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ABSTRACT
The joint evolution of morphologies and controllers of robots leads
to a problem: Even if the parents have well-matching bodies and
brains, the stochastic recombination can break this match and cause
a body-brain mismatch in their offspring. This can be mitigated
by having newborn robots perform a learning process that opti-
mizes their inherited brain quickly after birth. An adequate learning
method should work on all possible robot morphologies and be
efficient. In this paper we apply Bayesian Optimization and Differ-
ential Evolution as learning algorithms and compare them on a test
suite of different robot bodies.

CCS CONCEPTS
• Computer systems organization → Evolutionary robotics;
• Computing methodologies → Machine learning;
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1 INTRODUCTION
Evolutionary Robotics (ER) is concerned with using evolutionary
methods to automate the design process of robots [5]. In general,
robots consist of two major components, a body (morphology, hard-
ware) and a brain (controller, software). Evolution can be used to
optimize both of them simultaneously. In such a system bodies and
brains design are inheritable, hence the body as well as the brain of
a ‘child robot’ is a combination of the bodies and the brains of its
parents. As noted long ago [3], the stochastic nature of reproduction
can lead to a body-brain mismatch problem: Even though parents
have well-matching bodies and brains, recombination and mutation
can shuffle the parental genotypes in such a way that the resulting
body and brain do not fit well. This implies inferior behaviour in
the offspring and can lead to suboptimal solutions in the long run.
The remedy offered by the Triangle of Life framework [3] is the
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addition of a learning stage, where newborn robots improve their
inherited brain to optimally control their inherited body.

The main goal of this paper is to investigate algorithms that
could be used as learners on potentially evolving robot morpholo-
gies. Given our application, there are two important requirements
to this end. First, an evolutionary process will produce a large va-
riety of morphologies. The shapes, sizes, and complexity of the
evolved robots can be very different and unpredictable. Conse-
quently, a suitable learning algorithm needs to work well on all
possible morphologies. Second, the number of trials in a learning
algorithm multiplies the total computational effort required for the
evolutionary process. This implies a strong preference for learning
with a very low budget. Based on these requirements we selected
two algorithms that performed well in recent studies:

(1) Bayesian Optimization (BO) [4]
(2) Reversible Differential Evolution (RevDE) [6]

2 RELATEDWORK
Other papers have suggested slightly different approaches to tackle
the body-brain mismatch problem. Cheney et al. [1] implemented a
form of novelty protection in which ‘younger’ robot designs were
protected from removal for several generations while evolving
their brains further. This allowed them to adapt their controllers
properly for the given body, which corresponds with implementing
a single lifetime learning iteration. Similarly, De Carlo et al. [2]
implemented protection in the form of speciationwithin their NEAT
algorithm. The preservation of diversity in the population allowed
new morphologies to survive, thus reducing the effects of body-
brain mismatch.

3 METHODS
Forced by time limitations we decided to use a test suite of 𝑛 robots
with different bodies, instead of running evolution combined with
learning (that would take a very long time), where we chose 𝑛 = 4.
All robots (Figure 1) are driven by a network of interconnected
CPGs and a learning method that optimizes the corresponding
weights inside. The two algorithms, BO and RevDE, are run 30
times on each robot with a budget of 300 learning trials. One trial is
a test period of 60 seconds in simulation and the task performance
is defined as the average speed (cm/s) during a trial (displacement
in centimetres divided by 60 seconds). Thus, we are addressing the
task of gait learning (similar to [7]).

Bayesian Optimization is a state-of-the-art framework that had
successful implementations in machine-learning, engineering, and
science [4]. In short, the BO algorithm contains two main ingredi-
ents. 1) A function approximator that tries to model the fitness as a
function of the search space parameters using Gaussian Processes

93

https://doi.org/10.1145/3449726.3459530
https://doi.org/10.1145/3449726.3459530
https://doi.org/10.1145/3449726.3459530


GECCO ’21 Companion, July 10–14, 2021, Lille, France Fuda van Diggelen, E. Ferrante, and A.E. Eiben

(a) Gecko (𝑁𝑤 = 13) (b) Pentapod (𝑁𝑤 = 22)

(c) Snake (𝑁𝑤 = 15) (d) Spider (𝑁𝑤 = 18)

Figure 1: Test suite of the 4 robots used.𝑁𝑤 indicate the num-
ber of weights to be optimized.

(GP); 2) an acquisition function that selects the next sample us-
ing GP to investigate regions of high ‘predicted fitness’ or a high
‘degree of uncertainty’ (i.e. exploitation vs. exploration).

Reversible Differential Evolution (RevDE) is an Evolutionary
Algorithm (EA) that can maintain a high diversity with a low pop-
ulation size by perturbing the current population through a special
set of linearly reversible operations [6]. These perturbations im-
pose stable exploration and exploitation properties that depend on
a scaling factor. The parameters of our lifetime learning algorithms
are presented in Table 1.

Table 1: Hyperparameters of both algorithms

BO Value Description

Initial sampling LHS Sampling method
Initial samples 50 Number of samples
Learning iterations 250 Number of evaluations
Kernel type Matérn 5/2 Approximation kernel
Kernel variance 1.0
Kernel length 0.2
UCB alpha 3.0 Acquisition function weight

RevDE Value Description

𝜆 30 Population size
𝜇 10 Top-samples size
𝐹 0.5 Scaling factor
𝐶𝑅 0.9 Crossover probability

4 RESULTS AND DISCUSSION
Figure 2 shows the mean fitness curves ±1.96 × 𝑆𝐸 (𝑁 = 30), with
BO in blue, and RevDE in green. The corresponding areas indicate
their respective 95% confidence intervals with non-overlapping
regions indicating statistically significant differences.

The final speeds at the end of the learning period show differ-
ences between the robot morphologies. The Spider can learn brains
–that is, weights for the CGP network– that move it with about
5 cm/s, while the Pentapod will not become faster than about 3 cm/s.
Considering the top speeds obtained over all runs, the overall fastest
gait was found in the Spider (10.19 cm/s), with the Gecko coming
in second (8.89 cm/s).

Regarding the learning algorithms, the differences are less pro-
nounced. The blue and green curves in the plots shown in Figure 2
overlap indicating that RevDE can perform just as sample efficient
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(a) Gecko
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(b) Pentapod
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(c) Snake
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(d) Spider

Figure 2: Average speed as a function of the number of learn-
ing trials. BO is shown in blue and RevDE in green.

as BO. Another notable effect is the rather flat curves in the second
half of the learning process. Specifically, after 150 trials the curves
are about at 80 to 90 percent of final speed. This is good news from
a practical perspective, suggesting that the learning budgets could
be halved without losing too much performance.

The most important caveat in our results is the relatively lim-
ited test suite. Our approach to compare learning algorithms on a
given set of fixed robot bodies is supported by the generally applied
methodology in Machine Learning, where algorithms are compared
on a number of data sets. For a more solid comparison, further
research should be conducted with more than four robots. Further-
more, other possible learning methods can be tested and compared
to BO and RevDE. To this end, we are inclined to investigate other
EA, for instance Evolution Strategies. Using an EA for lifetime
learning will result in an interesting system of nested evolution. In
this system, we will have an outer evolutionary loop that optimizes
both body and brain and an inner evolutionary loop to optimize the
controller in ‘newborn’ bodies. Finally, we will investigate more
complex tasks and environments including underwater.
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