Technical appendix

1 List of elementary operations

1.1 Transformation layer

• Identity

$$id(x_i) = x_i$$

• Number of elements on the right equals to x_i

$$Count_{=}^{r}(x_i) = |\{x_j : j > i \land x_j = x_i\}|$$

• Number of elements on the right smaller than x_i

$$Count_{<}^{r}(x_{i}) = |\{x_{j} : j > i \land x_{j} < x_{i}\}|$$

• Number of elements on the right greater than x_i

$$Count_{>}^{r}(x_{i}) = |\{x_{j}: j > i \land x_{j} > x_{i}\}|$$

• Number of elements on the left equals to x_i

$$Count_{=}^{l}(x_i) = |\{x_i : j < i \land x_i = x_i\}|$$

• Number of elements on the left smaller than x_i

$$Count_{<}^{l}(x_i) = |\{x_j : j < i \land x_j < x_i\}|$$

• Number of elements on the left greater than x_i

$$Count_{>}^{l}(x_{i}) = |\{x_{j} : j < i \land x_{j} > x_{i}\}|$$

ullet Number of elements equals to x_i + param

$$Count_{=+p}(x_i) = |\{x_i : x_i = x_i + param\}|$$

ullet Number of elements smaller than x_i + param

$$Count_{<+p}(x_i) = |\{x_j : x_j < x_i + param\}|$$

• Number of elements greater than x_i + param

$$Count_{>+p}(x_i) = |\{x_j : x_j > x_i + param\}|$$

- $Max(0, x_i param)$
- $Max(0, param x_i)$
- $Max(0, x_i x_{i+1})$
- $Max(0, x_{i+1} x_i)$
- Number of elements equals to x_i

$$Count_{=}(x_i) = |\{x_j : x_j = x_i\}|$$

• Number of elements smaller than x_i

$$Count_{<}(x_i) = |\{x_j : x_j < x_i\}|$$

• Number of elements greater than x_i

$$Count_{>}(x_i) = |\{x_i : x_i > x_i\}|$$

ullet Number of elements greater than or equals to x_i AND less than or equals to x_i + param

$$Count_{>=<+p}(x_i) = |\{x_j: x_j \ge x_i \land x_j \le x_i + param\}|$$

1.2 Comparison layer

- id(x) = x
- |x param|
- Max(0, param x)
- Max(0, x param)
- ullet Euclidian $_p(x)$: If(x == param) then 0 else 1 + $\frac{|x-param|}{maximal\ domain\ size}$
- Euclidian(x): If (x == 0) then 0 else $1 + \frac{x}{maximal\ domain\ size}$
- |x number of variables|
- Max(0, number of variables x)
- Max(0, x number of variables)

2 Most frequently learned error functions

2.1 Over complete spaces

Constraints	Most frequent error function
all_different-4-5	$Count_{>0} \Big(Count_{=}^{l}(\vec{x}) \Big)$
linear_sum-3-8-12	$Euclidian_p \Big(\sum_{i=1}^n (x_i) \Big)$
minimum-4-5-3	$Count_{>0} \Big(Max(0, p - x_i) \text{ with } 1 \le i \le n \Big)$
no_overlap-3-8-2	$Euclidian \left(\sum \left(Count_{<+p}(\vec{x}) \times Count_{>=<+p}(\vec{x}) \right) \right)$
ordered-4-5	Count _{>0} $\Big(Max(0, x_i - x_{i+1}) \text{ with } 1 \le i \le (n-1) \Big)$

Most frequent error function found for each constraint over small complete constraint spaces.

2.2 Over incomplete spaces

Constraints	Most frequent error function
all_different-12-12	$Count_{>0} \Big(Count_{=}(\vec{x}) \times Count_{>}(\vec{x}) \Big)$
linear_sum-12-12-42	$Euclidian_p \Big(\sum_{i=1}^n (x_i) \Big)$
minimum-12-12-6	$Count_{>0} (Max(0, p - x_i) with 1 \le i \le n)$
no_overlap-8-32-3	$Count_{>0} \Big(Count_{=}(\vec{x}) \times Count_{>=<+p}(\vec{x}) \Big)$
ordered-12-12	$Count_{>0} \Big(Count_{>}(\vec{x}) \times Count_{<}^{r}(\vec{x}) \Big)$

Most frequent error function found for each constraint over large incomplete constraint spaces.