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w Part I: Basics

' Basic Concepts
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Multi-objective Optimisation Problem (MOP) Dominance : How to compare two solutions
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w Pareto dominance: x!' < x?
minimize F(x) = (f1(x), -, fm (X))T ' F(x!')is no worse than F(x?) in any objective, and
subject to gj (X) > aj, j=1,---,q ' F(x') is better than F(x?) in at least one objective
hj(x):bj7 ]ZQ+17 7€
x € Q)
1
0.8
2 06 ]
04 °
x
0.2

Pareto-Optimal Solutions = Best Trade-off Convergence and Diversity in EMO

Candidates
NVZEN N NS e N~ — \ N\ A - /__~~ /NN XVAEN N NS e N~ — \ N\ A - /__~~ NN
2 w Convergence: non-dominated, close to the PF
e S w Diversity: even distribution along the PF
__—;,’1/\/(5 / ’ f2 f2 f2‘

A ,'/
;
AN o
PS v

fi 1

decision space
®

w X is Pareto-optimal iff n lution domin i -
s Fareto O.Dt a O solutio o ates It h h Ibalanced convergence and diversitylj]
w Pareto set (PS): all Pareto-optimal solutions in decision space

objective space

P~ PF

w Pareto front (PF): image of PS in the objective space

Achieving the balance between convergence and diversity is
the key in evolutionary multi-objective optimisation
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Classic Methods vs Evolutionary Approaches

XWAERN

w Classic multi-objective optimisation [3]

N e NS e NS~ — \ N\ A

- = | T =\ N

One optimum solution

single-objective optimization problem, e.g.,
weighted sum

minimize g% (x|w) = Y10 wi x f(x;)

subject to  x €

Estimate a relative
importance vector —
W= (W, wy)

Higher-level
- -

w Evolutionary multi-objective optimisation (EMO)

set-based method, approximate the PF at a time
' Major EMO algorithms

1. Pareto dominance based: NSGA-II, SPEA2, PESA2, ...
1. Performance indicator based: SMS-EMOA, HypkE, ...

12 |Decomposition based //

Mating

A Reproduction
Selection P!

Environmental

Evaluation

Selection

[3] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms”, Wiley, 2009.

Decomposition in EMO

XWAERN

w Decomposition has been used to some extent in EMO
area for many years.

N e NS e NS~ — \ N\ A

- = | T =\ N

w Examples includes:
' MOGLS [Ishibuchi, et al, 1998, Jaszkiewicz, 2002]
' MOSA [Ulungu ,et al, 1999]
' MOTS [Hansen, 1997]
' 2PLS [Paquete & Stutzle, 2003]
' AWA [Jin et al,2001]
" MSOPS [Hughes, 2003]
' MOTGA [Alves, 2007]
" |CMOGA [4] [Murata et al, 2001]| < MOEA/D

These algorithms use traditional aggregation approaches.

[4]1 T. Murata, H. Ishibuchi, M. Gen, “Specification of Genetic Search Directions in Cellular Multi-objective
Genetic Algorithms”, EMO’01: 82-95,2001. 11

Outline

XWAERN

w Part I: Basics
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' Ideas in MOEA/D

MOEA/D = Decomposition + Collaboration
w Basic idea

' Decomposition (from traditional optimisation)

1. Decompose the task of approximating the PF into N subtasks, i.e. MOP to subproblems.

N e NS e NS~ — \ N\ A

- = | T =\ N

1. Each subproblem can be either single objective or multi-objective.

' Collaboration (from EC)
1. Population-based technique: N agents for N subproblems.

1. Subproblems are related to each other while N agents solve these subproblems in a
collaborative manner.

16 — PF
@ weight vector

—6

0 02 04 06 08
h 12
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Subproblem Settings
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w Subproblem formulation

multiple objectives parameters

F(x) = (fi(x), -, fm(x)) € R™ — ¢ransformation —* g(x[-)

scalarizing function

minimize ¢¥%(x|w) = >0, w; fi(x)
subject to x € Q

|‘ w NOTE: It works for convex PF! |

Decomposition-based EMO
w Basic idea
' Decomposition (from traditional optimisation)
' Collaboration (from EC)

SOSS NN SA NS S T e

16 — PF
@ weight vector

=
o
o
=
b
e
=Y
o
%
—

Subproblem Settings (cont.)
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w Weight vector/Reference point Setting [I]

' Sample a set of evenly distributed weight vectors from a unit simplex
m

oW = (wy, - 7wm)Twhere Zwi =1,weR"

N N AN N A

=
o
o
=
4
S o
o
o
-

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
07 02 04 06 08,0 02 04 06, 0 02 04,0 02,0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.4 . 0

0
0.2

0.4

06

T1 08

i

[5] I. Das et. al., “Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in
Nonlinear Multicriteria Optimization Problems”, SIAM J. Optim, 8(3): 63 1-657, 1998.

Subproblem Settings (cont.)

XWAERN NN | = mmN N

NS\ NN\ SAS N\ N~ AW
w Neighbourhood structure:
' Two subproblems are neighbours if their weight vectors are close.

' Neighbouring subproblems are more likely to have similar
properties (e.g. similar objective function and/or optimal solution).

0 02 04 06 08 1
fi

|‘ Many different ways for defining neighbourhood structure. ‘|
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Collaboration Among Different Agents

XWAERN NN | = mmN N

SOSS NN SA NS S T e

16 — PF . N
weight vector Each agent i records the best-so-far solution
found for its subproblem (memory)

0.8

0 02 04 06 08 “4-
h

w At each iteration, each agent does the following:

" Mating selection (local selection): borrows solutions from its
neighbours.

Reproduction: reproduce a new solution by applying reproduction
operators on its own solutions and borrowed solutions.
Replacement (local competition):

1. Pass the new solution among its neighbours (including itself).

1. Replace the old solution by the new one if the new one is better than old one for its
objective.

17
NVAEN NN | W maN N NSNS\ e SN\ SA A\~ | e\ /NN
w A simple MOEA/D works as follows:
Step 1: Initialize a population of solutions P := {x‘}Y, a set of reference
points W := {w'}}¥, and their neighborhood structure. Randomly
assign each solution to a reference point.
Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w'’s neighborhood.

Step 2.2: Use crossover and mutation to reproduce offspring x°.

Step 2.3: Update the subproblems within the neighborhood of w* by
x€.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

[6] Q. Zhang et al., “MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”,
IEEE Trans. Evol. Comput., | 1(6): 712-731,2007. 19

Outline
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w Part I: Basics

' A Simple Variant

Experimental Results
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m Continuous MOP test instances.

w Same population size and same crossover and mutation.

w Same number of objective function evaluations.

D-METRIC VALUES OF THE SOLUTIONS FOUND BY MOEA/D WITH TABLE V
THE TCHEBYCHEFF APPROACH AND NSGA-II. THE NUMBERS AVERAGE CPU TIME (IN SECONDS) USED BY NSGA-II AND
IN PARENTHESES REPRESENT THE STANDARD DEVIATION MOEA/D WITH THE TCHEBYCHEFF APPROACH

NSGA-IT MOEA/D NSGA-TI | MOEA/D
ZDTI | 0.0050 (0.0002) | 0.0055 (0.0039) ZDTI 1.03 0.60
ZDT2 | 0.0049 (0.0002) | 0.0079 (0.0109) ZDT2 1.00 0.47
ZDT3 | 0.0065 (0.0054) | 0.0143 (0.0091) Instance | ZDT3 1.03 0.57

Instance | ZDT4 | 0.0182 (0.0237) | 0.0076 (0.0023) ZDT4 0.77 033
ZDT6 | 0.0169 (0.0028) | 0.0042 (0.0003) ZDT6 0.73 0.27
DTLZI | 0.0648 (0.1015) | 0.0317 (0.0005) DTLZI 10.27 1.20
DTLZ2 | 0.0417 (0.0013) | 0.0389 (0.0001) DTLZ2 837 .10

m Observation: it works.
' Solution quality: MOEA/D = NSGA-II
' CPU time: MOEA/D is better.

20
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Test Instances with complicated PS shapes Some Remarks

Y AN NN o N S N e A e T N e ANy AW XWAERN A e N Ny NS\ NS\ SAS N N |~ e | /N N
: w Diversity among subproblems leads to diversity among
solutions

(0,1 x [~2,2)"~*
J1 = {j|3 < j < n,and j — 1 is a multiplication of 3},

J2={jl3<i<n

m MOEA/D has a well-organised memory.

w |t deals with a population of subtasks, related to recent
proposed evolutionary multi-task optimisation (Y-S Ong
etal,2016).

w MOEA/D is better.

w Combination of MOEA/D and NSGA-II (Cai, et al): Champion
in CEC 2017 competition.

21 22

Outline Setting of Weight Vectors (cont.)
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w Drawbacks of the Das and Dennis’s method

' Not very ‘uniform’ [2]

w Part 11: Advanced Topics

' Current Developments "q

1. Decomposition Methods ®

simplex-lattice design uniform design [7]

[7] Y-Y Tan, et al., “MOEA/D + Uniform Design: A New Version of MOEA/D for Optimization Problems

23 with Many Objectives”, Comput & OR, 40: 1648-1660, 201 3. A
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hv(}) = 0.774252 ; 10 Points along Pareto front 2: £° + {0° = 1
hV(A) = 0.169539 ; 10 Points along Pareto front 1: £ + 0 = 1
* —

Setting of Weight Vectors (cont.)

XWAERN NN | = mm N

NS\ NN\ A\ N —

w Drawbacks of the Das and Dennis’s method

=~ AW

o . H+m-1
' Number of weights is restricted to N = m [8,9]

1. Nincreases non-linearly with m

1. If Nis not large enough, all weight vectors will be at the boundary of the simplex

[8] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-
Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints”, IEEE Trans. Evol.
Comput., 18(4):577-601,2014.

[9] K. Li, K. Deb, et al.,“An Evolutionary Many-Objective Optimization Algorithm Based on Dominance
and Decomposition”, IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

Setting of Weight Vectors (cont.)

XWAERN NN | = mm N

NS\ NN\ A\ N —

w |s even distribution really a good choice?

=~ AW

hv(pal) = 0.793305 ;10 Points along Pareto front:f;* + {0 = 1

—— Paroto front
= = =iLines
Lo intersection points|

hv(pal) = 0.178965 ;10 Points along Pareto front:f>% + 2% = 1

Pao o |
it

© _ Intersection points

fy
(a) A (MOEA/D) for convex and concave PF

Y
(b) paX for convex PF

fy
(c) paX for concave PF

Assume PF as E{Zlfip = 1, estimate p according to the number of non-
dominated solutions [10]

[10] S. Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”,
ICNC’11, 1260-1264,201 1.

27
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Setting of Weight Vectors (cont.)

NVAEN N e NCS ~—

NS~ —\ N\ A _—— /__~~

AW
w |s even distribution really a good choice?
' Do NOT always lead to evenly distributed solutions
' Do NOT support all PF shapes
1. Disconnected PF
1. Inverted PF
[HE folwt w? —
H —==PF2
PN/ PF3
w3
\ \ w?
e \ s
zld fl
If the PF meets Z fi = 1, that’s fine; otherwise ...
=1
: 26

Setting of Weight Vectors (cont.)
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w |s even distribution really a good choice?

AW

£ f1(x)

\O( o fm—zl (x)

< '
\\I m

4o ! el
Yim Gifi(x)" =1 -
— — ——subject to ai>O,ci>\O,i:1--~,m” e SAT-are
o ) XL
. LT
fi(X) Gz

L [EUSPPUE RS L A

fi(x)

[11]Y.Qi, et al., “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231264, 2014.

[12] M.Wu, et al., “Learning to Decompose:A Paradigm for Decomposition-Based Multiobjective Optimization”, IEEE Trans.
Evol. Comput,, 23(3): 376-390, 2019.

[13] F Gu, et al., “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary
Algorithm”, IEEE Trans. Evol. Comput., 22(2): 21 1-225,2018.

[14] Y. Liu, et al.,“Adapting Reference Vectors and Scalarizing Functions by Growing Neural Gas to Handle Irregular Pareto
Fronts”, IEEE Trans. Evol. Comput., accepted for publication, 2019.



Preference Incorporation

XWAERN NN | = mmN N

SOSS NN SA NS S T e

w Weight vectors represent the decision maker’s
preference information on the PF.

without any preference ‘|

[wich preference

29

Preference Incorporation (cont.)
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w Weight vectors represent the decision maker’s
preference information on the PF.

' Shift weight vectors towards the decision maker supplied aspiration
level vector [15]

' Progressively learn the decision maker’s preference [16]

o I-MOEA/D-PLVF MOEA/D I-NSGA-ITI-PLVF NSGA-ITI

.

04

T2 8 4 5 6 7
Obiective Index

[16] K. Li, et al.,“Interactive Decomposition Multiobjective Optimization Via Progressively Learned
Value Functions”, IEEE Trans. Fuzzy Systems, 2019. 31

Preference Incorporation (cont.)

XWAERN NN | = mmN N

SOSS NN SA NS S T e

w Weight vectors represent the decision maker’s
preference information on the PF.
' Shift weight vectors towards the decision maker supplied aspiration
level vector [15]
1. Closed form

12 Size of ROl is controllable
1. Keep the boundary

4 5 6 7 8 9 10 01 2 3
Objective Index N

[15] K. Li, et al.,,“Integration of Preferences in Decomposition Multi-Objective Optimisation”, IEEE 0
Trans. Cyber., 2018.

1 2 3 4 5 6 7
Obijective Index

Revisit Weighted Tchebycheff

XWAERN NN | = mmN N

w Weighted Tchebycheff

SOSS NN SA NS S T e

w non-smooth, weakly dominated solution

w evenly distributed weights do NOT lead
to evenly distributed solutions

= might easily loose diversity

fap--T

fi
weighted Tchebycheff

g(xlw,2") = max wi|fi(x - =]

32
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Revisit Weighted Tchebycheff

XVAEN AN I NNy NN\ e\ A —— )~ -\ BN\ N

Drawbacks]

w Weighted Tchebycheff
w non-smooth, weakly dominated solution

fa
\ w = (w1, w2)"
// weakly dominated solut.ion. stributed weights do NOT lead

= might easily loose diversity

to evenly distributed solutions
PF
N

f2

7 \w = (w1, wa)”
weighted Tchebycheff

glxlw, ") = max wilfilx — =]

augmented scalarizing function

9%(x|w,z*) = max (M) 4 pZ(M)

1<i<m W; 1 wy
=

fi
[17] K. Miettinen, “Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999. 33

Revisit Weighted Tchebycheff

SOSS NN SA NS S T e

XWAERN NN | = mm N

w Weighted Tchebycheff

PF / w non-smooth, weakly dominated solution
”””””””” e @ evenly distributed weights do NOT lead
fob-= ) to evenly distributed solutions
' ' i = might easily loose diversity
"""" ; i ; fi
z* | E : w3
fi
weighted Tchebycheff
*\ | F. _ ¥ " UJ4
sl 2 = e w20
w®
= f2

[18] S. Jiang, et al.,““Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary

Algorithms”, |[EEE Trans. Evol. Comput., 22(2): 296-313,2018. 3

Revisit Weighted Tchebycheff
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w Weighted Tchebycheff

w non-smooth, weakly dominated solution
= evenly distributed weights do NOT lead
to evenly distributed solutions

faf-----73 A
’ = might easily loose diversity

fi
weighted Tchebycheff

A 0505 i

1
a(xlw.z) = max —|fi(x— 5|

Vw, I/ATE
Yoy Vwi” 73T 1w

[I'17Y.Qi, et al.,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 34

T

The search direction for w = (w1, -+ ,wm)" is w = (

Revisit Weighted Tchebycheff

SOSS NN SA NS S T e

NVAEN N e NCS ~—

w Weighted Tchebycheff
W=(05,05)

f2
w non-smooth, weakly dominated solution
w evenly distributed weights do NOT lead
to evenly distributed solutions
= might easily loose diversity

Pareto adaptive scalarizing to choose p

minimize p, p€ P
subject to  VxF : g¥%(x*|w,z*, p)
< gv4(xF|w, 2%, p)

v

0
fi

weighted L, scalarizing [19]
g (xlw) = (3o Ni(fi) — =)
I=1
1
A = (E)J) >1

[19] R.Wang, Q. Zhang, et al.,“Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing
Methods”, IEEE Trans. Evol. Comput., 20(6): 821-837, 201 6. 36
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Revisit Weighted Sum

N [ = ma N~ —— NS\ NS\ SAS N N |~ e | /N N

XWAERN

w Weighted Sum

) \PF o w only useful for convex PFs while not all

o Pareto-optimal solutions can be found if
ol the PF is not convex.

N [

z* N

i

weighted sum

g(x|w) = wi x fi(x)
=l

37
VAN LN SN SOSS\ e SN A AN e = T N
w Penalty-Based Intersection (PBI) [7]
g d
_ g(x|w,z"%) = dy — 0dy
3 & = IE® - 2" |
£ [Iwll
= dy = [FGx) = (" + )|
< &
’ w d, ‘measures’ the convergence
/ > can be replaced by other measure [7]
4= (05057 = d, ‘measures’ the diversity
£ (Minimize) > can be replaced by angle [21,22]
Inverted PBI [23] w @ controls the contour and trade-offs

[7] Q. Zhang et al,,“MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput.,
11(6):712-731,2007.

[21] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, IEEE Trans.
Evol. Comput., 20(5): 773-791,2016.

[22] Y. Xiang, et al.,“A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE
Trans. Evol. Comput,, 21(1): 131-152,2017.

[23] H. Sato, “Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs”, |.
Heuristics, 21: 819-849, 2015.
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Revisit Weighted Sum
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XWAERN

w Weighted Sum

Is weighted sum really that bad?

w The superior region is constantly 1/2,

whereas it is 1/2™ for the L, scalarizing
R w MOEA/D with weighted sum have better
I ~ convergence (given convex PF)

Localized weighted sum [20]
AN \\ f2

i

weighted sum

g(x|w) = wi x fi(x)
=l

[20] R.Wang, et al.,“Localized Weighted Sum Method for Many-Objective Optimization”, IEEE

Trans. Evol. Comput., 22(1): 3-18,2018. 38

Learning to Decompose

SOSS NN SA NS S T e

XWAERN NN | = mmN N

w Search dynamics of MOEA/D largely depends on the
contours induced by the subproblem formulation.
' The shape of the contour might mislead the selection
' The search direction might not be suitable

f2 w) L f2
-9z
,,,,,, foz?
77777 ;:3 TCH
m w?
i 2
HH Z
Al Hl o4
; 2
A PBI
s 7 zid fi
|‘ w73 is better than z%; z* is better than z?2 ‘| || = z° is better than z® with respect to w?

[12] M.Wu, et al.,“Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective
Optimization”, IEEE Trans. Evol. Comput., 23(3): 376-390,2019.



Learning to Decompose (cont.)

NN\ SAS\ N~ AV

NN\ i

XWAERN NN | = mmN N

w | earned subproblem formulation

minimize y(x|n*,z*) = A(F(x)|n*, z*) = d; + 01d3 + 02d3,
di = (F(x) —2")"n*

do = ||F(x) — z* fdln*H'

w A smaller/larger 8, or 6, leads
to a wider/narrower opening.
> Too narrow opening causes a
strict selection of the better

solutions.
w @; controls the opening and the
curvature of the contour at the
vertex; 8, does not influence

the curvature.

H @ How to set 8, or 8,?

[12] M.-Wu, et al.,“Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective
Optimization”, |[EEE Trans. Evol. Comput., 23(3): 376-390, 2019.

Constrained Decomposition

N ANy P\ WS

NN\ i

XWAERN N e N Ny
w The improvement region of WS, TCH and PBI is too large
' Gives a solution large chance to update many agents: hazard to diversity

f_; . < f_? . < /_; . g
£ 1 a / I .a A 1 a
| | 0 ] . Q | | 6
A A A ,
X ~‘/V "
? s 5 /i

' Add a constraint to to reduce the improvement region [24]

minimize g¢(x|w,z*)
subject to (a’, F(x) — z*) < 0.5¢°

[24] L.Wang, Q. Zhang, et al.,“Constrained Subproblems in a Decomposition-Based

Multiobjective Evolutionary Algorithm”, IEEE Trans. Evol. Comput., 20(3): 475-480, 201 6. 43

Learning to Decompose (cont.)

SOSS NN SA NS S T e

XWAERN A e N Ny
w | earned subproblem formulation
minimize y(x|n*,z*) = A(F(x)|n*,2*) = d;, + 6,d3 + 0-d3,
dy = (F(x) —2z")'n"
dz = |[F(x) —2" — din"||

*

K

0 = max(?ﬂ) +0.1
02 = max(min{fs|h(z|n*,z*) > 0,Vz € Z*\z"},0) + 0.1‘|

Let the curvature of the contour

All other samples on the estimated PF
— ~ have worse function values than z* on

h(z|n*, z%).

fa

42

Subproblem Can Be Multi-Obijective ...

SOSS NN SA NS S T e

XWAERN NN | = mmN N

m MOP to MOP (M2M)
' Decompose a MOP into K (K > 1) constrained MOPs [25].

minimize F(x) = (f1(x), -+, fin(x))T

T
s m(x)) \|- subject to x € Q
F(x) € O

minimize F(x) = (f1(x), -
subject to x € Q

O, = {F(x) € R™"|(F(x),w’) < (F(x),w’) for any j=1,---,K}

fi

[25] H. Liu, F. Gu and Q. Zhang, “Decomposition of a Multiobjective Optimization Problem Into a

Number of Simple Multiobjective Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455, 2014. 44
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Dynamic Resource Allocation Outline
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XWAERN N e N Ny NS\ NN\ SAS N\ N~ AW NVAEN N e N Ny N
w Are all subbroblems eaually important?
9 .
' Some t fi(x) =21 + Tl Z (x; — sin(6raq + lﬂ'))
. 1 n .
' Differe j€n itional
9 .
"RSOUM fy(x) = 1= Val + 1 3 (o = sin(6mas + )
2| n
H J€J2 .
w Dynamic . coooo oo 20 ol Lo VD [2€] w Part Il: Advanced Topics
o Utili 1.00f ' ' ' ' ' 1° ' Current Developments
ILeg
_ 075 12 Search Methods
mo
x 0.50
' Allodi
[T
e85
0 L A . L L
0 50 100 150 200 250 300
subproblem
[26] A. Zhou and Q. Zhang, “Are All the Subproblems Equally Important? Resource Allocation in
Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE TEVC, 20(1): 52-64, 2016. 45 46

Search Methods Search Methods

XWAERN NN [ = ENS— e —— NS N\ e \SENSAS A N — = |~ /e | N N NVAEN N e N Ny NS\ NS\ SAS N N |~ e | /N N

w Offspring reproduction in MOEA/D w Offspring reproduction in MOEA/D

' Neighbourhood defines where to find mating parents ' Neighbourhood defines where to find mating parents

" Any genetic operator can be used ' Any genetic operator can be used
11 GA [6], DE [27], PSO [28], guided mutation [29], ... ' Any local search can be used
® Neighborhood 1. simulated annealing [30], interpolation [31], tabu search [32], GRASP [33], Nelder-Mead [34], ...

O Other SOPs ~
- @ Neighborhood
O Other SOPs.

RO

TN

CLHAR
55

0.5°(t-x)

o e

Bl n % © decision space
° .
o © decision space [30] H. Li, et al.,“An adaptive evolutionary multi-objective approach based on simulated annealing”,
[6] Q.Zhang and H. Li,“MOEA/D:A Multiobjective Evolutionary Algorithm Based on EVOI'COWPUt' I,?(4): 56|-595,’ 2011 . S R o R .
Decomposition”, I[EEE Trans. Evol. Comput., | 1(6): 712-731,2007. [31] K. Sindhya, “A new hybrid mutation operator for multiobjective optimization with differential
[27] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, Sl jSo'ft Gl |5:294|_295,5‘ Z,OI b ” . .
MOEA/D and NSGA-II”, IEEE Trans. Evol. Comput, 13(2): 284-302, 2009 [32] A. Alhindi and Q. Zhang, “Hybridisation of decomposition and GRASP for combinatorial
[28] S. Martinez, et al.,"“A multi-objective PSO based on decomposition”,in GECCO 201 I. n;":;lti:li?;?“; op;lmlsaztl:n ’L‘J‘IIf’I%EZXIII; ith Tabu S h f Itiobiecti ion i h
[29] C. Chen, et al.,“Enhancing MOEA/D with guided mutation and priority update for multi-objective A R indl an Q,_ ang, with fabu Search for multiobjective permutation flow shop
optimization”. CEC 2009 scheduling problems”, CEC 2014. 8
E ’ [34] H. Zhang, et al.,“Accelerating MOEA/D by Nelder-Mead method”, CEC 2017.
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Offspring reproduction in MOEA/D

" Neighbourhood defines where to find mat
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P fined by min g(x1 2')

Pareto optimal

y ming(x1 )

Any genetic operator can be used
Any local search can be used

Probabilistic model can be used

1. Memory

Gowpl  —*

I Each agent records historical information, i.e. elites

The neighborbood of ant 6

1. Model building and solution construction

# Each agent can build ‘local model’, e.g. ACO [35], EDA [36], cross entropy [37], graphical model [38],
CMA-ES [39], based on memory of itself and its neighbour

[35] L. Ke, Q. Zhang, et al.,“MOEA/D-ACO:A Multiobjective Evolutionary Algorithm Using Decomposition and
Ant Colony”, IEEE Trans. Cybern., 43(6): 1845-1859,2013.

[36] A. Zhou, Q. Zhang, et al.,“A Decomposition based Estimation of Distribution Algorithm for Multiobjective
Traveling Salesman Problems”, Computers & Mathematics with Applications, 66(10): 1857-1868, 201 3.

[37] I. Giagkiozis, et al.,“Generalized decomposition and cross entropy methods for many-objective
optimization”, Inf. Sci., 282: 363-387,2014.

[38] M. de Souza, et al.,“MOEA/D-GM: Using probabilistic graphical models in MOEA/D for solving
combinatorial optimization problems”, arXiv:1511.05625,2015.

[39] H. Li and Q. Zhang, “Biased Multiobjective Optimization and Decomposition Algorithm”, |IEEE Trans.
Cybern., 47(1): 52-66,2016.
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Usmg Probability Collective in MOEA/D
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' Instead of a point-based search, probability
collective aims to fit a probability distribution

highly peaked around the neighbourhood of PS M
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w Fit a Gaussian mixture model using solutions
associated with each subproblem

w Search is based one sampling or local search
upon the fitted model ST e

[40] D. Morgan, et al,,“MOPC/D:A new probability collectives algorithm for multiobjective
optimisation”, MCDM'’13, 17-24,2013 5l
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Offspring reproduction in MOEA/D

" Neighbourhood defines where to find mat
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P fined by min g(x1 2')

Pareto optimal

y ming(x1 )

Any genetic operator can be used
Any local search can be used

Probabilistic model can be used

1. Memory

Gowpl  —*

I Each agent records historical information, i.e. elites

The neighborbood of ant 6

1. Model building and solution construction

# Each agent can build ‘local model’, e.g. ACO [28], EDA [29], cross entropy [30], graphical model [31],
CMA-ES [32], based on memory of itself and its neighbour

# New solutions are sampled from these models
# NOTE: too many models may be too expensive
I* Memory update

# Offspring update each agent’s and its neighbour’s memory

[35] L. Ke, Q. Zhang, et al.,“MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and
Ant Colony”, IEEE Trans. Cybern., 43(6): 1845-1859,2013.

[36] A. Zhou, Q. Zhang, et al.,“A Decomposition based Estimation of Distribution Algorithm for Multiobjective
Traveling Salesman Problems”, Computers & Mathematics with Applications, 66(10): 1857-1868, 201 3.

ou

Search Methods

XWAERN
Expensive optimisation

Building surrogate model for expensive objective function
1. e.g. Gaussian processes (Kriging) [38, 39], RBF [40], ...

N [ = ma N~ —— NS\ NS\ SAS N N |~ e | /N N

[41] Q.Zhang, et al,,“Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model”, IEEE
Trans. Evol. Comput., 14(3): 456-474,2010.

[42] T. Chugh, et al.,“A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally
Expensive Many-Objective Optimization”, 22(1): 129-142,2018.

[43] S. Martinez, et al.,“MOEA/D assisted by RBF Networks for Expensive Multi-Objective Optimization
Problems”, GECCO 2013.
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w Adaptive operator selection as a bandit problem [37]
' Strike the balance between the exploration and exploitation

1. Exploration: acquire new information (diversity)

1. Exploitation: capitalise on the available knowledge (convergence)

EA AOS

w Part 1l: Advanced Topics
Credit Register

1]
Operator 5 : ' Current Developments
Selection VW{K perator

Operator 2

Operator
Application

12 Collaboration Methods

I* Mating Selection

- A,Aﬁe .o
U .
Impacft Qredlt )/V Operator K I Replacement
Evaluation Assignment

[44] K. Li, et al.,“Adaptive operator selection with bandits for multiobjective evolutionary algorithm
based on decomposition”, IEEE Trans. Evol. Comput., 18(1): | 14-130,2014.
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Mating Selection Mating Selection (cont.)
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w Mating selection: how to select parents for offspring w Mating selection: how to select parents for offspring
reproduction? reproduction?
' Tournament selection, genotype neighbours, ... ' Tournament selection, genotype neighbours, ...
' MOEA/Ds leverage the neighbourhood structure of weight vectors ' MOEA/Ds leverage the neighbourhood structure of weight vectors
1. Assumption: neighbouring subproblems have similar structure 1. Assumption: neighbouring subproblems have similar structure
1. Select mating parents purely from neighbouring agents (simple MOEA/D) 1. Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
w Large neighbourhood makes the search globally
w Small neighbourhood encourages local search

,_

w Focusing on the neighbourhood is

08 0.8

too much exploited

. . =06
w Give some chance to explore in

= 0.6

04 04

Build an ensemble of neighbourhood sizes and
chooses the appropriate one based on their

the whole population [27]

0.2

0.2

p AR 00 02 o4 06 o5 1 12 historical performance. [45]
h h
[27] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, [45] S. Zhao, Q. Zhang, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With
MOEA/D and NSGA-II”, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009. an Ensemble of Neighborhood Sizes”, I[EEE Trans. Evol. Comput., 16(3): 442-446,2013.
55 56
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w Mating selection: how to select parents for offspring
reproduction?

' Tournament selection, genotype neighbours, ...

' MOEA/Ds leverage the neighbourhood structure of weight vectors
1. Assumption: neighbouring subproblems have similar structure
1. Select mating parents purely from neighbouring agents (simple MOEA/D)

12 ; Weight Vector Take crowdedness into consideration [46]

w Compute the niche count of each solution within
agent i's neighbour

= Select mating parents from outside of the

neighbour if solutions are overly crowded

N
0 02 04 06 08 1 12
fl

[46] S. Jiang, et al.,“An improved multiobjective optimization evolutionary algorithm based on
decomposition for complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016.
57

Replacement (cont.)
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w Matching-based selection [47, 48]

' Subproblems and solutions are two sets of agents

' Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one? 14
w A unified perspective to look at selection
w A generational evolution model for MOEA/D
> What is convergence?!
& Aggregation function, ...
> What is diversity?
# Perpendicular distance, angle ...
> Mechanism to match
@ Stable matching, ...

selection — matching

[47] K. Li, Q. Zhang, et al.,“Stable Matching Based Selection in Evolutionary Multiobjective
Optimization”, IEEE Trans. Evol. Comput., 18(6): 909-923,2014.

[48] M.Wu, K. Li, et al.,“Matching-Based Selection with Incomplete Lists for Decomposition Multi-
Objective Optimization”, IEEE Trans. Evol. Comput., 21(4): 554-568,2017. 59

Replacement
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w Replacement: update the parent population

' Steady-state evolution model (oracle MOEA/D)

' Update as many neighbouring subproblems as it can (oracle
MOEA/D)

w The replacement strategy of the oracle
MOEA/D is too greedy
w Offspring is only allowed to replace a
limited number of parents [27]
> Pros: Good for diversity
> Cons: convergence may be slow

[27] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets,
MOEA/D and NSGA-II”, IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.
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Replacement (cont.)
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w Matching-based selection (extension) [49]
' Identify the inter-relationship between subproblems and solutions

1. Find the related subproblems to each solution (e.g. fitness)

1. Find the related solutions for each subproblem (e.g. closeness)

Selection mechanism: each subproblem chooses its favourite
solution

w11

[49] K. Li, Q. Zhang, et al., “Interrelationship-based selection for decomposition multiobjective
optimization”, IEEE Trans. Cybern. 45(10): 2076-2088,2015.
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Replacement (cont.) Outline
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w Matching-based selection (extension):
' Global replacement [50]

= If the newly generated offspring is way beyond the current neighbourhood ...
= Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring

1. Compete with solutions associated with this ‘best agent’
" MOEA/D-DU [51]

1. Update the newly generated offspring’s ‘nearest’ subproblems

" Resources

0 02 04 06 08 1 12
fi

[50] Z.Wang, Q. Zhang, et al.,“Adaptive Replacement Strategies for MOEA/D”, IEEE Trans. Cybern.,
46(2): 474-486,2016.

[51]Y.Yuan, et al.,“Balancing Convergence and Diversity in Decomposition-Based Many-Objective

6l 62
Optimizers”, IEEE Trans. Evol. Comput., 20(2): 180-198,2016.

Resources Resources (cont.)
w |EEE CIS task force on decomposition-based techniques w Website of MOEA/D:
in EC: https://cola-laboratory.github.io/docs/dtec/ https://sites.google.com/view/moead/home

IEEE CIS Task Force 12

**Task Force on Decomposition-based Techniques MOEA/D Home

in Evolutionary Computationtx

Objectives .

is to transforn the original complex problen into simplified subproblen(s)
S0 as to facilitate the optinization. Deconposition-based techniques have
been widely used for solving both single

nd multi-objective optinization

problens. ore specifically, in single-objective optimization, especially

for the large-scale scenarios, Which consider a tremendous amount of ) .

iacislonsvaribbies, Ehe ducosporitionibased Sachniqueicontaine ifices ' _ MOEA/D (Multi-objective evolutionary algorithm based on decomposition) is a general-purpose algorithm framework. It

aspects: 1) analyzing and understanding the fitness landscae and d simple
. onposing the objective optimization problems) and then uses a search heuristic to optimize these sub-problems simultaneously and
or independent cooperatively.
susproblems based on the learnt characteristics; 3) using a meta-heuristic
to solve these subproblems in a sequential or concurrent manner. As for
multi-objective optimization, the decomposition means to deconpose the
original multi-objective optimization problem into a number of single- 3 Inorder dresul
sbective optimization sub-problens (or simple multi-objective and to i ideas, the de tive mailing:list, and advertises meetings and workshops held in

optinization problens) and then uses  meta-heuristic to optinize
Sub-problems sinultancously and collaboratively. In this big data era, the
deconposition-based techniques used for both single- and multi-objective
optinization can be sythesized to address the challenges posed by the
curse of dinensionality, i.e., many objectives and large scale variables

major conferences from the field in  regular basis.

The key objective of this task force it to generalize the decomposition News and upcoming events
baced idea and to promote its related research, including its developnent,

education and understanding of its sub topic areas

= NewIEEECIS KeLi)
The main objectives of the task force can be summarized as follows = New MO o, Lucas B:

+ create an active and healthy comunity to promote theme areas of
decomposition-based techniques
« nake student, researchers, end-users, developers, and consultants ¢
aware of the state-of-the-art Amiccorlik of ’JUH«'\"
rote the use of deconposition-based methodolagies/techniques and

tools
+ organize conferences/workshop with TEEE CIS Technical Co-Spansarship 63 64
+ organize tutorials, workshops and special sessions

+ Taunch edited volunes, books, and special issues in journals
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Resources (cont.)

XWAERN

A Survey of Multiobjective Evolutionary
Algorithms Based on Decomposition

Anupam Trivedi, Member, IEEE, Dipti Srinivasan, Senior Member, IEEE,
Krishnendu Sanyal, and Abhiroop Ghosh

A Survey of Decomposition Methods
for Multi-objective Optimization

Alejandro Santiago, Héctor Joaquin Fraire Huacuja,
Bernabé Dorronsoro, Johnatan E. Pecero, Claudia Gémez Santillan,
Juan Javier Gonzalez Barbosa and José Carlos Soto Monterrubio

Resources (cont.)

XWAERN

w Special Session on Advances in Decomposition-based
Evolutionary Multi-objective Optimization (ADEMO)

N\ e NS e

4th Special Session on Advances in Decomposition-based
Evolutionary Multi-objective Optimization (ADEMO)

- @n IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE (WCCI) 2020

19 - 24th July, 2020, Glasgow (UK),
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Resources (cont.)

XWAERN

w Workshop on decomposition techniques in evolutionary
optimisation (DTEO)

DTEO@GECCO
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3rd GECCO Workshop on
Decomposition Techniques in

Evolutionary Optimization (DTEO)

8

Held in conjunction with the ACM n Conference (GECCO 2020)

Past DTEO editions : @GECCO

GECC \\\
o
Resources (cont.)

w EMO 2021: | Ith International Conference on
Evolutionary Multi-Criterion Optimization

‘EMQ 11th International Conference on

Shenshen 2021 Evolutionary Multi-Criterion Optimization

Home  Callforpapers  Submission  Committee  Venue Transpor jation ~ Contact

- AL Pl
March 28-31, 2021 ;/%&”j
' 29

Southern University of Science and Technology, ’
Shenzhen, China Z
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" Future Directions
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Future Directions (cont.)
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w How to make the collaboration more effective?

' “In case of two agents for one problem, collaboration is useful” [52]
' How about a multi-agent system and cooperative game?

w Automatic problem solving: meta-optimisation/learning
perspective
' Is the current MOEA/D the perfect algorithm structure?
" Use artificial intelligence to design algorithm autonomously
Landscape analysis and problem feature engineering

" Algorithm portfolio: choose the right algorithm structure for the right
problem

w Data-driven optimisation
' Build and maintain a surrogate for each subproblem
' Subproblem has knowledge, e.g. solution history, knowledge can be

shared among neighbourhood: transfer learning or multi-tasking?
"

1
[52] B. Huberman, et. al.,“An Economics Approach to Hard Computational Problems”,

Science, 275(5296): 51-54, 1997.
71
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Future Directions
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w Big optimisation

" Many objectives

1% Is approximating the high-dimensional PF doable?

1. Problem reformulation (dimensionality reduction)

1. Visualisation

(-

Many variables (large-scale)

1. Decomposition from decision space (divide-and-conquer): dependency structure analysis

1. What is the relationship between the decomposed variable and subproblem?

1. Sensitivity analysis for identifying important variables

[

Distributed and parallel computing platform

w EMO + MCDM: Human computer interaction perspective
Subproblem is another way to represent decision maker’s preference
I e.g weighted scalarizing function, simplified MOP

How to help decision maker understand the solutions and inject
appropriate preference information?

How to use preference information effectively?
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Future Directions (cont.)
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m Theoretical studies

Convergence analysis

Stopping condition

From an equilibrium perspective?

w Applications
' Engineering, e.g. water, manufacturing, renewable energy, healthcare

' Search-based software engineering

w Any suggestions!?
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