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SEQUENTIAL EXPERIMENTATION

What do we mean by …
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“Typical” Characteristics

• Experiments are time-consuming

• Experiments are expensive

• Evaluations can also be subjective (human experts)

• Only few experiments are possible

• There are exceptions as well!
Quantum Control: Case-Study

• Evolution “in the loop”

• Thousands of experiments possible (“kHz regime”)
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Further Challenges

• Noise and uncertainty of measurements
• Multiple objectives
• Dynamically changing requirements of experimentalists / 

stakeholders!
• Dynamically changing (resource) constraints
• Cost choices during optimization

 Some experiments may cost more than others
• Unusual constraints on population sizes, other hyperparameters

6

EXAMPLE APPLICATIONS

Examples:

- Flow Plate

- Bended Pipe

- Nozzle

- Nutrient Solutions

- Coffee Formulations

- Quantum Control

- Protein Expression
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Early Experiments I: Flow Plate

• A plate with 5 controllable angle brackets

• Measurable air flow drag (by a pitot tube) 
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973
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Early Experiments I: Flow Plate

Figures from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected plate shapes Number of mutations  and selected plate shapes

P
late d

rag

Experiment 1:
• Left / right supporting point at same  

y-coordinate.
• Horizontal flow.
• Minimize drag.

Experiment 2:
• Left supporting point 25% lower than 

right one.
• Horizontal flow.
• Minimize drag.

Start -30 -40 40 -30 40

End 0 4 0 6 -6

Start 0 0 0 0 0

End 16 6 2 0 -18
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Early Experiments II: Bended Pipe

• A flexible pipe with 6 controllable bending devices

• Minimize bend losses of liquid flow 

• Measure drag by pitot tube
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973
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Early Experiments II: Bended Pipe

• Bend loss of final form reduced by 10%

• Including drag a total reduction of 2%

Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected pipe shapes

P
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Initial (a) and optimized (b) pipe shape
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Early Experiment III: Nozzle

• What can be done if physics, (bio-) chemistry, … of 
process unkown?

• No model or simulation program available!

• Idea: Optimize with the real object

• “Hardware in the loop”

• Example: Supersonic nozzle, turbulent flow, physical 
model not available.
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Experimental Setup: Nozzle

• Production of differently formed conic nozzle parts (pierced 
plates).

• Form of nozzle part is value of decision variable.

choosing conic nozzle parts (by EA)
clamping of conic nozzle parts (manually)
steam under high pressure passed into nozzle 
degree of efficiency is measured!

„simulator 

replacement“
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Nozzle Experiment (I) 

collection of conical nozzle parts

device for clamping nozzle parts

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (II) 

Hans-Paul Schwefel 
while changing nozzle parts

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (III) 

steam plant / experimental setup
Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (IV) 

the nozzle in operation …

… while measuring degree of efficiency
Figures courtesy of Hans-Paul Schwefel
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• Illustrative Example: Optimize Efficiency
– Initial:

– Evolution:

• 32% Improvement in Efficiency !

Nozzle Results (I) 
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Nozzle Results (II) 

• 250 experiments were made.
• 45 improvements found.
• Discrete ring segments, variable-dimensional optimisation
• Gene duplication and deletion as additional operators.

J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow core jet experiments,” in Proceedings of the 11th 
Symposium on Engineering Aspects of Magneto-Hydrodynamics, Caltech, Pasadena, California, USA, 1970.
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Experiment: Coffee Formulations

• Optimize taste of a target coffee, 5 ingredients

• Subjective evaluation by human experts

• (1,5)-ES accepts deterioriations

• Experts do not !

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, Technical University of Berlin, Germany, 2000.
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Target
coffee

Result
coffee

Coffee Formulations: Results

Optimum taste in 11 generations (55 evaluations) 
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M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, Technical University of Berlin, Germany, 2000.

Coffee Formulations: Results

• Coffee mixture differs a lot from target coffee !

• Taste is identical !

• Multiple realizations, but cost optimal !

• Approximation of cubic polynomial: 35 evals.

22

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, Technical University of Berlin, Germany, 2000.

EXPERIMENTAL OPTIMIZATION: 
FUNDAMENTALS

23

Experimental Requirements 
(for an Optimizer) 

1. Speed: fast convergence is required

2. Reliability: reproducibility of results within a margin

– Environmental parameters often hidden (temperature, pressure, …) 

3. Robustness: manufacturing feasibility

4. Reference solution (recommended): 

pre-designed reference item, robust and stable, having a 

known objective function value 

24
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Convergence Speed

• Experiments are typically expensive: 

Goal: Drive the system towards finding large improvements 

with as few experiments as possible.

• Practical solutions: “greedy” variants of evolutionary 

algorithms, e.g.,

 Derandomized evolution strategies

 ParEGO

 Often “stochastic gradient search”

 Need to support parallel execution!
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Reliability of Results

• Mostly algorithm-dependent

• Attained results must be reproducible 

• Scenarios of recording experimental outliers must be 
avoided (elitism is tricky…) 

• Perceived result versus a posteriori result

• Possible solutions:
– Employing comma (non-elitist) strategies

– In ES, the recombination operator assists in treating noise (The 
Genetic Repair (GR) Hypothesis, Beyer) 

– Increasing sampling rate of measurements (“signal averaging”)

26

Environmental Parameters

• As many as possible physical conditions should be 
recorded during the experiment

• Ideally, sensitivity of the system to the environment should 
be assessed

• Basic starting points: recording Signal/Noise, extracting 
power spectrum of the noise, etc.
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Manufacturing Feasibility

• Mostly system-dependent

• Realization of the prescribed decision parameters of the 
experiment to equivalent systems, e.g., in a manufacturing 
stage

• To this end, sensitivity of the system must be assessed 
(electronics, for instance) 

• Upon obtaining reproducible results, they should be 
verified on equivalent systems

28
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Noise “Colors”
Autocorrelation of the noise spectrum indicates the 
“memory property” of the disturbance –

• White Noise: (no correlation)

• Pink (Flicker) Noise: 

• Red (Brownian) Noise: (exp. distribution)

Tip: Assess the stability of your system by extracting the Power 
Spectral Density of its signal-free state.

M. Roth, J. Roslund, and H. Rabitz, “Assessing and managing laser system 
stability for quantum control experiments”, Rev. Sci. Instrum. 77, 083107 (2006) 

1
𝑓0ൗ → 𝛿(𝑡) 

1
𝑓1ൗ → unknown 

1
𝑓2ൗ → 𝑒−𝜆𝑡

29

APPLICATION AREAS

30

Basic Science: Discoveries as 
Combinatorial Optimization Problems

 A problem shared by scientists is to achieve 
optimal behavior of their systems and arrive 
at new discoveries while searching over an 
array of parameters

 It is commonly visualized in terms of a 
‘landscape’: a candidate solution is mapped 
onto a ‘position’, its quality onto an ‘altitude’

 The task becomes to efficiently navigating 
within this search-space, which scales 
exponentially with the number of 
variables

Kell, D.B., Scientific discovery as a combinatorial optimisation problem: How best to 
navigate the landscape of possible experiments? BioEssays, 2012. 34(3): 236-244.
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A Classification

Selection/evaluation

subjective numerical
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Nozzle

Bended pipe

Flow plate

Coffee

Quantum control

CLADE

Chocolate

Crop-Breeding

Chromatography

Drug discovery

Instrument setup optimization

Material design optimization
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Protein expression

Post-Harvesting
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Potential Application Areas

• Cosmetics / Detergent Formulation Optimization

• Catalyst Formulation Optimization (Cost, Effectiveness, …) 

• Subjective Evaluation Applications based on Human Taste 
or other Senses

• Engineering Applications Requiring Real-World 
Experiments for Measurement

• Concrete Formulation Optimization

• Glue Formulation Optimization

• Plant Startup Process

• Chemical Compound Synthesis Processes (e.g., Drugs) 

• Instrument Setup Optimization

33

STATISTICAL DESIGN OF EXPERIMENTS

Reference/State-of-the-Art:

Introductory charts courtesy of Joshua Knowles.
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Experimentation terminology

Factor, x

Response, y

DoE
Response: also known as effect
Factor = independent variable
Factors have levels
A Factor at a particular level is a treatment
The regression line is a model, fit or 
response surface

Machine Learning
Factors are features
The response is the class or output

Optimization
Factors are decision variables
Response is objective value, cost, benefit, utility or fitness

37

Modern experiment 1

• N factors, N>>2, e.g. genes

• M effects, M>1, e.g. disease, + other effects

• P>1 nuisance factors, ages, gender, etc

• Possible Research Questions: which genes are most responsible for the disease, 
which groups of genes work together, and are other effects involved in explaining 
the disease?

38
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Modern experiment 2

• Many factors

• Several effects

• Several nuisance 
variables

• Limited number of 
samples

• Noise (variance)

• Purpose: Optimize
the effect

39

Classical DoE: topics

• OFAT

• Full factorial/Fractional factorial

• LHS

• Other designs

40

Handling multiple factors

• It is typical that we have N>1 factors to control

• The high-school solution to this is called

OFAT
(or one-factor-at-a-time)

• You hold all but one factor constant and vary that. Then you go onto the second 
factor ... and so on

41

OFAT

An OFAT design in two variables

Weaknesses of OFAT
1. OFAT requires more* runs for the same precision in effect estimation
2. OFAT cannot estimate interactions between factors
3. OFAT can miss optimal settings of factors

*compared with experimental designs like Plackett-Burman

Factor 1

Factor 2

42
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From Full to Fractional Factorial designs

Fractional Factorial  utilizes only a fraction of every factor’s level combinations 
within the experiment, i.e., with respect to the so-called Full Factorial design.

Goal: minimize information loss in this reduction

[LEFT] A 2-level Full Factorial design with 2 factors. 
[RIGHT] A Fractional Factorial design estimating the factor X3 using the 
interaction effect for X1 and X2.

43

Latin Hypercube Screening (LHS) design

44

LHS illustration for 2 factors and 5 trials. 
The sample S1 is drawn from a continuous input space (blue circles), 
while S2 from a discrete space (red squares).

DoE vs. EAs on Combinatorial Optimization

• Comparing a Categorical ES, with/without surrogates, to modern DoEs

• Budget of ~2000 evaluations; discrete problems at dimensions {25,64,100}

Horesh, N., Bäck, T., Shir O.M.: Predict or Screen Your Expensive Assay? DoE vs. Surrogates in Experimental Combinatorial Optimization. 
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2019, New York, NY, USA, ACM Press (2019) 274—284

NQP: 25-d

Initialization only Complete run
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DoE vs. EAs on Combinatorial Optimization

Conclusions per the reported observations:

1) Using surrogate-aided iterative search 
was observed to perform best on such 
setups with a small budget.

2) DoE-initializations alone are inferior with 
respect to initializations that are followed 
by ES iterative search.

3) There is no gain in granting more than 
30% of the budget on DoE-initializations.

4) D-Optimal was the most successful DoE 
methods on the low-dimensional setup, 
yet being problem-dependent.

LABS: 64-d

46

Horesh, N., Bäck, T., Shir O.M.: Predict or Screen Your Expensive Assay? DoE vs. Surrogates in Experimental Combinatorial Optimization. 
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2019, New York, NY, USA, ACM Press (2019) 274—284
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QUANTUM CONTROL EXPERIMENTS

Case-Study:

47

Altering the Course of Quantum Phenomena

48

Quantum Control Experiments

49

The QCE Arena: The Optical Table

Figure courtesy of Jonathan Roslund

50
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Figure courtesy of Jonathan Roslund

The Optical Table: Shaping the Pulse

51

QCE: Sources of Noise/Uncertainty
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Single-Objective QCE

• CMA-ES was observed to perform extremely well with 
small population sizes

• Recombination is indeed necessary (GR, Beyer)

• Robust, reproducible, reliable solutions

Roslund, J., Shir, O.M., Bäck, T., Rabitz, H.: Accelerated 
Optimization and Automated Discovery with Covariance Matrix 
Adaptation for Experimental Quantum Control. Physical Review 
A (Atomic, Molecular, and Optical Physics) 80(4) (2009) 043415

Figure courtesy of Jonathan Roslund
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(a) Experimental Pareto frontier for the Total Ionization problem approximated by MO-
CMA-ES, displaying the perceived frontier of a single experiment, the reference frontier
of the intensity based non-shaped pulse, as well as a sampling of the Pareto optimal set. 

(b) Experimental Pareto frontier for the Molecular Plasma Generation problem 
approximated by MO-CMA-ES remedied with occasional re-evaluation, displaying the 
perceived frontier, the reference frontier, and the reproduction of the Pareto optimal set.

Multi-Objective QCE

Shir, O.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary 
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

54
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Extended Features: Statistical Learning (FOCAL) 

(a) Retrieving the Hessian by FOCAL for rank-deficient atomic Rubidium
(b) 5 most important Hessian eigenvectors; Physical form is corroborated

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal 
covariance adaptive learning. Physical Review E 89(6) (2014) 063306
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PROTEIN EXPRESSION

Case-study II:

56

Four genes are required for ApcA heterologous expression in E. coli.

Goal: maximize the heterologous expression level

Heterologous Protein Expression

Erlich, Ch.: Experimental combinatorial optimization of phycobiliproteins' expression in E.coli. Thesis Tel-Hai College (2019).

57 58

Controls (10 categorical decision variables):
4 growth temp., 5 expression temp., 3 growth volumes, 
6 IPTG concent., 5 O.D. values, 4 induction durations, 
7 gamma-ALA concent., 2 gamma-ALA timings, 
11 FeCl_3 concent., 3 Medium types

Search-space cardinality: 

~3×106 possible combinations

Feedback Loop and Decision Variables
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ApcA Expression in E. coli: (Optical) Assay

Preliminary experiment of ApcA expression in E. coli with varying parameters. 
Left: fluorescence from a 96-well plate containing lysates of E. coli cells expressing ApcA. Right: 
evaluation of expression quality based on the ratio of absorption at 620 nm vs 280 nm, 
represented as a heat map corresponding to the 96-well plate.

Images of the 1st and the 6th generation's
collection plate, after cleaning and separating
the proteins. The blue pigment is indicative of
the expression strength.

Left: fluorescence from a 96-well plate
containing lysates of E. coli cells expressing
ApcA. Right: evaluation of expression quality
based on the ratio of absorption at 620nm vs.
280nm.

Figures courtesy of Dror Noy
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Best Combination by ALGORITHM vs. 
Best-practiced protocol by HUMAN

Variable Parameter Best-Practiced 

Protocol (HUMAN)

Best-Attained by 

ALGORITHM

T1 Growth temperature (°C) 37oC 30oC

T2 induction temperature (°C) 20OC 20OC

V Growth volume (ml) 1000 200

C1 IPTG concentration (mM) 1 0

t1 Induction timing (O.D) 0.6-0.8 1.2

t2 Induction length (hr) 12-18 48

C2 Γ-ALA concentration (mM) 0 3

t3 Γ-ALA adding timing (stage) - growth

C3 FeCl3 concentration in the medium (mM) 0 4.5

M Medium type (according to standards) LB TB

60

Erlich, Ch.: Experimental combinatorial optimization of phycobiliproteins' expression in E.coli. Thesis Tel-Hai College (2019).

POST-HARVESTING

Hot-off-the-lab-bench

61

Algorithmically-Guided Postharvesting of Fresh Produce

62

Work under progress at the Postharvest/Gamrasni Lab @ Migal.

A finite set of treatments and operations are available for 
postharvest protocols.

Goal: minimize cucumbers’ postharvest quality loss.

Given a combinatorial search-space of possible 
postharvest treatments, obtain a protocol that minimizes
a loss function accounting for color deviation & mass 
and stiffness reduction.

Figure courtesy of Dani Gamrasni
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DISCUSSION

63

Evolutionary Algorithms Used

Evolutionary Algorithms

Evolution Strategies Genetic Algorithms
GP, EP, DE,
PSO, ACO,...

• Nozzle Experiments:
Two-Membered Evolution Strategy 
[Rechenberg; 1973]

• Quantum Control Experiments:
Derandomized Evolution Strategies 
[Hansen et al.; 1994-2008]

• Protein Expression Experiments: 
Categorical ES [Horesh et al.; 2019] 
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Some Practical Principles for 
Closed-Loop Optimization

• Keep experimentalists in the loop

• Strive to understand the experimental 
platform

• Simulate the platform, and compare 
algorithms

• Do it for real – and get feedback

65

Keep experimentalists in the loop

• Explain EAs, manage 
expectations of outcomes.

• Understand the variables 
and objectives. Confirm 3 
times at least.

• Still be prepared to change 
objectives half-way through!

• Enable them to use familiar 
software for viewing results.

Objectives shown above were changed
during optimization

66
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Understand the experimental platform

• Variables, constraints, 
measurements, noise

• Financial costs, time lags

• Resource constraints

• Batch size of platform 
dictates/constrains 
population size of EA

67

Simulations prior to the real thing

• Really helpful to manage 
expectations of stakeholders

• Tune your algorithms for weird 
and wonderful population 
sizes, constraints, budget 
limitations of real experimental 
platform

• If possible, use domain 
experts to design test 
problems that are similar to 
the real problem

68

Goals and Open Questions

• Experimental Optimization is hard – but an Evolutionary 
approach is feasible!

• Fundamental research in EAs is much needed: 
– Given a budget of k experiments – what strategy should be taken?

• NFL holds more than ever – there will be no winner 
algorithm handling all experimental scenarios!

• How do statistical approaches perform in comparison?
– Especially DoE

• The comparison presented earlier is a promising start
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Broader Picture: AI

• The Artificial Intelligence (AI) and Machine Learning (ML) 
revolution already takes place.

• No doubt that ML may boost scientific research by applying 
pattern recognition. But is that it?

• Some universities target this direction in education already 
at the BSc/MSc levels (CMU), stating that “AI will drive 
more decisions in bio-experiments in the future”

70
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AI Prospects?

• The human/psychological factor among the experimentalists already plays a 
dominant role : shift the scientist/engineer’s aim into explaining nature of 
solutions (mechanism!), rather than finding them

• But, existing hypotheses are already well-documented, plus there are established 
knowledge representation frameworks (Prolog!)

• Next step? AI-based algorithm to formulate a scientific hypothesis and design 
experimentation
– Data-driven (PhD-level machine)

– Ontologies-based (BSc-level machine)

71

Pearl, J., The seven tools of causal inference, with reflections on machine learning. Communications of the ACM, 62(3) 2019.

Hunter, A., and Liu, W.R., A survey of formalisms for representing and reasoning with scientific knowledge. Knowl Eng Rev, 2010. 25: p. 199–222.
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