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 Introduction to Fitness Landscapes
• Motivation for analysing fitness landscapes
• Basics of fitness landscapes

 Recent Advances in Landscape Analysis
• Beyond fitness landscapes
• Recent landscape analysis techniques
• Applications of landscape analysis

 Local Optima Networks (LONs)
• Basics: complex networks, nodes & edges, visualisation and metrics
• Case study 1: Global structure and characterisation of funnels
• Case study 2: Contrasting two optimisation algorithms

 Closing

Outline
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INTRODUCTION TO FITNESS 
LANDSCAPES
• Motivation for analysing fitness landscapes
• Basics of fitness landscapes
• Survey of 22 fitness landscape analysis techniques

(Wright, 1932)

Malan, K.M. and Engelbrecht, A.P. (2013). A survey of techniques for characterising 
fitness landscapes and some possible ways forward. Information Sciences, 241:148-163
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 When classical techniques are not feasible & 
metaheuristics are needed:
• Problem complexity is too large (not of the required 

structure for classical techniques, too many variables).
• When there is no objective function in mathematical 

form.
• Objective function exhibits noise or uncertainty.

 “Massive optimisation”
• Large scale optimisation (many dimensions)
• Any-objective optimisation (single-, multi- many-

objective)
• Cross-domain optimisation (continuous / combinatorial 

/ mixed)
• Expensive optimisation (costly / simulation-based 

black-box evaluations)

 Many many metaheuristic approaches…

Complex Optimisation

5

General Algorithm Selection Problem
(Rice, 1976)

Trial-and-
error 

approach to 
finding the 

best 
algorithm 

Research areas:
• Feature 

extraction 
(characterising
problems)

• Analysis and 
design of 
problems

• Understanding 
algorithm 
behaviour

• Performance 
prediction

• Algorithm 
selection

6

 Surface of selective values 
(Wright, 1932).

 No axes, units or labels.
 Commentary 56 years 

later: 
• “useless for mathematical 

purposes”
• Aim: provide an intuitive 

picture of evolutionary 
processes taking place in 
higher dimensional space.

Wright’s fitness landscape

1889 - 1988
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 We now have (useful) formalised mathematical 
models.

 Three essential elements: 
1. Search space
2. Fitness function
3. Notion of neighbourhood or accessibility.

 Intuitively, a fitness landscape is a visualisation 
of the terrain capturing how fitness changes 
between neighbouring solutions.

 Idea of “valleys”, “peaks”, “ridges”, “plateaus”, 
“funnels”, etc.

 One fitness function, many fitness landscapes 
(even for real-valued spaces) – depends on the 
neighbourhood and the sampling.

Fitness landscapes today

8
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Malan, K.M. and Engelbrecht, A.P. (2013). A survey of techniques for characterising 
fitness landscapes and some possible ways forward. Information Sciences, 241:148-163

Fitness landscape analysis techniques 
(2013 survey)

Technique 1 GA-deception (Goldberg, 1987)

…

Technique 7 Fitness distance correlation (Jones & Forrest, 1995)

…

Technique 19 Dispersion metric (Lunacek & Whitley, 2006)

…

Technique 22 Accumulated escape probability (Lu et al., 2011)

9

RECENT ADVANCES IN 
LANDSCAPE ANALYSIS
• Beyond fitness landscapes
• Additional 11 landscape analysis techniques
• Applications of landscape analysis

(Bosman et al., 2020b)

Malan, K.M. (2021a). A Survey of Advances in Landscape Analysis for 
Optimisation. Algorithms, 14(2). 
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 Idea of fitness landscapes have been applied in 
non-evolutionary contexts, so many are 
dropping the fitness metaphor.

 Original three elements of fitness landscapes: 
1. Search space
2. Fitness function
3. Notion of neighbourhood or accessibility.

 New kinds of landscapes:
• Multiobjective fitness landscapes
• Violation landscapes
• Dynamic and coupled fitness landscapes
• Error landscapes

Beyond fitness landscapes

11

 Multiobjective optimisation (MOO) differs from single-objective 
optimisation:
1. Objective-level: Multiple conflicting objectives – what defined 

the surface of the search landscape?
2. Solution-level: Set of Pareto-optimal solutions.

 Possible approach to defining MOO landscapes (Verel et al., 2011): 
1. Search space: Set of solution-sets.
2. Fitness function: Multiobjective quality measure (such as 

hypervolume), which allows a complete order between 
solution-sets.

3. Neighbourhood: set-level operators (e.g. replacement, insertion 
or deletion of a single element).

Multiobjective fitness landscapes

Verel, S., Liefooghe, A. and Dhaenens, C. (2011). Set-based multiobjective fitness 
landscapes: A preliminary study. In Proceedings of the 13th annual Conference on 
Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 769–776.
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901



 With constrained optimisation problems, the level of constraint 
violation can be treated as an additional objective to the minimised.

Violation landscapes

Malan, K.M., Oberholzer, J.F. and Engelbrecht, A.P. Characterising Constrained 
Continuous Optimisation Problems. In Proceedings of the IEEE Congress on 
Evolutionary Computation, May 2015, Sendai, Japan, pp 1351-1358. 13

 CEC 2010 Benchmark suite, problem C01:

Violation landscapes – additional view

Fitness landscape Violation landscape
14

 Neural network error landscape:
• Every weight vector is associated with an error value.
• The set of all possible weight vectors (neural network instances) 

with error values defines the error landscape.
• Dimensionality of the search space is equal to the total number 

of weights.
 If these high-dimensional spaces could be visualised, what would 

they look like?

Error landscapes

15

Contradictory theoretical results

Auer et al. (1996)

Baldi & 
Hornik
(1989)

Hamey (1998)

Mehta et al. 
(2018)

16
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Landscape analysis of error landscapes?

Neural network (NN) training differs from 
benchmark optimisation problems:
 Very high dimensions (MNIST with 10 

hidden neurons gives 7960 weights). 
 Evaluation of objective is expensive 

(involves full run through training data set).
 Search space of weights is unbounded.
 The same solution can evaluate to different 

error values (depends on the subset of 
data instances used in training).

 Analytical gradient information is available.
 The global optimum in the training 

landscape ≠ global optimum in the test 
landscape.

Training and testing 
error become 

increasingly de-
correlated with the 
size of the network 
(Choromanska et 

al., 2015)

17

Landscape analysis applied to NNs
 Landscape metrics (ruggedness, neutrality, etc.) can be derived from 

random walk samples in weight space.
 But, we also have the analytical gradient at each point.

• Random walk sampling can be biased towards the negative gradient.
• Stationary points can be identified (gradient = 0).
• Curvature can be derived from the eigenvalues of the Hessian matrix.

 Stationary points can be:
• Minima: convex curvature (eigenvalues negative).
• Maxima: concave curvature (eigenvalues positive).
• Saddle points: both curvatures (eigenvalues positive and negative).
• Flat: no curvature (singular Hessian).

18

Landscape analysis techniques 
(2021 survey – follow on from 2013 survey)

Technique 23 Local optima networks (LONs) by Ochoa et al. (2008)

Technique 24 Exploratory landscape analysis (ELA) by Mersmann
et al. (2011)

Technique 25 Length scale distribution by Morgan & Gallagher 
(2012)

Technique 26 Codynamic landscape measures by Richter (2014)

Technique 27 Degree of separability by Caraffini et al. (2014)

Technique 28 Constrained landscape metrics by Malan et al. (2015)

Malan, K.M. (2021a). A Survey of Advances in Landscape Analysis for Optimisation. 
Algorithms, 14(2). 
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Landscape analysis techniques 
(2021 survey – follow on from 2013 survey)

Technique 29 Bag of local landscape features by Shirakawa & 
Nagao (2016)

Technique 30 Maximum entropic epistasis by Sun et al. (2017)

Technique 31 Population evolvability metrics by Wang et al. (2018)

Technique 32 Local multiobjective landscape features by 
Liefhooghe et al. (2019)

Technique 33 Loss-gradient clouds by Bosman et al. (2020)

Malan, K.M. (2021a). A Survey of Advances in Landscape Analysis for Optimisation. 
Algorithms, 14(2). 

20
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Technique 28: 
Constrained landscape metrics

Technique 28 Constrained landscape metrics by Malan et al. (2015).
Focus Constraint violation in relation to fitness
Assumptions Assumes that the extent to which constraints are violated 

can be quantified for all solutions.
Description Given a sequence of solutions based on random/ hill 

climbing walks, with associated fitness and level of constraint 
violation for each solution, the following are estimated: 
(1) the proportion of feasible solutions in the search space … 
(2) the level of disjointedness between feasible areas … 
(3) the correlation between the fitness and violation … 
(4) the proportion of solutions that are both high in fitness 
and low in constraint violation …

Malan, K.M., Oberholzer, J.F. and Engelbrecht, A.P. (2015) Characterising 
Constrained Continuous Optimisation Problems. In Proceedings of the IEEE Congress 
on Evolutionary Computation, Sendai, Japan, pp 1351-1358.

21

 What proportion of the sample is 
feasible?

 How disjoint are the feasible areas?
 How correlated are the fitness and 

violation landscapes? Do they “pull” 
in the same direction?

 What proportion of the solutions are 
both feasible and fit?

Four metrics of constrained landscapes

22

Landscape aware constraint handling
 Metaheuristics do not naturally handle constraints, 

so a constraint-handling technique has to be added 
on.

 Many different approaches to handling constraints:
• Use penalties: adapt fitness function to guide search 

away from infeasible regions.
• Feasibility ranking: rules of preference using 

objectives and constraints.
• Multi-objective optimisation (constraints treated as 

objective to be minimised).

 A landscape-aware approach that switches 
between constraint-handling approaches is 
more effective than the constituent 
approaches:
• With differential evolution (Malan, 2018).
• With particle swarm optimisation (Malan, 2021b).

23

Technique 32: 
Local multiobjective landscape features

Technique 32 Local multiobjective landscape features by Liefooghe et al. 
(2019)

Focus Evolvability for multiobjective optimisation
Assumptions Assumes a discrete search space
Description Given a sequence of solutions obtained through random 

walks and adaptive walks, features of the walk are derived 
from the sequence as a whole as well as the neighbourhood 
of solutions in terms of dominance and hypervolume 
improvement by neighbours.

Result 26 numerical values representing local features (17 from 
random walk sampling and 9 from adaptive walk sampling).

Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H. and Tanaka, K. (2019), 
Landscape-Aware Performance Prediction for Evolutionary Multi-objective Optimization. 
IEEE Transactions in Evolutionary Computation, 24(6).

24
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Example local features from random walk sampling 
(17 features)

Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H. and Tanaka, K. (2019), 
Landscape-Aware Performance Prediction for Evolutionary Multi-objective 
Optimization. IEEE Transactions in Evolutionary Computation, 24(6).

1) average proportion of neighbours 
dominated by the current solution.

2) first autocorrelation coefficient 
(ruggedness) of the proportion of 
neighbours dominated by the current 
solution.

…
15) average neighbourhood’s hypervolume-

value.
16) …
17) estimated correlation between the 

objective values 

25

Example local features from adaptive walk sampling 
(9 features)

Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H. and Tanaka, K. (2019), 
Landscape-Aware Performance Prediction for Evolutionary Multi-objective Optimization. 
IEEE Transactions in Evolutionary Computation, 24(6).

Sampling based on adaptive walks: single 
solution-based multi-objective Pareto hill 
climber.
1) average proportion of neighbours 

dominated by the current solution
2) average proportion of neighbours 

dominating the current solution
…
8) average neighbourhood’s hypervolume-

value
9) average length of adaptive walks

26

Feature-based EMO algorithm selection

Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H. and Tanaka, K. (2019), 
Landscape-Aware Performance Prediction for Evolutionary Multi-objective 
Optimization. IEEE Transactions in Evolutionary Computation, 24(6).

 Portfolio of three EMO
algorithms: NSGA-II, IBEA, 
MOEA/D.

 Problems: 1000 quadratic 
assignment problem 
instances.

 Neighbourhood sampling: 
200 random.

 CART decision tree was 
able to choose algorithm 
that was not significantly 
outperformed by any other 
in almost 99% of the cases.

27

Technique 33: Loss gradient clouds
Technique 33 Loss-gradient clouds by Bosman et al. (2020b)
Focus Basins of attraction in neural network error landscapes
Assumptions Requires the numeric gradient of the loss function.
Description A sample of loss values and gradient values is obtained based 

on random walks. Stationary points in the sample are 
determined to be local minima, local maxima or saddle points 
(derived from the eigenvalues of the Hessian matrix). 
Stagnant sequences on the walk are detected by tracking the 
deviation in a smoothing of the error. Two quantities are 
measured: 
(1) the average number of times that stagnation was observed 
(2) the average length of the stagnant sequence

Result (1) 2D scatterplot of loss values against gradient values
(2) Two metrics to estimate the number and extent of
distinct-valued basins of attraction.

Bosman, A.S., Engelbrecht, A.P. and Helbig, M. (2020b), Visualising Basins of Attraction 
for the Cross-Entropy and the Squared Error Neural Network Loss Functions. 
Neurocomputing, 400, pp. 113–136. 28
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Loss gradient 
clouds
XOR classification 
problem with 1 hidden 
layer: 
• Number of attractors 

decrease as the width 
(number of neurons) 
of the network 
increases.

• Local minima vanish
with width = 20.

Bosman, A.S., Engelbrecht, A.P. and Helbig, M. (2020a), Loss surface modality of 
feed-forward neural network architectures. In Proceedings of International Joint 
Conference on Neural Networks (IJCNN), . 29

Loss gradient clouds
Iris classification problem: 
• Loss-gradient cloud shows a single attractor.
• Quadratic loss function (left picture) shows better 

generalisation than entropic loss function (on the right) 
close to the training global optimum.

Bosman, A.S., Engelbrecht, A.P. and Helbig, M. (2020b), Visualising Basins of Attraction 
for the Cross-Entropy and the Squared Error Neural Network Loss Functions. 
Neurocomputing, 400, pp. 113–136. 30

Loss gradient clouds

MNIST classification 
problem with 2 hidden 
layers & width of 10: 
• Loss-gradient cloud 

shows two clusters: 
steep gradients 
(narrow valleys) and 
shallow gradients 
(wider valleys).

• Narrower valleys 
have poorer 
generalisation.

Bosman, A.S., Engelbrecht, A.P. and Helbig, M. (2020a), Loss surface modality of 
feed-forward neural network architectures. In Proceedings of International Joint 
Conference on Neural Networks (IJCNN), . 31

Malan, K.M. and Engelbrecht, A.P. (2013). A survey of techniques for characterising 
fitness landscapes and some possible ways forward. Information Sciences, 241:148-163

Applications of landscape analysis: 
2013 to now
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In the last 10 years, landscape analysis has been widely used in
 understanding complex problems
 understanding and explaining algorithm behaviour
 predicting algorithm performance
 algorithm configuration
 automated algorithm selection

Applications of landscape analysis

Malan, K.M. (2021a). A Survey of Advances in Landscape Analysis for Optimisation. 
Algorithms, 14(2). 

See 2021 survey for ~70 references to studies 
applying landscape analysis in the last decade.

33

Understanding complex problems
Classic problems
(18 studies listed)

Real-world problems 
(11 studies listed)

Machine learning 
applications
(7 studies listed)

- Quadratic 
assignment

- Maximum 
satisfiability

- Permutation flow-
shop scheduling

- Packing problems
- Travelling 

salesman
- Graph colouring
- Number 

partitioning
- Vehicle routing
- Travelling thief 

problem

- Design of wind turbines
- University course 

timetabling
- Genetic improvement of 

software
- Automated test case 

generation
- Computational protein 

design
- Design of substitution boxes 

in cryptography
- Hyperparameter 

optimisation for 
metaheuristics

- Building energy optimisation

- Neural network 
training for 
classification

- Feature selection 
for classification

- Policy search in 
reinforcement 
learning

- Machine learning 
pipeline 
configuration

- Neural 
architecture 
search

34

 Research in landscape analysis has moved from being a 
theoretical topic in evolutionary computation, 

 to being extensively applied as a practical tool in the wider context 
of optimisation, 

 and has recently also been applied in machine learning.
 A number of new landscape analysis techniques have been 

developed in the last decade.
 Landscape analysis has been widely applied in the understanding 

of complex problems, explaining algorithm behaviour, predicting 
algorithm performance and automatically configuring and selecting 
algorithms.

Summary

35

What are complex networks?
• Visualisation
• Metrics

What are local optima networks?
• Overview and intuition
• Definition of nodes and edges

LONs case studies
• Global structure: characterisation of funnels 
• Contrasting two optimisation algorithms 

Local optima networks (LONs)

36
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Complex networks
 Graph - mathematical object 
 Network - data-driven instantiation
 Complex network - nontrivial topological features

• Irregular as opposed to regular/simple
• Not random either 

 Can evolve over time

Regular 
Graphs

Complex Network: 
Part of WWW

“Behind each complex system, there is an intricate network that 
encodes the interactions between the system’s components.”

Albert-László Barabási, Network Science
37

Graphs are abstract mathematical structures
They do not have a unique visual representation
Graph visualisation: art of choosing an appropriate 

representation that is aesthetically pleasing and 
highlights important structural properties 

Graph visualisation

Three layouts of Petersen graph (the 1st is random)

node-edge diagram

38

 Force-directed: based on physical analogy (electricity, springs)

  Strive to satisfy accepted aesthetic criteria
•  Vertices are distributed roughly evenly on the plane.
• The number of edge crossings is minimised. 
• The lengths of edges are approximately uniform. 
• Inherent symmetries in the graph are respected

Graph layout algorithms

Fruchterman–Reingold
(standard)

Kamada–Kawai 
(organic)

Reingold-Tilford
(tree layout)

39

Topology (Degree distribution)
• Gives an idea of the spread in the 

number of links the nodes have
• p(k) is the probability that a randomly 

selected node has k links

Distance
• Number of links that make up the path 

between two points
• “Geodesic” = shortest path

Network metrics

Cohesion
• Local: clustering coefficient or transitivity
• Global: components, community structure

40
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P. K. Doye. The network topology of a potential energy landscape:    
a static scale-free network. Physical Review Letter, 2002.

G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK 
landscapes' basins and local optima networks. GECCO 2008

Nodes: local optima 
according to a hill-climbing 
heuristic

Edges: possible 
transitions between 
optima

Local optima networks (LONs)

41

 Space S, Neigborhood N(s),	 fitness f(s)

h(s) stochastic operator that associates 
each solution s to its local optimum (Alg. 1)

The basin of attraction of a local optimum    
li ∈ L is the set Bi = {s ∈ S | h(s) = li}

Nodes (L). A local optima is a solution l
such that ∀ s ∈ N(s), f(s) ≤ f(l)

Basin Edges (E). Two local optima are 
connected if their basins of attraction 
intersect. At least one solution within a basin 
has a neighbour within the other basin.

LON Model. Directed graph LON = (L, E)

LON original model

NK landscape
N=18, K=2

wij proportion of transitions 
from solutions s ∈ Bi to 
solutions s’ ∈ Bj

42

Account for the chances of escaping a local 
optimum after a controlled mutation (e.g. 1 or 2 
bit-flips in binary space) followed by hill-climbing

Given a distance function d and integer value D,
there is and edge eij between li and lj if a solution s 
exists such that d(s,li) ≤ D and h(s) = lj

wij cardinality of {s ∈ S | d(s,li) ≤ D and h(s) = lj}

Sampled networks. There is an edge eij between 
li and lj if lj can be obtained after applying a 
perturbation to li followed by hill-climbing. 
Weights are estimated by the sampling process.

Escape edges
NK landscape
N=18, K=2

D = 1

D = 2

43

 Hydrid EAs which incorporate a local search 
component to generate local optima.

 Two types of edges
• Crossover (followed by local search)
• Perturbation (followed by local search)

LONs for hybrid EAs

Crossover
Perturbation

(Chicano, Whitley, Ochoa, Tinos. 
GECCO 2017)

Grey-box Optimisation
DRILS Deterministic 
Recombination (PX) + ILS

44
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FUNNELS

• What is a funnel?
• Characterization of funnels with LONs

• Number partitioning problem and the phase transition
• Travelling salesman problem
• Computational protein design

45

“A key concept that has arisen within 
the protein folding community is that of 
a funnel consisting of a set of downhill 
pathways that converge on a single 
low-energy minimum.”

What is a funnel?

By Thomas Splettstoesser
(link)(www.scistyle.com) - Own 
work

Doye, J. P. K., Miller, M. A., & Wales, D. J . The double-funnel 
energy landscape of the 38-atom Lennard-Jones cluster. 
Journal of Chemical Physics, 1999

Funnels in continuous optimisation
• Multilevel global structure (Locatelli, 2005)
• Dispersion metric (Lunacek &Whitley, 2006, 2008)
• Feature-based detection of (single) funnel structure (Kerschke et al., 2015)
Funnels in combinatorial optimisation
• Related to the big-valley (central-massif) hypothesis  (Boese et al, 1994)
• The big-valley re-visited (Hains, Whitley & Howe, 2011)

46

Monotonic edges. Keep only non-
deteriorating edges ls→ le, if  f(le) ≤ f(ls)

Monotonic LON (MLON). LON model where 
the set of edges is reduced to the non-
deteriorating edges 

Monotonic sequence. Path of connected 
local optima     l1→l2→l3 … →ls ,f(li) ≤ f(li-1)

 Sink. Natural end of the sequence, when 
there is no adjacent improving local optima

 Definition of Funnel
• Aggregation of all monotonic sequences ending at 

the same point (sink). 
• Basin of attraction level of local optima

Characterisation of funnels with LONs

Sink. Node 
without outgoing 

edges

47

Characterisation of funnels with LONs

Global minimum

Sub-optimal sink

Local minimum in 
global optimal funnel

Local minimum in 
sub-optimal funnel

Monotonic edge

48
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 Given a set of n positive integers A={a1, a2, ..,an}, 
drawn at random from the set {1, 2, .., M}, find a 
disjoint partition (S1, S2) of A such that the 
discrepancy D between their sums is minimised

 A partition is perfect if D = 0, where  
D = | ΣS1 ai – ΣS2 ai |

 Easy-hard phase transition, k = log2(M)/n

Number partitioning (NPP)

Probability of an NPP instance 
having a  perfect partition 

k < 1  many perfect partitions 
k > 1  very few perfect partitions
k = 1 easy/hard phase transition

(G
en

t &
 W

al
sh

, 1
99

6)
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Full enumeration and extraction of LONs
N = {10, 15, 20}, k in [0.4, 1.2] step 0.1
30 instances for each N and k
LON. 1-flip local search, 2-flip perturbation  (D = 2)
MLON. Monotonic LON, worsening edges pruned 
CMLON. compressed MLON, LON plateaus 

contracted in a single node 
Empirical search performance: ILS success rate

NPP study - methodology

(Ochoa, Veerapen,  Daolio, 
Tomassini. EvoCOP 2017)

50

k = 0.4

N = 104, G = 34, E = 2844 N = 104, G = 34, E = 2010 N = 14, G = 1, E = 35

N =10

N=104, G = 4, E = 2514 V=104,G = 4, E=1386 N = 96, G = 2, E = 1290

k = 1.0

LON MLON CMLON

51

k = 0.4 k = 0.6

k = 0.8 k = 1.0

N = 20
CMLON

52
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LON metrics & search performance

(Ochoa, Veerapen,  Daolio, 
Tomassini. EvoCOP 2017)

53

 A salesperson must visit number of cities  minimising the total 
cost of traveling

 n cities and distance between each pair is given 
 Goal: find a shortest route to visit each city exactly once and 

come back to the starting point.
 Example solutions: permutation (ordering) of cities  

• s1= (A B C D),  f(s1)= 20+30+12+35= 97
• s2= (A B D C),  f(s2)= 20+34+12+42=108
• s3= (A C B D),  f(s3)= 42+30+34+35= 141

Travelling salesman problem (TSP)

54

TSP study - methodology

• Nodes. Lin-Kernighan
• Edges. Double-bridge

TSP heuristic, Chained Lin-Kernighan
(Martin, Otto, Felten, 1992)
• Form of Iterated Local Search
• Diversification & Intensification stages

Global minimum

Random initial solution

Local search
Perturbation

Sampling and constructing LONs with escape edges 

(Ochoa & Veerapen, EvoCOP2016, 
JoH 2018)

55
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DIMACS random instances 
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(Ochoa & Veerapen, JoH 2018)

TSP Synthetic Instances
Funnels as monotonic sequences

56
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DIMACS random instances 
Same layout, 3D projection where z coordinate is fitness

TSP synthetic instances
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2D layout and 3D projection where z coordinate is fitness

TSPLIB city Instance att532
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����
�����������
�������
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Computational protein design

(David Simoncini et al, GECCO 2018)

• Two protein instances 2ckx (difficult, left) 2gkt (easy, right), 
• Minimisation of energy algorithm based in Simulated Annealing
• LONs provided an explanation! There are no connections between the funnels 

in the harder instance while there are some connections in easier instance

59

CONTRASTING ALGORITHMS

• Hybrid GA vs ILS on the 
asymmetric TSP

• Two hybrid metaheuristics
(matheuristics) on 
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Hybrid GA vs ILS on asymmetric travelling salesman problem

Contrasting LONs from two solving methods

Hybrid GA
Partition Crossover (PX)

Success: 100% 

Chained LK
Success: 0%

Asymmetric TSP
Instance rbg323 LONs.

• 100 runs per algorithm

• Hybrid GA has crossover 
and mutation edges 

• ILS has perturbation 
edges

(Veerapen, Ochoa, Tinós, 
Whitley. PPSN 2016)
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 Construct, Merge, Solve & Adapt (CMSA)
 Large Neighbourhood Search (LNS)
 Both incorporate ILP (CPLEX)  to solve  sub-instances 
 How is the sub-instance of the next iteration generated?

• LNS - Partial destruction of the incumbent solution
• CMSA - Generating new solutions and removing old components

CMSA vs. LNS - matheuristics

How is the original 
problem instance 
reduced?

(Blum & Ochoa, EJOR 2021)
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MDKP: Multidimensional knapsack
MCSP: Minimum common string partition

Two subset selection problems

Instances with different characteristics 
Improvement of CMSA over LNS (in percent)
Above zero: CMSA better, Below zero: LNS Better

Intuition:  CMSA 
outperforms  LNS for  
instances for which 
solutions contain 
rather few items.

(Blum & Ochoa, EJOR 2021)
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Example merged LONs for an MKDP instance

Nodes:  (near-)optimal solutions to the 
sub-instances,
after applying the exact solver CPLEX 

Edges: Connect two consecutive solutions 
in a search trajectory of the studied 
algorithms. Monotonic edges.

Instance n = 30
3 runs for each 
algorithm 
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MDKP n = 10,000.   10 runs

Shared
Start
End
Best

CMSA

LNS

65
MCSP  n = 1600

CMSA

LNS

Shared
Start
End
Best
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MCSP  n = 1600

CMSA
LNS

Same networks as previous slide, but using a tree layout
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More accessible (visual) 
approach to heuristic 
understanding

 Global structure 
impacts search

 Real-world problems 
are neutral and have 
multiple-funnels

 Sampling & visualisation 
 Characterisation of funnels
 Contrasting algorithms
 New LON metrics can 

improve performance 
prediction

 Using knowledge to 
select/configure algorithms

Conclusions Contributions

lonmaps.com - Website with LON resources

LONs
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 The concept of fitness landscapes originated in an evolutionary 
context.

 The last decade has seen the application of landscape analysis to
the wider fields of optimisation and machine learning.

 New techniques have been developed:
• Constrained landscape metrics can be used to implement landscape-

aware constraint handling for metaheuristics.
• Local multiobjective landscape features can be used to perform 

landscape-aware multi-objective evolutionary search.
• Loss-gradient clouds can be used to understand the nature of neural 

network error surfaces for training and generalisation.
 We showed how local optima networks can be used

• To visualise the global structure and characterise funnels
• To contrast the behaviour of two algorithms

Conclusion
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