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 Jamal Toutouh is a MSCA Postdoctoral Fellow at the ALFA
group (CSAIL-MIT) and the NEO team (University of Málaga).
He obtained his Ph.D. in Computer Engineering at the
University of Malaga. The dissertation, “Natural Computing for
Vehicular Networks,” was awarded the 2018 Best Spanish
Ph.D. Thesis in Smart Cities. The dissertation focused on
analyzing and devising machine learning (ML) methods
inspired by Nature to address Smart Mobility problems. His
current research explores the combination of Nature-inspired
methods applied to ML and deep learning. He uses his novelty
methods to Smart Cities and Climate Change.

Instructors

 Una-May O'Reilly is leader of the AnyScale Learning For All
(ALFA) group at MIT CSAIL. ALFA focuses on evolutionary
algorithms, machine learning and frameworks for large scale
knowledge mining, prediction and analytics. The group has
projects in cyber security using coevolutionary algorithms to
explore adversarial dynamics in networks and malware
detection. Una-May received the EvoStar Award for
Outstanding Achievements in Evolutionary Computation in
Europe in 2013. She is a Junior Fellow (elected before age 40)
of the International Society of Genetic and Evolutionary
Computation, which has evolved into ACM Sig-EVO. She now
serves as Vice-Chair of ACM SigEVO. She served as chair of
the largest international Evolutionary Computation Conference,
GECCO, in 2005. 2

About You
 EA and CoEA experience?
ML and DL experience?
 Programming? algorithms?
 Native English speakers?
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Learning Outcomes
 describe generative modeling and generative adversarial

networks (GANs)
 identify the intellectual intersection between GANs and 

coevolutionary algorithms
 describe the design principles of a GAN and be familiar 

with simple code for one
 use Python code to run a demonstration framework
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Generative Machine 
Learning
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Supervised vs Unsupervised Learning
 Supervised Learning

 Given data x, predict output y

 Goal: Learn a function to map x  y
 Requires labeled data

 Methods: Classification, Regression, Detection, 
Segmentation

 Unsupervised Learning
 Given data x

 Goal: Learn the hidden or underlying 
structure of the data

 Requires data (no labels)

 Methods: Clustering/Density, Compression
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Supervised vs Unsupervised Learning
 Unsupervised Learning examples

Clustering Density estimation

Toutouh & O’Reilly Generative Machine Learning 9 10

Generative Modeling
 Overview: Given training a training dataset, generate new samples

from same distribution Addressing density estimation

Training dataset ~ pdata(x) Generated samples ~ pmodel(x)

 Density estimation: estimate the probability density function pmodel(x)
of a random variable x, given a bunch of observations from the
training dataset pdata(x)

 Understand better the data distribution

 Compress the data representation

 Generate samples 

Toutouh & O’Reilly Generative Machine Learning 10
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Generative Modeling
 Flavors:

 Explicit density estimation: estimates the true Probability Density
Functions (PDF) or Cumulative Distribution Functions (CDFs) over the
sample space, i.e., defines and solves for pmodel(x)

 Implicit density estimation: generates a function that can draw
samples from the true distribution, i.e., learn model that can sample from
pmodel(x) without explicitly defining it

Training 
samples Synthetic 

samples

Toutouh & O’Reilly Generative Machine Learning 11 12

Generative Modeling

Variational Autoencoders 
(VAEs)

Generative Adversarial 
Networks (GAN)

E D

G

D
x x'z

z

x

x'

y

Explicit density estimation Implicit density estimation

Toutouh & O’Reilly Generative Machine Learning 12
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Generative 
Adversarial 
Networks
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Generating Synthetic Samples
 Global idea: Generating new synthetic samples without modeling

the density estimation, i.e., implicit density estimation

 Solution: Sampling from something simple (random distribution)
and learning a transformation to the real (training) distribution

 Main components of the Generative Model:
 Generator Neural Network: G 

 Random (latent space): Z

 Synthetic sample from the training distribution: x’

GZ x'

Toutouh & O’Reilly Generative Adversarial Networks 15 16

How do the Generator Learn?

 Using another model that gives feedback about how close/far are 
the samples from the distribution that represents the real training 
dataset  Discriminator

GZ x'

Training 
samples

Synthetic 
samples

16Toutouh & O’Reilly Generative Adversarial Networks 16
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Generative Adversarial Networks
 Generative Adversarial Networks (GAN) construct a generative model

by raising an arms race between two neural networks, a generator
and a discriminator [6]

 Discriminator (D) tries to distinguish between real data (x) from the
training dataset distribution and fake data (x’) from the generator (G)

 Generator (G) learns how to create synthetic/fake data samples (x')
by sampling random noise (Z) to fool the discriminator (D)

G

D

Z

x

x'

y

Goodfellow et al. 2014. Generative Adversarial Nets

17Toutouh & O’Reilly Generative Adversarial Networks 17

 Discriminator attributes a probability p of confidence of a sample being
real (i.e. coming from the training data)

 Generator learns the real data distribution to generate fake samples

 Generator slightly changes the generated data based on Discriminator’s
feedback

18

Generative Adversarial Networks

G

D

z

yfake sample

real data

noise

p (coming from the training data)

Goodfellow et al. 2014. Generative Adversarial Nets

18Toutouh & O’Reilly Generative Adversarial Networks 18

Generative Adversarial Networks
 Generator and Discriminator are trained together (minimax game)

 Discriminator is trained to correctly classify the 
input data as either real or fake

 maximize the probability that any real data 
input x is classified as real  maximize D(x)

 minimize the probability that any fake sample 
x’ is classified as real  minimize D(G(z))

 Generator is trained to fool the Discriminator

 maximize the probability that any fake sample 
x’ is classified as real  maximize D(G(z))

G

D

Z

x

x'

y

 The training ideally converges in a scenario in which the Generator
produces such a realistic samples that the Discriminator cannot
distinguish between real and fake samples, i.e., p=0.5

191919Toutouh & O’Reilly Generative Adversarial Networks 19

Generative Adversarial Networks

20202020Toutouh & O’Reilly Generative Adversarial Networks 20
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GAN Applications
 Generate new samples of image datasets 

212121Toutouh & O’Reilly Generative Adversarial Networks 21 22

GAN Applications
 Image-to-Image translation

222222Toutouh & O’Reilly Generative Adversarial Networks 22

23

GAN Applications
 Text-to-Image translation

232323Toutouh & O’Reilly Generative Adversarial Networks 23 24

GAN Applications
 Semantic-Image-to-Photo translation

http://nvidia-research-mingyuliu.com/gaugan

242424Toutouh & O’Reilly Generative Adversarial Networks 24
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GAN Applications
 Deepfake videos

https://www.youtube.com/watch?v=cQ54GDm1eL0&feature=youtu.be&t=22

252525Toutouh & O’Reilly Generative Adversarial Networks 25 26

GAN Applications
 Many many others…

262626Toutouh & O’Reilly Generative Adversarial Networks 26

27

Training Pathologies
 Non-convergence: the model parameters oscillate, destabilize, and 

never converge

 Mode collapse: the generator collapses which produces limited 
varieties of samples

 Diminished gradient: the discriminator gets too successful that the 
generator gradient vanishes and learns nothing

272727Toutouh & O’Reilly Generative Adversarial Networks 27 28

Learning Variants
 Some variants

282828Toutouh & O’Reilly Generative Adversarial Networks 28
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Evaluation Metrics
 How to evaluate the generated samples?

 We cannot rely on the models’ loss 
 A human cannot qualitatively evaluate the whole distribution of 

generated data or an extensive representation of it

 A pre-trained model can be used to assess the quality of a 
high number of samples

 There are a number of evaluation metrics [20]

 Inception Score (IS)

 Fréchlet Inception Distance (FID)

292929Toutouh & O’Reilly Generative Adversarial Networks 29 30

Inception Score
 Well correlated with human perception

 Use pre-trained model: Inception v3 trained on ImageNet-1K

 KL-Divergence between conditional and marginal label distributions 
over generated data [14]
 If the image x is recognized as y label, p(y|x) should have low entropy 
 p(y|x) is evaluated with inception model

 If model outputs diverse images, p(y) should have high entropy  p(y) 
is calculated with marginal

 Higher IS represents better generative model 

 It does not use the real training dataset

303030Toutouh & O’Reilly Generative Adversarial Networks 30

31

Fréchlet Inception Distance 
 The Fréchlet Inception Distance (FID) score was proposed to 

overcome the various shortcomings of the IS [8]

 Inception network is used to extract the feature maps from an 
intermediate layer

 A multivariate Gaussian distribution learns the distribution of the 
feature maps
 Mean and covariance for layer with real data r and generated data g

 Wasserstein-2 distance between multi-variate Gaussians fitted to data 
embedded into a feature space

 Lowe FID represents better generative model 

 Consistent with human perception, more robust to noise than IS, and 
can detect intra-class mode dropping

313131Toutouh & O’Reilly Generative Adversarial Networks 31
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Coevolution: Evolutionary Algorithms
 Evolutionary computation comprises a set of computational

methods (metaheuristics) that mimics biological evolution [5]

 They apply a mechanism analogous to natural evolutionary
processes, to solve search and optimization problems

 They work with a population (of representations) of solutions

 Principles:

 natural selection (fitness)

 reproduction (recombination and mutation)

 genetic diversity
 They follow the idea of survival of the fittest individuals,

evaluating the fitness according to the problem to be solved,
through a fitness function

343434Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 34

Coevolution: Evolutionary Algorithms
 Evolutionary Algorithm

1. generation = 0
2. population(0) = Create initial population
3. while not stop criteria do

1. evaluate(population(generation)) 
2. parents = selection(population(generation)) 
3. offspring = recombine(parents, rec_probability)
4. offspring = mutate(parents, mut_probability)
5. new_population = replace(offspring, population(generation))
6. generation++ 
7. population(generation) = new_population

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

35353535Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 35

Coevolution
 Coevolutionary algorithms were proposed to address problems with 

complex structure [14], i.e., fitness depends on the context:
 An evolved individual does not represent a complete solution of

the problem

 The evaluation of an individual is dependent on other individuals 
(i.e., individuals are explicitly part of the environment)

 In biology, coevolution occurs when individuals of one or more 
species reciprocally affect each other's evolution through the 
process of natural selection

 Positive effect (mutualism/symbiosis), e.g. plants and insects

 Cooperative coevolution

 Negative effect (predation/parasitism), e.g. foxes and rabbits

 Competitive coevolution

36363636Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 36
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Coevolution
 In competitive coevolution, a number of different species, each 

representing part of a problem, cooperate in order to solve a larger 
problem

 In competitive coevolution, individuals evolve and are evaluated 
based on direct competition against individuals of a different 
species, which in turn evolve separately

One-vs-one All-vs-all

37373737Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 37 38

Competitive Coevolution
 Competitive coevolutionary algorithms have adversarial populations 

(usually two) that simultaneously evolve solutions against each other 
with members engaging in two-player games [11]

 They employ fitness functions that rate a solution relative to its 
adversaries and can sometimes be described as a zero-sum game 
or, more generally, a minimax optimization 

 In seminal work, more efficient sorting problems were produced by 
engaging two populations, one of programs and one of tests, in a 
competition [9]

Red Population
Candidate 

actions/strategies

Selection
High-performing

candidates retained

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

New Blue Generation

New Red Generation

Evaluation
Candidates scored and ranked

according to fitness function
depending on the other 

population

Blue Population
Candidate 

actions/strategies

Selection
High-performing

candidates retained

Coevolution Limitations
 Focusing: The ability to focus on an opponent’s weakness can

provide an easy way to win. This may produce degenerate players
that over-specialize on opponents weaknesses, and fail to learn a
task in a general way GAN mode collapse

 Loss of gradient: One population comes to severely dominate the
others, thus creating an impossible situation in which the other
participants are not able to learn  GAN diminished gradient

 Cyclic: One population loses the genetic knowledge of how to defeat
an earlier generation adversary and that adversary re-evolves 
GAN non-convergence

 As these limitations have already been broadly studied, literature
proposes a set of general remedies [4]

39393939Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 39

Coevolution Limitations
 A general reason offered for these limitations is that, despite the

algorithm’s stochasticity, the populations lack sufficient solution
diversity to disrupt premature convergence in the form of an
oscillation or move the search away from an undesired equilibria

 Essentially, the population should serve as a source of novelty and a
genotypically or phenotypically converged population fails in this
respect

 Solution diversity has been explicitly improved with competitive
fitness sharing, separation, e.g. a spatial topology, or a spatial
topology and temporal segregation

40404040Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 40

992



03-May-21

11

41

Spatial Coevolution
 A spatial (2D toroidal) topology is an effective means of controlling

the mixing of adversarial populations in coevolutionary algorithms [10]

 The members of populations are divided up on a grid of cells and
overlapping neighborhoods (e.g., von Neuman) for each cell are
identified. A neighborhood is defined by the cell itself and its adjacent
cells and specified by its size, 𝑠

 Coevolution proceeds at each cell with sub-populations drawn from the
neighborhood
 It reduces the cost of interaction from O(𝑁2) to O(𝑁𝑠), where 𝑁 is pop. size
 Each neighborhood can evolve in semi-isolation

42

Coevolution and GANs, Reminding
 GAN training can be seen as a two-player minimax game/problem

generator 𝐺(𝑧) vs discriminator 𝐷(𝑥)

 Coevolutionary algorithms addressed similar issues in two-player
minimax optimization as GAN training

focusing, relativism or loss of gradient

 Main idea: using competitive coevolution as a main framework to
train GANs [1,2,3,7,12,15,16]

Population of 
Generators

Population of 
Discriminators

vs.

42424242424242Toutouh & O’Reilly Spatial Co-evolutionary GAN Training 42
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Lipizzaner
 A spatially distributed, coevolutionary framework to train GANs

with gradient-based optimizers [1,7,15]

 Main features:

 It trains/evolves two populations, one of generators and one of
discriminators, by using a competitive coevolutionary algorithm

 The populations are distributed upon a spatial grid
 Asynchronous parallel training in each cell

 The learning rate parameter is evolved through the training
process

 At the end of the training process each cell contains a generative
model defined by an ensemble of the generators in the sub-
population

 The generative models are evolved (as well) to optimize the
quality of the synthesized samples, i.e., ensemble weights
evolution

45454545Toutouh & O’Reilly Lipizzaner 45 46

Spatial Coevolution GAN Training
 Instead of training a single GAN, Lipizzaner trains two populations,

a population of generators against a population of generators

 Each pair generator-discriminator is located in a cell of a toroidal grid,
i.e., GANs are spatially distributed

G D

Single-GAN 
training framework

Spatially Distributed COEA GAN 
training framework

4646464646Toutouh & O’Reilly Lipizzaner 46
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Spatial Coevolution GAN Training
 For each cell, two sub-populations are defined by gathering the

individuals (neural networks) from the overlapping neighborhoods
(e.g., von Neuman or von Neuman)

Overlapping von Neuman 
neighborhood of cell i to 
define sub-populations

Sub-population of 
Generatorsi

Sub-population of 
Discriminatorsi

4747474747Toutouh & O’Reilly Lipizzaner 47 48

Spatial Coevolution GAN Training
 Each cell performs in parallel the coevolutionary GAN training loop 

for a given number of iterations (training epochs)
Sub-population of 
Generatorsi

Sub-population of 
Discriminatorsi

1. Evaluation: All-vs-all

2. Select the   best pair (center)

Gi Di

3. Center GAN training  (SGD-based mutation)

Gi Di

Parents

Offspring

4. Update sub-population:
1. Replace center with offspring
2. Gather neighbors' center

 After each training epoch, the sub-populations are updated by 
gathering the center GAN of the neighborhood cells 

4848484848Toutouh & O’Reilly Lipizzaner 48
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Spatial Coevolution GAN Training
 The center GAN training consists of updating the weights of the 

selected center generator and discriminator by using a number of 
training data mini-batches

 The center generator is trained against a randomly chosen 
discriminator from the sub-population

 The center discriminator is trained against a randomly chosen 
from the sub-population

 Gaussian-based mutation is applied to update the learning rate 
after each training epoch

Gi Divs. vs.

Sub-population of 
Generatorsi

Sub-population of 
Discriminatorsi

4949494949Toutouh & O’Reilly Lipizzaner 49 5050

Spatial Coevolution GAN Training
 Coevolution and training algorithm is performed in each cell, a.k.a., 

CoevolveAndTrainModels

505050505050Toutouh & O’Reilly Lipizzaner 50
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Ensembles evolution
 Lipizzaner at the highest level searches for and returns a mixture of 

generators e composed from a sub-population

 It evolves a mixture weight vector w for each neighborhood n using 
an ES-(1+1) algorithm which optimizes for generator ensemble 
performance (e.g., inception score or FID)

w1

G1

w2

G2

w3

G3

w4

G4

w5

G5

Generative model: 
generators + mixture weights

D1 D2 D3 D4 D5

Sub-population of discriminators

For each cell

Sub-population of 
Generatorsi

Sub-population of 
Discriminatorsi

 The weight vector w is updated after 
each training epoch

5151515151Toutouh & O’Reilly Lipizzaner 51 52

Lipizzaner global method
 Coevolutionary algorithms were proposed to address problems with 

complex structure, i.e., fitness depends on the context:
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Main Advantages
 Fast convergence due to gradient-based steps

 Improved convergence due to hyperparameter evolution

 Resilience due to coevolution and communication

 Robustness due to the use of ensembles

 Improved samples quality and diversity due to mixture evolution

 Scalability due to spatial distribution topology and asynchronous 
parallelism

5353535353Toutouh & O’Reilly Lipizzaner 53 54

Faster Convergence
 Experiment on MNIST dataset with Lipizzaner variations (4x4 grid) [17]

 Lipizzaner
 Spatial Parallel GAN (SPaGAN): 

no selection/replacement
 Parallel GAN (PaGAN): 

no communication FI
D

Lo
w

er
 is

 b
et

te
r

Epoch: 25 Epoch: 50 Epoch: 75 Epoch: 100

Lipizzaner

SPaGAN

 FID score evolution in the cells of a 4x4 grid

5454545454Toutouh & O’Reilly Lipizzaner 54
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Improved Convergence
 Experiment on MNIST dataset with Lipizzaner and SPaGAN

on different grid sizes

Final results (FID)

FI
D

Lo
w

er
 is

 b
et

te
r

 Lipizzaner provides better results than SPaGAN

 As the grid size increase (larger populations), Lipizzaner
converges to better generative models

5555555555Toutouh & O’Reilly Lipizzaner 55 56

Resilience
 Coevolution and exchange of individuals through the grid allow cells

to addresses vanishing gradient issues

 For example, in the training epoch 50, there is a powerful discriminator
that does not allow a generator to learn in a cell of a 4x4 grid (the cell
shows a dark color to represent a high FID score)

 In the successive epochs, with the exchange of the individuals plus the
selection and replacement process, the weak generator in the cell is
replaced by stronger ones. Thus, the cell can escape from that
pathological situation, and it can generate better samples (lighter color,
lower FID score)

Gi Di

Weak Strong

5656565656Toutouh & O’Reilly Lipizzaner 56
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Robustness
 Ensemble (mixture) of generators overcomes mode collapse 

 This extreme example shows four generators that collapse in each one of 
the four modes of the training dataset. A mixture of these four generators 
provides a generative model that can generate data samples of each 
mode 

5757575757Toutouh & O’Reilly Lipizzaner 57 58

Improved Quality

 The use of evolved ensembles improves quality of the samples
(provide lower FID score)

 The following example shows the quality of the generated samples in
a 4x4 grid when using evolved mixture weights or uniformly
distributed mixture weights (i.e., the samples are generated by
mixtures created with the same generators but different weights)

Uniformly distributed 
weights

Evolved weights

5858585858Toutouh & O’Reilly Lipizzaner 58

59

Improved Diversity

 The use of evolved ensembles improves the diversity of the generated 
samples [19]

 In this example, the diversity on MNIST dataset is evaluated in terms of
the Total Variation Distance (lower distance more diverse generated data)

Low diversity High diversity
Ensemble TVD -

Diversity
No (single generator) 0.113

Yes (5 generators) 0.046

5959595959Toutouh & O’Reilly Lipizzaner 59 60

Scalability

 Spatial distribution in a 2D grid addressees the quadratic
computational complexity

 Asynchronous communication

 Deployed over workstations, cloud based, and HPC environments
 OpenStack, Google Cloud, AWS, Summit, MIT Satori, etc. [12]

Number of cells in the grid

Computational time per training epoch (iteration)

6060606060Toutouh & O’Reilly Lipizzaner 60
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Research Over Lipizzaner
 Mustangs: For each training epoch, each cell randomly picks a loss 

function to optimize the networks’ weights to increase the genotype 
diversity

 Data Dieting: As we have communication between cells, do we need 
to replicate whole data among all the cells? Data diversity

Gi Gi

6161616161Toutouh & O’Reilly Lipizzaner 61 62

Mustangs
 Mustangs: For each training epoch, each cell randomly picks a loss

function to optimize the networks’ weights to increase the genotype
diversity [16]

Gi Gi

3x3 grid

5x5 grid

 Lipizzaner when using one of the following loss functions: binary
cross entropy (BCE-BCE), mean square error (MSE-MSE), and an
heuristic one (HEU-HEU). And a variant of Lipizzaner that
randomly picks one of these three loss functions (LOSS-DIV)

 LOSS-DIV increases the diversity and
provides better generative models
(lower FIDs)

6262626262Toutouh & O’Reilly Lipizzaner 62
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Data Dieting
 Data Dieting: As we have communication between cells, do we need 

to replicate whole data among all the cells? Data diversity [18]
 Signal propagation (in the form of network exchange) through the grid 

allows the cells to exchange learning information
 Data diversity allows training the cells of the grid with subsets of the 

training dataset 
 The experimental results show that, with Lipizzaner, the cells can be 

trained by using a lower amount of data

6363636363Toutouh & O’Reilly Lipizzaner 63
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