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ABSTRACT
Reservoir Computing is an efficient implementation of a recurrent
neural network for dealing with temporal/sequential data process-
ing. However, in terms of matching reservoir dynamics to tasks,
the precise balance of properties (kernel rank, generalization rank,
memory capacity, size) of reservoirs will vary. To provide guidance
for the generation of reservoirs, we use NSGA-II and MAP-Elites to
explore the balance between those properties. We further provide
three generation strategies for reservoirs: (a) the optimization of the
properties of the random generator, (b) the direct optimization of
general purpose reservoir, and (c) a combination of both approaches.
We show that each approach can generate reservoirs with differ-
ent ranges of characteristics, making them thus appropriate for
different categories of tasks.
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1 INTRODUCTION
Reservoir Computing (RC) is a computing paradigm initially pro-
posed to take advantage of the complex dynamics of recursive
neural networks (RNNs) while reducing the cost of weight train-
ing. [8, 9] The main characteristic of that approach is that input
weights and the weights of the recurrent connections within the
reservoir are not trained, whereas the readout weights are trained
with a simple learning algorithm such as linear regression. This
simple and fast training process makes it possible to drastically
reduce the computational cost of learning compared with standard
RNNs. The performance of RC depends on many factors, such as
the structure and size of the reservoir, and the readout learning
algorithm, which are very difficult to set up optimally. In this paper,
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we aim to find in an automated way a large range of reservoirs
with specific characteristics, providing the user a range of choice
appropriate to their goal task. We take inspiration from previous
work by Dale et al.[2] who used novelty search to explore the
characteristic of specific reservoir substrates. However, we seek to
improve the performance of randomly generated reservoirs and
thus focus on multi-objective approaches, comparing the results of
two algorithms: NSGA-II [3] and MAP-Elites [7].

In this study, three approaches were used as design guidelines to
realize a high performance reservoir. The first approach (approach
1) is to generate a good reservoir in advance by optimizing the input
weight matrix Win and the reservoir connection weight matrix W,
which are randomly generated according to the following param-
eters: (1) the size of the reservoir, (2) the leaking rate, and (3) the
spectral radius. The second one (approach 2) is direct optimization
of Win and W. In this case, we use empirically good values for the
leaking rate and the spectral radius. Finally, in the third approach
(approach 3), we optimize the size of the reservoir, the leaking rate,
the spectral radius,Win, andW simultaneously. Approach 2 and
approach 3 are highly dimensional problems compared to approach
1.

2 METHODS
We use Echo State Network (ESN) [6] as the substrate for the reser-
voir. ESNs provide supervised learning principles for RNNs and are
well established state-of-the-art reservoir substrates. The typical
update equations are

x̃(𝑛) = tanh(Win [1; u(𝑛)] +Wx(𝑛 − 1)), (1)

x(𝑛) = (1 − 𝛼)x(𝑛 − 1) + 𝛼 x̃(𝑛), (2)

where x(𝑛) is a vector of reservoir neuron activation and x̃(𝑛) is its
update, all at time step 𝑛,Win andW are the input and recurrent
weight matrices respectively, and 𝛼 is the leaking rate.

The linear readout layer is defined as

y(𝑛) = Wout [1; u(𝑛); x(𝑛)], (3)

where y(𝑛) is network output andWout is the output weight matrix.
Training of the readout is typically carried out in a supervised way
using linear regression with a teacher signal.

To characterize the performance of reservoirs, we use four met-
rics: size, memory capacity (MC) [4], kernel rank (KR), and gener-
alization rank (GR) [5]. Size is the number of units in the reservoir.
Smaller-sized reservoirs are less sensitive to the reality gap. MC
is maximum delay length still allowing the recovery of an input,
which can be seen as dynamic short-term memory. KR is a measure
of the reservoir’s ability to separate distinct input patterns. As many
practical tasks are linearly inseparable, reservoirs typically require
some nonlinear transformation of the input. GR is a measure of
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Figure 1: Example of Pareto Front and final individuals.

the reservoir’s capability to generalize given similar input streams.
In general, a low GR [1] symbolizes a robust ability to map simi-
lar inputs to similar reservoir states, rather than overfitting noise.
Through this research, we look for reservoirs with high MC, high
KR, low GR, and a minimum size.

We use these four objective functionswith NSGA-II. In the case of
MAP-Elites, only MC is treated as fitness, while the other objective
functions are considered as features.

3 RESULTS
Figure 1 presents the Pareto front obtained by NSGA-II and the
final individuals obtained by Map-Elites after 5000 evaluations.
Approach 1 shows that there is no significant difference between
the two algorithms for low-dimensional problems. We can also
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Figure 2: The evolution of median of objective function val-
ues w.r.t evaluation over 5 runs.

see that MAP-Elites struggles to achieve larger values of MC than
NSGA-II in approach 2 and 3, but on the other hand, it is suitable
for increasing the value of KR with respect to MC and have a slight
advantage over NSGA-II in obtaining low GR.

Figure 2 shows the evolution of the median of objectives. In
approach 2, high KR and MC are achieved for a small size, but
simultaneously, a high GR is obtained. However, the values of MC
and GR do not change much, suggesting that we cannot properly
optimize the input weight matrix and the reservoir connection
weight. In the case of NSGA-II, the value of KR (to be maximized)
is decreasing. This is because KR is strongly correlated to the size
of the reservoir, and thus reduced while we minimize the size.

4 CONCLUSIONS
Focusing on the four properties of the reservoir, we experiment
with NSGA-II and MAP-Elites to improve the performance of RC. A
balance between properties is essential to match reservoir dynamics
to tasks. However, determining the right balance is still challenging.
We are able to generate optimal reservoirs with a variety of charac-
teristics through the suggested approaches. It will be possible to
select an appropriate reservoir according to the applications and
tasks for which the reservoir is used. In the future, we would also
like to implement physical RC other than ESN and optimize the
properties of them.
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