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ABSTRACT
A well-established fact in biology is that the environmental condi-
tions have a paramount impact on the evolved life forms. In this
paper we investigate this in an evolutionary robot system where
morphologies and controllers evolve together. We evolve robots
for two tasks independently and simultaneously and compare the
outcomes. The results show that the robots evolved for multiple
tasks simultaneously developed new morphologies that were not
present in the robots evolved for single tasks independently.
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1 INTRODUCTION
Evolutionary Robotics (ER) is concerned with optimizing robots for
performing a given task through algorithms inspired by natural evo-
lution [4, 5]. This paper presents an experimental study to obtain
insights into evolutionary robot systems where bodies and brains
evolve together and the robots’ fitness is based on more than one
task. As a motivational example, consider the problem of designing
robots for exploring an unknown area. This complex task can be
broken down into more simple sub-tasks, e.g., locomotion, search-
ing, homing and the optimal morphology for each of these can be
different, e.g., many legs and a low center of mass for locomotion
and a long neck and cameras positioned high above the ground for
searching abilities. The question is, what kind of morphology (and
corresponding controller) can perform all sub-tasks well.

The tasks we consider here are rapid locomotion (i.e., acquiring
a good gait such that the robot can move quickly) and rotation (i.e.,
spinning around as many degrees as possible). The first one is a
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fundamental skill for any autonomous mobile robot, the second one
is chosen to mimic searching behaviour, as in “looking around”. Us-
ing our evolutionary robot system where bodies and brains evolve
simultaneously we investigate the following research question: Can
evolution produce generalists (morphologies well performing on
both tasks), or will it mainly deliver specialists (good for one task
only, and if generalists will evolve, what is the difference in task
performance compared to specialists, i.e., what is the price of being
a generalist?

Our approach is based on using multi-objective evolution. Re-
lated work includes [9] who used Multi-Objective Optimization
(MOO) for combining speed and stability, [10] who evolved voxel-
based soft robots for locomotion being underwater and on the
surface, and [6] where MOO is used to create stepping stones for
evolving a complex skillset.

2 EXPERIMENTS
The robot design is based on the modular robots in the RoboGen [1]
system, integrated in our evolutionary robot simulator called Re-
volve [7]. Robots are composed of three different modules: Head,
Bricks, and Joints. The brain of a robot contains two different mod-
ules, one for each skill and a hard-coded selector for choosing the
correct module for the given task. Each controller module is a Cen-
tral Pattern Generator Network (CPG) where each joint has its own
CPG as used in [2].

The evolutionary algorithm is based on a (100 + 50) steady-state
algorithm with a population size of 100 and an offspring size of
50 robots. The representation and the variation operators of the
evolutionary algorithm are identical to the one we used previously
in [2], but for selection we implemented NSGA-II [3], a well known
multi-objective evolutionary algorithm.

The outcomes of an evolutionary process are examined by be-
havioural as well as morphological measures. To quantify behaviour
we use the locomotion speed (cm/sec) and the rotation (radians).
Morphological properties are inspected by two of the morphologi-
cal descriptors introduced in [8], in particular the proportion and
the size of a robot.

We run the experiment 10 times. For each run, we identify the
specialists by taking those robots that have the best fitness in one
of the two objectives. To select a good generalist candidate, we
select the robots that are closest to the maximum achieved in both
objectives. We present the fitness of these robots in Table 1. The
behaviour of these robots was recorded and can be observed at
https://youtu.be/9tN5L3qtRC4.
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Table 1: Fitness of generalists compared to best fitness for
each run and loss percentage for generalists vs. specialists

Run Locomotion Rotation
Best Generalist Best Generalist

1 6.49 4.25 8.01 4.28
2 9.78 6.35 10.10 6.59
3 7.20 5.56 11.75 5.04
4 5.28 2.99 6.20 3.24
5 6.81 3.67 12.39 3.73
6 8.65 6.39 8.60 5.74
7 9.40 8.75 9.52 8.77
8 6.58 4.61 8.82 4.20
9 9.81 6.17 11.38 7.85
10 6.71 4.52 6.88 4.37

Sum 76.71 54.20 93.66 53.82
Loss % 29.35% 42.53%

In our experiments we observed the evolution of generalists
consistently across all runs. We measured (Table 1) an overall per-
formance loss of 29% for locomotion skills and 42% in the rotational
skill. It is interesting to note that the performance drop for the
locomotion skill is lower than the one for the rotation skill. We also
observed that robots need more specific morphologies to develop
rotational skills, while locomotion skills can be developed on a
wider range of morphologies. We deduce that the rotational skill is
harder to develop than locomotion.

Another observation on the morphologies can be done when
comparing the results with experiments previously done by De
Carlo et al. [2] in a single objective evolutionary setting. In this
comparison (Figure 1) we observe the differences that developed
by the use of a multi-objective optimization compared to evolution
driven only by one skill. What we observe is that evolving only
locomotion leads to robots that are very disproportionate and big,
while evolving only rotation leads to individuals that are very small
and proportionate. Interestingly, Figure 1 shows one of the key

Figure 1:Morphological traits (proportion vs size) of the pop-
ulation in the final generation of all evolutionary runs. The
orange dots are produced by NSGA-II, while the blue and
green dots are from results published in [2].

advantages of using a multi-objective optimization framework: the
morphological trait space is explored much more when using multi-
objective evolution, with traits (the orange points) spanning a wider
area of the trait space compared to single-objective evolved traits
(the green and blue points) that are instead confined tomuch smaller
regions.

3 CONCLUSIONS AND FURTHERWORK
The experiments reported in this paper delivered insights into evo-
lutionary robot systems where bodies and brains evolve together
and the robots’ fitness is based on more than one task. Evolving
robots for two specific tasks, locomotion (needed for navigating a
terrain) and rotation (needed for “looking around”) we have found
interesting and previously unknown effects.

Regarding the evolved morphologies we observed that multi-
objective evolution explored the multidimensional space of mor-
phological traits very well. The morphologies of the best generalists
were often different from the specialists, but for the most part they
tended towards elongated bodies that have been previously found
to be optimal for locomotion.

Further work is aiming at consolidating and extending these ini-
tial findings. One research direction is to investigate the dependence
of the current results on the encoding of morphologies. Preliminary
results indicate different regions of attraction in the morphology
space when using a tree-based direct encoding instead of an L-
system (indirect encoding). Another research line concerns the
investigation of different tasks as well as different ways to combine
them.
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