproductive rate of individual xi is λ · psel(xi).

I The reproductive rate of a selection mechanism
is bounded from above by α0 if

∀P ∈ Xλ, ∀x ∈ P λ · psel(x) ≤ α0

(i.e., no individual gets more than α0 offspring in expectation)

10The reproductive rate of an individual as defined here corresponds to the notion of “fitness” as used in the field
of population genetics, i.e., the expected number of offspring.

43 / 73
866

(µ, λ)-selection mechanism

Probability of selecting i-th individual is pi ∈ {0, 1
µ
}.

I reproductive rate bounded by α0 = λ/µ

44 / 73

Negative Drift Theorem for Populations (informal)

If individuals closer than b of target has reproductive rate α0 < eχ,
then it takes exponential time ec(b−a) to reach within a of target.

45 / 73

Negative Drift Thm. for Populations [Lehre, 2011a]

Consider the non-elitist EA with

I population size λ = poly(n)

I bitwise mutation rate χ/n for 0 < χ < n

let T := min{t | H(Pt, x∗) ≤ a} for any x∗ ∈ {0, 1}n.

If there are constants α0 ≥ 1, δ > 0 and integers
a(n) and b(n) < n

χ
where b(n)− a(n) = ω(lnn), st.

(C1) If a(n) < H(x, x∗) < b(n) then λ · psel(x) ≤ α0.

(C2) ψ := ln(α0)/χ+ δ < 1

(C3) b(n) < min
{
n
5
, n

2

(
1−

√
ψ(2− ψ)

)}
then there exist constants c, c′ > 0 such that

Pr
(
T ≤ ec(b(n)−a(n))

)
≤ e−c

′(b(n)−a(n)).

46 / 73

The worst individuals have low reproductive rate

Lemma
Consider any selection mechanism which for x, y ∈ P satisfies

(a) If f(x) > f(y), then psel(x) ≥ psel(y).
(selection probabilities are monotone wrt fitness)

(b) If f(x) = f(y), then psel(x) = psel(y).
(ties are drawn randomly)

If f(x) = miny∈P f(y), then psel(x) ≤ 1/λ.
(individuals with lowest fitness have reproductive rate ≤ 1)

Proof.

I By (a) and (b), psel(x) = miny∈P psel(y).

I 1 =
∑
x∈P psel(x) ≥ λ ·miny∈P psel(y) = λ · psel(x).

47 / 73
867

Example 1: Needle in the haystack

Definition

Needle(x) =

{
1 if x = 1n

0 otherwise.

Theorem
The optimisation time of the non-elitist EA with any selection mechanism
satisfying the properties above11 on Needle is
at least ecn with probability 1− e−Ω(n) for some constant c > 0.

11From black-box complexity theory, it is known that Needle is hard for all search heuristics (Droste et al 2006).

48 / 73

Example 1: Needle in the haystack (proof12)

I Apply negative drift theorem with a(n) := 1.

I By previous lemma, can choose α0 = 1 for any b(n),
hence ψ = ln(α)/χ+ δ = δ < 1 for all χ and δ < 1.

I Choosing the parameters δ := 1/10 and b(n) := n/6 give

min
{n

5
,
n

2

(
1−

√
ψ(2− ψ)

)}
=
n

5
> b(n).

I It follows that Pr
(
T ≤ ec(b(n)−a(n))

)
≤ e−Ω(n).

12For simplicity, we assume that χ ≤ 6, thus b(n) = n/6 ≤ n/χ holds.

49 / 73

Exercise: Optimisation time on Jumpk

0 |x| (number of 1-bits) n

Fitness

Opt.
k

Jumpk(x) :=

{
0 if n− k ≤ |x| < n,

|x| otherwise.

Recipe

I a(n) = 1

I b(n) = k

I α0 = 1 as before

I small δ

50 / 73

When the best individuals have low reproductive rate

Remark

I The negative drift conditions hold trivially
if α0 < eχ holds for all individuals.

Example (Insufficient selective pressure)

Selection mechanism Parameter settings

Linear ranking selection η < eχ

k-tournament selection k < eχ

(µ,λ)-selection λ < µeχ

Any in cellular EAs ∆(G) < eχ

51 / 73
868

Error threshold

χ
n0 2

n

λ
µ

1

7

exp

poly

Runtime

Example

The runtime T of a non-elitist EA with

I (µ, λ)-selection

I bit-wise mutation rate χ/n

I population size λ > c log(n)

on LeadingOnes has expected value

E [T] =

{
eΩ(n) if λ < µeχ

O(nλ ln(λ) + n2) if λ > µeχ

52 / 73

Error threshold

χ
n0 2

n

λ
µ

1

7

exp

poly

Runtime

Example

The runtime T of a non-elitist EA with

I (µ, λ)-selection

I bit-wise mutation rate χ/n

I population size λ > c log(n)

on LeadingOnes has expected value

E [T] =

{
eΩ(n) if λ < µeχ

O(nλ ln(λ) + n2) if λ > µeχ

λ
µ > eχ

52 / 73

Other Example Applications

Expected runtime of EA with bit-wise mutation rate χ/n

Selection Mechanism High Selective Pressure Low Selective Pressure

Fitness Proportionate ν > fmax ln(2eχ) ν < χ/ ln 2 and λ ≥ n3

Linear Ranking η > eχ η < eχ

k-Tournament k > eχ k < eχ

(µ, λ) λ > µeχ λ < µeχ

Cellular EAs ∆(G) < eχ

Onemax O(nλ) eΩ(n)

LeadingOnes O(nλ ln(λ) + n2) eΩ(n)

Linear Functions O(nλ ln(λ) + n2) eΩ(n)

r-Unimodal O(rλ ln(λ) + nr) eΩ(n)

Jumpr O(nλ+ (n/χ)r) eΩ(n)

53 / 73

Self-adaptive Evolutionary Algorithms13

13Dang and Lehre [2016c]

54 / 73
869

Parameter settings in optimisation algorithms

Parameter
Settings

Parameter
Tuning

Parameter
Control

Deterministic
Parameters set according
to deterministic schedule
(e.g., simulated annealing)

Adaptive
External tuning of
parameters using
history of run
(e.g., 1/5-rule)

Self-adaptive
Parameters encoded
in genotype

before
run

during
run

Eiben, Hinterding, and Michalewicz [1999]

Can self-adaptive EAs control parameters effectively, i.e., on a problem

I any fixed parameter setting =⇒ exponential runtime

I uniform mixing of parameters =⇒ exponental runtime

I self-adaptation over parameters =⇒ polynomial runtime

55 / 73

Self-adaptive, non-elitist EA without crossover

I search space is {χ1, χ2} × {0, 1}n, where χ1, χ2 ∈ Θ(n) are two
mutation rates

I parent selection via binary tournament selection

I mutation rate switched with probability p, and obtain
offspring by mutation with new mutation rate

56 / 73

Peaked Fitness Landscape

Intuition

I Low mutation rate (or elitist selection mechanism) =⇒ exponential time to
escape local optimum

I Mutation rate above error threshold =⇒ exponential runtime via negative
population drift (L., PPSN 2010)

57 / 73

Fitness function and level structure

PLO(x) :=
(
m if x = 0n
Pn

i=1
Qi

j=1 xj otherwise.

Deceptive region 2
(too high mutation rate)

Deceptive region 1
(local optimum)

58 / 73
870

Results imply benefit of non-elitism and self-adaptation14

Mutation control Runtime Proof idea

Fixed rate χlow eΩ(n) Most individuals remain on the peak.
Too low selective pressure among sub-optimal individuals.
(Negative drift in populations).

Fixed rate χhigh eΩ(n) Most individuals fall off the peak, but mutation rate
is too high wrt selective pressure to reach opt.
(Negative drift in populations).

Uniform mixing eΩ(n) Most individuals fall off the peak, but the effective
mutation rate is too high wrt selective pressure.
(Negative drift in populations).

Self-adaptation O(n2) Most individuals fall off the peak. Peak individuals do not
dominate. A sub-population surviving off the peak switches
to low mutation rate. (Level-based analysis).

(µ+λ) EA eΩ(n) Elitism prevents escape from peak.

Dang and Lehre [2016c]

14The results assume appropriate choices of the mutation rates χ1 and χ2, the strategy parameter p, and the
problem parameter m.

59 / 73

Interactive Simulation of Results

http://www.cs.bham.ac.uk/~lehrepk/selfadapt/

60 / 73

Fitness proportional selection + crossover Oliveto and Witt [2014,
2015]

Definition (Simple Genetic Algorithm (SGA) (Goldberg 1989))

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select two parents x and y from Pt proportionally to fitness
Obtain z by applying uniform crossover to x and y with p = 1/2
Flip each position in z independently with p = 1/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by crossover followed by mutation)

61 / 73

Application to OneMax

Expected Behaviour

I Backward drift due to mutation close to the optimum

I no positive drift due to crossover

I selection too weak to keep positive fluctuations

Difficulties When Introducing Crossover:

I Variance of offspring distribution

I # flipping bits due to mutation Poisson-distributed→ variance O(1)

I # of one-bits created by crossover binomially distributed according to Hamming
distance of parents and 1/2→ deviation Ω(

√
n) possible

62 / 73
871

http://www.cs.bham.ac.uk/~lehrepk/selfadapt/

Negative Drift Theorem With Scaling
Let Xt, t ≥ 0, random variable describing a stochastic process over finite state space
S ⊆ R;

If there ∃ interval [a, b] and, possibly depending on ` := b− a, bound ε(`) > 0 and
scaling factor r(`) st.

(C1) E(Xt+1 −Xt | X0, . . . , Xt ∧ a < Xt < b) ≥ ε,

(C2) Prob(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ∧ a < Xt) ≤ e−j for j ∈ N0,

(C3) 1 ≤ r ≤ min{ε2`,
√
ε`/(132 log(ε`)}.

then

Pr
(
T ≤ eε`/(132r2)

)
= O(e−ε`/(132r2)).

target
a b

drift away from target

no large jumps

start

Potential Function
For drift theorem, capture whole population in one value: For X = {x1, . . . , xµ} let

g(X) :=
∑µ
i=1 e

κOneMax(xi).

Problem: maybe r(`) = Ω(
√
`)

Solution
Find bits that are “converged” within population, i.e., either ones or zeros only.
Crossover is irrelevant for these.

63 / 73

Diversity

Xt: # individuals with 1 in some fixed position at time t

Assume uniform selection (and no mutation). Then:

I The probability crossover produces an individual with 1 in the fixed
position is (Xt = k):

I k
µ
· k
µ

+ 2 · 1
2
· k(µ−k)

µ2 = k
µ

I {Xt} ≈ B(µ, k/µ) ; E(Xt | Xt−1 = k) = k (martingale)

I But random fluctuations ; absorbing state 0 or µ due to the variance
(E(T0∨µ) = O(µ logµ) [drift analysis]).

I Progress by crossover is at most n1/2+ε w.o.p. (Chernoff Bounds when
ones are n/2).

I If µ ≤ n1/2−ε a bit has converged to 0 before optimum is found w.o.p.

64 / 73

Diversity

Xt: # individuals with 1 in some fixed position at time t

Assume uniform selection (and no mutation). Then:

I The probability crossover produces an individual with 1 in the fixed
position is (Xt = k):

I k
µ
· k
µ

+ 2 · 1
2
· k(µ−k)

µ2 = k
µ

I {Xt} ≈ B(µ, k/µ) ; E(Xt | Xt−1 = k) = k (martingale)

I But random fluctuations ; absorbing state 0 or µ due to the variance

Compare fitness-prop. and uniform selection:

I Basically no difference for small population bandwidth (difference of best
and worst OneMax-value in pop.)

I E(Xt | Xt−1 = k) = k ± 1/(7µ)

65 / 73

Result

Let µ ≤ n1/8−ε for an arbitrarily small constant ε > 0. Then with probability

1− 2−Ω(nε/9), the SGA on OneMax does not create individuals with more
than (1 + c)n

2
or less than (1− c)n

2
one-bits, for arbitrarily small constant

c > 0, within the first 2n
ε/10

generations. In particular, it does not reach the
optimum then.

Overall Proof Structure

Small
diversity

Small
bandw.

fitness-
prop.
≈ uni-

form

Drift;n
2

init.

Not a loop, but in each step only exponentially small failure prob.

66 / 73
872

Steady-state GA

Uniform crossover:
Picks the value for each bit position from one parent or the other uniformly at random
(i.e., from each parent with probability 1/2).

Artificial Fitness Levels [DJW 2002] (1+1)-EA for OneMax via Artificial Fitness Levels

By showing that with high probability the algorithm does not skip too many levels then it can
be proven that E(T) is also at least e n ln n + O(n); [Sudholt, IEEE TEVC 2013]

Ai : number of 0-bits;

873

(µ+1)-EA for OneMax via Artificial Fitness Levels (µ+1)-EA for OneMax via Artificial Fitness Levels (2)

(µ+1)-EA for OneMax via Artificial Fitness Levels Steady-state GA

x: 010101 f(x) = 3
y: 011100 f(y) = 3

 z: 011101 f(z) = 4 (p=1/4)

874

(µ+1)-GA for OneMax via Artificial Fitness Levels Proof Idea
1) We divide the search space in canonical fitness levels Li = {x in {0,1}n | OneMax(x) = i};

2) Each level i is represented by a Markov Chain (and all individuals are at least in Li) ;

S1: no diversity;
S2: at least one diverse individual;
S3: at least one individual in Li+1 or
higher.

3) The runtime is upper bounded by the time it takes to discover the next level E[Li] + the time it
takes for the entire population to take over the level (E[Ttakeover] = O(𝝁 log 𝝁)) .

Proof Idea (2)

Absorbing time from State S1:

But the exact transition probabilities are tedious to calculate!

Proof Idea (3)

Lower bound

Upper bound

M1:

M2:

As long as pm < pc then

875

Proof Idea (4)
Lower bound

Upper bound

Proof Idea (5)
Lower bound

Upper bound

Main Result [Corus,Oliveto, IEEE TEVC 2017]

• Mutation rate 1/n: 3/4 e n log n (1 + o(1)) (GA) versus e n log n (1+ o(1)) (no crossover);

• Higher mutation rates may be beneficial: 0.72 e n log n (1 + o(1)) ~1.3/n (GA);

• Populations may be beneficial: for 𝝁=2 the bound is 9/11 e n log n (1 + o(1)).

1) Show that the expected absorption time of the Markov chain is larger than that of the actual
algorithm; (Drift analysis on a non-negative potential function; drift >1)

2) Bound the absorption time of the Markov chain by inverting its fundamental matrix, the result of
which is a strongly dominant tridiagonal matrix.

More Careful Analysis [Corus,Oliveto - GECCO 2019]

876

1) The statements are very general as they provide upper bounds on the expected runtime for each
value of the population size (up to) and any unbiased mutation operator.

2) The preciseness of the analysis allows to appreciate the importance of the population for
optimising unimodal functions (the upper bounds decrease with the population size)!

3) For each population size we can derive the mutation rate that provides the best upper
bound on the expected runtime!

The Runtime of the Steady-state GA [Corus,Oliveto - GECCO 2019] Best Upper Bounds (p2 =1-ε, p1 = ε/2 p0 = ε/2)

Corollary: Standard Bit Mutation Standard bit mutation: c/n with best c for each μ
These are upper bounds: they do not strictly prove
that the expected runtime decreases with μ !

 GECCO 2020: “A tight lower bound on the expected
r un t ime o f s t anda rd s t eady s t a t e gene t i c
algorithms” [Oliveto, Sudholt, Witt] rigorously proves
that the leading constant in the expected runtime of
the (2+1) GA is at least 2.18417 ! (for any c < 1.422)

877

If the offspring has the same genotype as one of its parents then it is not
necessary to evaluate it again!

(1% faster than any asexual heuristic)

An open problem for a long time (1994)

Higher mutation rates again!

Jump Benchmark Function [DFKKLoSS., IEEE TEVC 2017]

k

Reason: The interplay between mutation and crossover can create diversity
on top of the plateau; then crossover + mutation can jump more quickly!

Conclusions

Steady state GAs are faster than any standard bit mutation-only
evolutionary algorithm;

Evidence that evolving populations via sexual recombination is beneficial;

Evidence that higher mutation rates than standard are
beneficial.

878

Summary

I Runtime analysis of evolutionary algorithms
I mathematically rigorous statements about EA performance
I most previous results on simple EAs, such as (1+1) EA
I special techniques developed for population-based EAs

I Drift Analysis
I Level-based method [Corus et al., 2014]

I EAs analysed from the perspective of EDAs
I Upper bounds on expected optimisation time
I Example applications include crossover, noise, and self-adaptation

I Negative drift theorem [Lehre, 2011a]
I reproductive rate vs selective pressure
I exponential lower bounds
I mutation-selection balance

I Diversity + Bandwidth analysis for fitness proportional selection [Oliveto
and Witt, 2014, 2015]
I analysis of crossover
I low selection pressure
I exponential lower bounds

I Speed-up via crossover for steady state GAs to hillclimb OneMax and
escape local optima [Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto,
Sudholt, and Sutton, 2017a, Corus and Oliveto, 2017]

67 / 73

Acknowledgements

I Dogan Corus, University of Sheffield, UK

I Duc-Cuong Dang, independent researcher

I Anton Eremeev, Omsk Branch of Sobolev Institute of Mathematics, Russia

I Carsten Witt, DTU, Lyngby, Denmark

Lehre was supported by a Turing AI Fellowship (EPSRC grant ref EP/V025562/1). Oliveto
received funding from the EPSRC under grant no EP/M004252/1.

68 / 73

References I

Brendan Case and Per Kristian Lehre. Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete Problems
with Unknown Structure. IEEE Transactions on Evolutionary Computation, 2020. ISSN 1941-0026. doi:
10.1109/TEVC.2020.2985450.

Tianshi Chen, Jun He, Guangzhong Sun, Guoliang Chen, and Xin Yao. A new approach for analyzing average time
complexity of population-based evolutionary algorithms on unimodal problems. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 39(5):1092–1106, Oct. 2009. ISSN 1083-4419. doi:
10.1109/TSMCB.2008.2012167.

Dogan Corus and Pietro S. Oliveto. Standard steady state genetic algorithms can hillclimb faster than
mutation-only evolutionary algorithms. IEEE Transactions on Evolutionary Computation, pages 1–1, 2017. doi:
10.1109/TEVC.2017.2745715.

Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Level-based analysis of genetic
algorithms and other search processes. In Parallel Problem Solving from Nature - PPSN XIII - 13th
International Conference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings, pages 912–921, 2014. doi:
10.1007/978-3-319-10762-2 90. URL http://dx.doi.org/10.1007/978-3-319-10762-2_90.

Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Level-Based Analysis of Genetic
Algorithms and Other Search Processes. IEEE Transactions on Evolutionary Computation, 22(5):707–719,
October 2018. ISSN 1089-778X, 1089-778X, 1941-0026. doi: 10.1109/TEVC.2017.2753538. URL
https://ieeexplore.ieee.org/document/8039236/.

Duc-Cuong Dang and Per Kristian Lehre. Refined Upper Bounds on the Expected Runtime of Non-elitist
Populations from Fitness-Levels. In Proceedings of the 16th Annual Conference on Genetic and Evolutionary
Computation Conference (GECCO 2014), pages 1367–1374, 2014. ISBN 9781450326629. doi:
10.1145/2576768.2598374.

Duc-Cuong Dang and Per Kristian Lehre. Efficient optimisation of noisy fitness functions with population-based
evolutionary algorithms. In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms
XIII, FOGA ’15, pages 62–68, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3434-1. doi:
10.1145/2725494.2725508. URL http://doi.acm.org/10.1145/2725494.2725508.

Duc-Cuong Dang and Per Kristian Lehre. Runtime Analysis of Non-elitist Populations: From Classical Optimisation
to Partial Information. Algorithmica, 75(3):428–461, July 2016a. ISSN 1432-0541. doi:
10.1007/s00453-015-0103-x. URL https://doi.org/10.1007/s00453-015-0103-x.

69 / 73

References II

Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of non-elitist populations: From classical optimisation
to partial information. Algorithmica, 75(3):428–461, 2016b. doi: 10.1007/s00453-015-0103-x. URL
https://doi.org/10.1007/s00453-015-0103-x.

Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of Mutation Rates in Non-elitist Populations. In Parallel
Problem Solving from Nature - PPSN XIV, Lecture Notes in Computer Science, pages 803–813. Springer, Cham,
September 2016c. ISBN 978-3-319-45822-9 978-3-319-45823-6. doi: 10.1007/978-3-319-45823-6 75.
URL https://link.springer.com/chapter/10.1007/978-3-319-45823-6_75.

Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of Mutation Rates in Non-elitist Populations. In Parallel
Problem Solving from Nature – PPSN XIV, Lecture Notes in Computer Science, pages 803–813. Springer,
Cham, September 2016d. ISBN 978-3-319-45822-9 978-3-319-45823-6. doi:
10.1007/978-3-319-45823-6 75. URL
https://link.springer.com/chapter/10.1007/978-3-319-45823-6_75.

Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro Simone Oliveto,
Dirk Sudholt, and Andrew M. Sutton. Escaping local optima using crossover with emergent diversity. IEEE
Transactions on Evolutionary Computation, pages 1–1, 2017a. ISSN 1089-778X. doi:
10.1109/TEVC.2017.2724201.

Duc-Cuong Dang, Thomas Jansen, and Per Kristian Lehre. Populations Can Be Essential in Tracking Dynamic
Optima. Algorithmica, 78(2):660–680, June 2017b. ISSN 1432-0541. doi: 10.1007/s00453-016-0187-y.
URL https://doi.org/10.1007/s00453-016-0187-y.

Benjamin Doerr. Better Runtime Guarantees Via Stochastic Domination. arXiv:1801.04487 [cs], January 2018.
URL http://arxiv.org/abs/1801.04487. arXiv: 1801.04487.

Benjamin Doerr. Does comma selection help to cope with local optima? In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, GECCO ’20, pages 1304–1313, New York, NY, USA, June 2020.
Association for Computing Machinery. ISBN 978-1-4503-7128-5. doi: 10.1145/3377930.3389823. URL
https://doi.org/10.1145/3377930.3389823.

Benjamin Doerr and Leslie Ann Goldberg. Drift analysis with tail bounds. In Proceedings of the 11th international
conference on Parallel problem solving from nature: Part I, PPSN’10, pages 174–183, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3-642-15843-9, 978-3-642-15843-8.

70 / 73
879

http://dx.doi.org/10.1007/978-3-319-10762-2_90
https://ieeexplore.ieee.org/document/8039236/
http://doi.acm.org/10.1145/2725494.2725508
https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00453-015-0103-x
https://link.springer.com/chapter/10.1007/978-3-319-45823-6_75
https://link.springer.com/chapter/10.1007/978-3-319-45823-6_75
https://doi.org/10.1007/s00453-016-0187-y
http://arxiv.org/abs/1801.04487
https://doi.org/10.1145/3377930.3389823

References III

Benjamin Doerr and Timo Koetzing. Multiplicative Up-Drift. Algorithmica, October 2020. ISSN 1432-0541. doi:
10.1007/s00453-020-00775-7. URL https://doi.org/10.1007/s00453-020-00775-7.

Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In GECCO ’10: Proceedings
of the 12th annual conference on Genetic and evolutionary computation, pages 1449–1456, New York, NY,
USA, 2010. ACM.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) Evolutionary Algorithm.
Theoretical Computer Science, 276:51–81, 2002.

Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for randomized search heuristics in
black-box optimization. Theory of Computing Systems, 39(4):525–544, 2006.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 3(2):124–141, July 1999. ISSN 1089-778X. doi: 10.1109/4235.771166.

Simon Fischer, Lars Olbrich, and Berthold Vöcking. Approximating wardrop equilibria with finitely many agents.
Distributed Computing, 21(2):129–139, 2008.

Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in
Applied Probability, 14(3):502–525, 1982.

Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence,
127(1):57–85, March 2001.

Jun He and Xin Yao. Towards an analytic framework for analysing the computation time of evolutionary
algorithms. Artificial Intelligence, 145(1-2):59–97, 2003.

Jens Jägersküpper. Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theoretical
Computer Science, 379(3):329–347, 2007. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/j.tcs.2007.02.042.

Jens Jägersküpper. A Blend of Markov-Chain and Drift Analysis. In Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature (PPSN 2008), 2008.

Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of the offspring population size in
evolutionary algorithms. Evolutionary Computation, 13(4):413–440, 2005. doi:
10.1162/106365605774666921.

71 / 73

References IV

Daniel Johannsen. Random combinatorial structures and randomized search heuristics. PhD thesis, Universität des
Saarlandes, 2010.

Per Kristian Lehre. Negative drift in populations. In Proceedings of Parallel Problem Solving from Nature - (PPSN
XI), volume 6238 of LNCS, pages 244–253. Springer Berlin / Heidelberg, 2011a.

Per Kristian Lehre. Fitness-levels for non-elitist populations. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, (GECCO 2011), pages 2075–2082, New York, NY, USA, 2011b. ACM.
ISBN 978-1-4503-0557-0.

Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, pages 1–20, 2012.
ISSN 0178-4617.

Per Kristian Lehre and Carsten Witt. Concentrated Hitting Times of Randomized Search Heuristics with Variable
Drift. In Algorithms and Computation, number 8889 in Lecture Notes in Computer Science, pages 686–697.
Springer International Publishing, December 2014. ISBN 978-3-319-13074-3 978-3-319-13075-0. URL
http://arxiv.org/abs/1307.2559. Best paper award.

Per Kristian Lehre and Xin Yao. On the impact of mutation-selection balance on the runtime of evolutionary
algorithms. Evolutionary Computation, IEEE Transactions on, 16(2):225 –241, April 2012. ISSN 1089-778X.
doi: 10.1109/TEVC.2011.2112665.

Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. Theoretical analysis of fitness-proportional selection:
landscapes and efficiency. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation (GECCO 2009), pages 835–842, New York, NY, USA, 2009a. ACM. ISBN 978-1-60558-325-9.
doi: http://doi.acm.org/10.1145/1569901.1570016.

Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of different mmas aco algorithms on unimodal functions
and plateaus. Swarm Intelligence, 3(1):35–68, 2009b.

Pietro Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds inevolutionary computation.
Algorithmica, pages 1–18, 2010. URL http://dx.doi.org/10.1007/s00453-010-9387-z.
10.1007/s00453-010-9387-z.

Pietro S. Oliveto and Carsten Witt. On the runtime analysis of the simple genetic algorithm. Theoretical Computer
Science, 545:2–19, 2014.

72 / 73

References V

Pietro S. Oliveto and Carsten Witt. Improved time complexity analysis of the simple genetic algorithm. Theoretical
Computer Science, 605:21–41, 2015.

Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population size in the (1,λ) ea. In Proceedings of
the fourteenth international conference on Genetic and evolutionary computation conference, GECCO ’12,
pages 1349–1356, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1177-9.

Dirk sudholt. A new method for lower bounds on the running time of evolu- tionary algorithms. IEEE Transactions
on Evolutionary Computation, 17(3):418–435, 2013. doi: 10.1109/TEVC.2017.2745715.

Carsten Witt. Runtime Analysis of the (µ + 1) EA on Simple Pseudo-Boolean Functions. Evolutionary
Computation, 14(1):65–86, 2006.

Christine Zarges. On the utility of the population size for inversely fitness proportional mutation rates. In FOGA
09: Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, pages 39–46, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-414-0. doi:
http://doi.acm.org/10.1145/1527125.1527132.

73 / 73
880

https://doi.org/10.1007/s00453-020-00775-7
http://arxiv.org/abs/1307.2559
http://dx.doi.org/10.1007/s00453-010-9387-z

	Introduction
	Runtime Analysis
	Drift Analysis

	Upper bounds for Non-elitist, Generational EAs
	The Level Based Theorem
	(,) GA on OneMax
	Noisy and Uncertain Fitness

	Lower Bounds for Non-elitist, Generational EAs
	Negative Drift Theorem for Populations
	Mutation-Selection Balance
	Self-adaptation
	Negative Drift with Crossover

	Upper Bounds for Elitist, Steady-state EAs
	(1+1) EA and Artificial Fitness Levels
	(+1) Genetic Algorithm and OneMax
	(+1) Genetic Algorithm and Jump

	References

