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ABSTRACT
A reason for seeking simple machine-learning models is to avoid
overfitting. In genetic programming(GP), controlling complexity
often means reducing the size of evolved expressions. However,
previous studies showed that size reduction may not avoid model
overfitting. Therefore, in this study, we use the evaluation time—
the computational time required to evaluate a GP model on data —
as the estimate of model complexity. The evaluation time depends
not only on the size of evolved expressions but also their composi-
tion, thus acting as a more nuanced measure of model complexity
than the expression size alone. To constrain complexity using this
measure of complexity, we employ an explicit control technique
and a method that creates a race condition during the evolution,
named the asynchronous parallel GP(APGP). To facilitate the study
of overfitting, we boosted the training performance of GP by using a
method that discovers features and leverages multiple linear regres-
sion (MLRGP). While using MLRGP, we compared the evaluation
time-control methods with MLRGP with no complexity control and
MLRGP with an effective bloat-control technique. Also we compare
the methods with MLRGP version that discourages the unnecessary
growth of the features that MLRGP discovers. The results show that
constraining evaluation time leads to better generalisation than
constraining size.
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1 INTRODUCTION
It has always been an important challenge in machine learning
(ML) to avoid generating models that fit the training data very well
but without generalising to the unseen data; this is termed over-
fitting. Often these overfitting models are overly complex model
[30]; however, determining how much complexity is just enough
is a challenge. The challenge is exacerbated because we cannot
universally define what complexity in ML is and that in turn makes
it hard to find an effective mechanism to control it.

In this study we focus on the complexity challenges in Genetic
Programming (GP) [20] [21], and in particular, in GP systems aided
by Multiple Linear Regression (MLR) [33]. Such MLRGP systems
[1, 12, 29] have become increasingly popular lately because they
improve the training performance significantly; this is because the
traditional GP often underfits the data because it can not efficiently
generate numeric constants [4, 18]. However, this improved training
accuracy can still result in serious overfitting [33].

Another traditional concern in GP is complexity, which is often
manifested by a tendency to growmodel sizes to a point that renders
the evolutionary search process ineffective[37]. The most popular
approach to controlling complexity in GP is bloat control, that is
to limit the growth in size of the evolved expressions. However,
previous studies have shown that bloat control alone does not
always overcome the model overfitting problem [5, 40]. This begs
the question: is bloat control really complexity control?

To address the above limitation in bloat control, recent literature
[9, 34, 35] has proposed alternative approaches to control the com-
putational complexity of models in GP. Instead of using size as a
measure of complexity, these approaches propose the use of evalua-
tion time — the computational time it takes to evaluate a GP model
on data. The use of evaluation time as a measure of complexity is
built on the observation that a model that is made up of computa-
tionally expensive building blocks or that has large structures takes
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a long time to be evaluated, and hence it is computationally com-
plex. The work in [34] empirically shows how the functional and
structural complexity are different by plotting the evaluation times
of identically sized but functionally diverse GP models. Therefore,
if the evaluation time of evolving models are constrained then the
growth in the structural as well as the functional complexity will be
discouraged. The same work also recommended various techniques
to significantly minimise the noise in measuring evaluation times.
This paper adopts the use of all these recommendations to measure
complexity of the evolving models in MLRGP.

The next question is how to control the evaluation times. We
used two approaches to control evaluation times. First, we use bloat
control methods that explicitly penalise or discourage high evalua-
tion times in the same way bloat control techniques penalise size.
Instead of subjectively penalising the slow evaluation times, the
second approach takes a simple view: induce a race among com-
peting models that allows a model to join the breeding population
as soon as it has finished evaluating; this GP method is known as
the Asynchronous Parallel Genetic Programming (APGP) [34]. With
APGP, the faster models can (if their fitness is competitive) join the
breeding population before their slower counterparts and gain an
evolutionary advantage. This advantage arises because the com-
peting models compete in terms of not only their accuracy but
also their evaluation times due to the race; this is quite unlike in
standard GP where each evaluation (or a batch of evaluations, as
in generational replacement) is allowed to finish before the next
evaluation (or a batch of evaluations) can start. Note, however, that
all individuals have to go through selection as usual to get into the
population; selection is solely based on accuracy. Therefore, APGP
facilitates a dynamic interplay between accuracy and simplicity.
To induce this race, APGP breeds and evaluates multiple models
simultaneously across multiple asynchronous threads.

All the experiments used the MLRGP method. We compare the
performance of the methods that use evaluation time (APGP and
explicit time control) with MLRGP without complexity control and
MLRGP with an effective bloat control technique. Also, them with
MLRGP version that discourages the unnecessary growth of the
features that MLRGP discovers. We used ten test problems that tend
to overfit when MLRP is applied.

The rest of this paper is organised as follows. Section 2 provides
some background information, Section 3 details the methods that
were employed in this study, and Section 4 details the experimental
setup. The results of the experiments are presented and discussed
in Section 5. Finally, the conclusions and further work are given in
Section 6.

2 BACKGROUND
Genetic programming (GP) uses a guide random approach to enable
computers to automatically build models and to program them-
selves; the approach is inspired by the Darwinian principle of natu-
ral evolution. The most popular representation of a GP individual
is a variable tree-based structure[14]; several other representations
exist [2, 8, 15, 32, 38, 45]. Variability of the structures is a common
feature of the representations that introduces challenges such as
uncontrolled growth in the size of evolving code, also termed code
bloat [31].

2.1 Complexity in Genetic Programming
Finding an appropriate notion of complexity and implementing a
means of controlling it can be challenging tasks [40]. Many notions
and techniques have been proposed that can not be fully reviewed
here due to space constraints. Therefore, we briefly examine some
approaches, broadly.

The traditional and most popular approach of managing com-
plexity in GP is to work with the representation of a model, the
structural complexity. This approach considers the number of nodes,
the encapsulated subtrees and the number of layer to determine
complexity; this is termed bloat control. However, they ignore the
underlying functional or computational complexity of the expres-
sion. This is a significant shortcoming.While bloat control penalises
the expression of a linear equation 5𝑥 + 4𝑥 + 3𝑥 + 2𝑥 +𝑥 that is large,
a smaller but computationally more complex expression 𝑠𝑖𝑛(𝑥) will
not be penalised [6]; the smaller 𝑠𝑖𝑛(𝑥) is more complex because
it is equivalent to its Taylor series expansion

∑∞
𝑛=0 (−1)𝑛

𝑥2𝑛+1

(2𝑛+1)!
and will use up more resources to execute than the linear equa-
tion. Therefore, the complexity of a GP individual is more than the
size of its expression. Many bloat control techniques have been
proposed [24]. Other related studies have proposed bloat control
measurements [40], bloat control approaches that are Kolmogorov-
based [11], minimum description length principle based [13][16],
and those that use invariance theorem [26].

Another approach, known as functional based approaches, recog-
nises that small structures may be more complex than large struc-
tures. An example of these approaches determines functional com-
plexity by approximating the the evolved expressions by polynomi-
als [44]. The study considers expressions that are approximated by
polynomials of a high degree as more complex than those approxi-
mated with low degrees; this is based on the idea that the complex
ones are approximated by polynomials of high degree because of a
large degree of oscillations in the response of the function, termed
the order of non-linearity. However, the minimising this measure
of complexity requires that the evolved expressions are twice dif-
ferentiable, this is a property that can not be guaranteed. To avoid
the requirement of twice-differentiability, another study [40] pro-
posed a measure of functional complexity that uses the slope of the
response surface of the expression along each feature dimension.
However, the this approach is error-prone and computationally
expensive; also, the study only showed how complexity can be
measured and did not show how it can be controlled.

Complexity is also being managed using concepts from statisti-
cal learning theory. These include the generalisation error-bound
Vapnik–Chervonenkis (VC) theory and Rademacher complexity
theory [22] [43]. As a general measure of the capacity or complexity
of a learning machine [42] [41], the VC dimension is the maximum
number of vectors that can be separated (shattered) into two classes
in all possible ways by a set of functions [42]. This has been used
to provide various estimations of generalisation errors. Another
related framework is Structural risk minimisation (SRM). It uses
the VC dimension to assess the generalisation ability of a learning
machine [7]; this involves predicting the distance between the test
and training errors to define the upper bound of the generalisation
error. While the proposed method generalised better than standard
GP, the authors acknowledged the expensive computational cost
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of the method and a need for further study of parameters. Finally,
another related study [3] measured functional complexity by cal-
culating the variance of the outputs of evolving expressions and
explicitly minimised it in a multi-objective optimisation approach.

The functional complexity approaches and the statistical learning
approaches are referring to mathematical expression. Therefore,
their application is limited in scope, especially because GP is a
versatile tool that has broad application, such as in automatic pro-
gramming, design and data modelling. Also, implementing these
techniques is often non-trivial. In contrast, the measure of complex-
ity that we use in this study considers computational complexity,
the evaluation time. This promises to be more broadly applica-
ble than the complexity measures highlighted above. The use of
evaluation time is nascent in GP [34][35][9].

2.2 Time as an Indicator of Complexity
We ran some test to empirically verify that controlling evaluation
time (computational complexity) is not the same as controlling size,
as argued in the previous section. This enabled us to determine if
evaluation time can differentiate between the functional complexity
of expressions that are of the same size; also, as evaluation time
increases with evaluation times it is important to verify the impact
of functional complexity on the evaluation time.

2.2.1 Time is not Size. To demonstrate that the evaluation
time reflects more than size, we grouped mathematical operators
(functions) into four groups by their complexity and then generated
symbolic regression models using each of the groups. Each group
had different sized individuals ranging from 10 to 300 node lengths;
also for each size 30 random expressions were produced. All models
were then evaluated and the average evaluation times of each node
size in a group was plot in Figure 1; the four plots represent the
four groups, respectively.

From the graphs in Figure 1, we can make some clearly observa-
tions. First, the evaluation times of the individuals that were pro-
duced with functionally complex operators are consistently higher
than same size individuals made up of less functionally complex
operators. Therefore, evaluation time is able to discriminate be-
tween functional complexity. Secondly, as expected, the evaluation
time shows a strong correlation with size. From these observations,
we can determine that controlling complexity through controlling
evaluation time will work conditionally: if the sizes have converged
to similar sizes, within a certain tolerance, it will curbs functional
complexity; otherwise, it curbs the growth in the sizes of the indi-
viduals. The tolerance in increases as the sizes of the individuals
increase. As an example, an ADD-SUB individual of size 175 has
the same evaluation time as the COS-SIN of size 75.

These findings predict the limiting behaviour of evaluation time
control in GP. When the population if functionally diverse but a
size-converged (where bloat control is not useful) the evaluation
times discriminates between functional complexities. On the other
hand, when sizes in the population is diverse and the functional
complexity has converged then evaluation times discriminate be-
tween sizes.

Figure 1: The evaluation time of models is affected by both
their size and their composition. Higher average evaluation
times were given by individuals made up of COS and SIN
operators than same-sized individuals made up of simpler
functions sets. Also, evaluation time correlates with size.

2.2.2 Complexity and Number of Features. Instead of a
monolithic structure, the MLRGP method that we use for our ex-
periments finds features that make up an individual model; this
is detailed in Section 2.3. Also, the method evaluates each feature
independently with the training data. This means that increasing
the number of features will increase the evaluation times. When
we examined the final populations that were produced by MLRGP,
we observed a stronger correlation between the evaluation times
and the number of features of the individuals than with with eval-
uation times and the sizes of the individuals. Figure 3 shows this
correlation in the final populations of MLRGP on the test problem
2; this represents 1,500 individuals across 30 generations.

This implies that discouraging evaluation times will discourage
all that contribute to evaluation times including the size, the com-
putational complexity of the components (e.g. sin vs add) and the
number of features. On the other hand, discouraging size alone
(bloat control) ignores the complexity of the components and the
number of features within the individual. After all, two individuals
of the same size can have different numbers of features and exhibit
different functional behaviours.

2.2.3 Reliability of Evaluation TimeMeasurements. Eval-
uation times measurements can vary across multiple executions.
To allow for the use of a single evaluation to get a reliable esti-
mate of complexity, we had to address this variability. Though
this challenge can not be totally eliminated (CPU scheduling is
the prerogative of the operating system kernel), we found ways
to significantly minimise the variation. This include apply CPU
management options: (1) disabling background services, (2) locking
CPU Speed so that the operating system does not change it during
operations like power management, (3) running the GP runs on
dedicated processors, and (4) raising the priority of the GP runs
on the processor. Also, our implementation used a Python (3.3 and
above) CPU-time-based function that uses CPU performance coun-
ters [36] to measure the evaluation time. The function offers high
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resolution (in nanoseconds) across platforms, while the returned
values are in fractional seconds.

The impact of these settings is show in Figure 2. The box-plots
in the figures are for multiple evaluation time readings for indi-
viduals of different sizes; Figure 2a and Figure 2b show readings
before and after applying the CPU settings, respectively. These
approaches allowed us to reliably use a single execution to measure
the evaluation time.

(a) Before (b) After

Figure 2: Improvement in the consistency of evaluation time
measurements after applying CPU options.

(a)

(b)

Figure 3: The correlation between the evaluation time and
(a) the number of features (a) and (b) size.

Figure 4: An MLRGP representation of a model. The nodes
labeled tag are placeholders that are not evaluated; and the
subtrees F1 - F4 are treated as features.

2.3 Overcoming Under-fitting in GP
In this section, we motivate and introduce the MLRGP method that
we have used for the experiments. The history of GP’s struggle
with manufacturing the requisite constants is well documented
[4, 19] and dates back to Koza’s early work [21]. Recent work such
as [33] and [17] in regression and classification respectively, how-
ever, has shown the merit in hybridising GP with statistical and
machine learning techniques to help circumvent the problem of
tuning constants in GP; in fact, the performance boost can be signif-
icant. Because our work targets regression problems, we adopt the
approach discussed in [33] that identifies features in GP trees and
then leverages multiple linear regression to tune the coefficients
of these features. As shown in Figure 3, the time cost of a model
with a high number of features is different from that of a model
that is simply big in size. Therefore, a complexity control method
that can differentiate between time and size is better able to control
the complexity of such a system.

The use of MLRGP is also motivated by the fact that containing
overfitting truly makes sense if the training scores are high. The
work in [33] argues that GP often heavily underfits without using
MLR, but overfits with it. Therefore, much as the cited work on
evaluation-time based complexity control has reduced overfitting
in GP without the use of MLR, we test if the same can also reduce
overfitting in MLRGP.

The MLRGP uses a modified version of the standard tree repre-
sentation of symbolic regression models; an example is shown in
Figure 4. The new type of node (labeled tag) is introduced to act as
a placeholder, that is not evaluated. The placeholder was defined
with an arity of two. This enables it to either branch out further
creating more placeholders or contain a feature directly below it.
As marked in Figure 4, F1, F2, F3 and F4 are subtrees that act as
independent features. The only constraint required for the MLRGP
tree to remain valid is that tag nodes can only have tag nodes as
parent nodes. The genetic operators (mutation and crossover) must
obey this constraint. Besides respecting this constraint, genetic
operators (crossover and mutation) proceed as usual. This means
that they can act within a feature or on a set of features.
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To evaluate an MLRGP individual, the followings steps must
be taken. First, the features are identified by noting the tag nodes.
Second, each feature is evaluated with data. Third, the output of
the evaluating features are used to create a design matrix (a column
per feature) that the MLR will then use to tune the coefficients (one
coefficient per column, plus an intercept term). Next, the coefficients
that MLR produced for the features are used to create a final model.
The final model for the example in Figure 4 will take the following
form:

Y = 𝛽0 + 𝛽1F1 + 𝛽2F2 + 𝛽3F3 + 𝛽4F4
where Y represents the output of the model, and 𝛽0 is the intercept,
𝛽1 to 𝛽4 are the coefficients of the features F1 to F4 respectively.
The generated model is then also tested on the test data.

The effect of MLRGP on our dataset is shown in Figure 5. The
charts show the average training and test scores of the population
by generation for both MLRGP and standard GP. Clearly, MLRGP
boosted the fitness scores to a point that it exhibits signs of overfit-
ting on our dataset, as desired in this study.

3 COMPLEXITY CONTROL USING TIME
In this section, we highlight the two approaches that we used to
control complexity using our measure of complexity, that is, evalu-
ation time. As detailed later, one method controls the complexity
explicity while the other does so implicitly.

3.1 Explicit Time Control (TC)
The explicit time control [35] leverages the mechanisms of estab-
lished bloat control techniques but instead of containing size growth
it contains the evaluation times. The work in [35] used compared a
variety of bloat control techniques but found that for time-control
the so-called Double Tournament (DT) [23, 25] worked the best. DT
has also proven to be a success bloat control technique [25][23][35]
that balances accuracy and bloat control.

Double Tournament (DT) [23, 25] runs two rounds of tourna-
ments. The first round runs 𝑛 probabilistic tournaments (each with
a tournament of size 2) to return a set of 𝑛 individuals. In the tourna-
ments, the smaller individual is selected with a set probability. Then,
in the second round, the fittest out of the 𝑛 individuals is selected.
This increase the chances of selecting small and accurate parents
and subsequently, increase the chance of producing offspring.

As in [35], to control time we simply replace size with time; the
evaluation times of the individuals are measured and saved as an
attribute of the individual. Also, we used the recommended problem-
independent settings [25] - a probability of 0.7 for choosing the
smaller individual in a tournament of size two in the first round.
Further, we compare the use of DT to control time with DT to
control size (bloat control). This forms a fair basis of comparing the
two measures of complexity (size and time).

3.2 Implicit Time Control with Asynchronous
Parallel GP

Instead of explicitly discouraging the increase in evaluation times,
the so-called Asynchronous Parallel GP (APGP) [34] implicitly con-
trols evaluation times by creating a race condition in steady state
GP using asynchronous parallel computing. This race means that

the models that evaluate quickly can join the steady-state popula-
tion quicker than their slower counterparts that are still evaluating.
Thus, this delayed entry into the breeding population puts the
complex models at a disadvantage and the delay is proportional
to the computational expense of that model. After all, in natural
evolution the population does not wait for it’s members to be tested
against their environment before creating the new generation. Nev-
ertheless, the traditional GP approach is to stop the evolution and
waiting for the population to finish evaluating.

However, once in the population all the models compete based
on their fitness; consequently, APGP allows simple and accurate
solutions to be producedwhen andwhere possible. Therefore, APGP
does not explicitly discriminate between model complexity, and
the complexity control is gentler than in the explicit time control
methods described earlier.

Also [34] shows that APGP improves the training speed of GP; it
takes fewer evaluations to match the training accuracy of standard
GP and GP with bloat control.

3.2.1 The APGP Algorithm. By using the Steady State re-
placement scheme [39], APGP is able to breed and evaluate an
offspring, and let it compete for a place in the population imme-
diately. Several of such breed/evaluate operations are allowed to
run in parallel and asynchronously on the same population. For
example, we may set of 100 of such operations to run at the same
time; as soon as one operation completes a new one is initiated. As
discussed earlier, the evaluations will complete at different times
depending on the complexity of the individual (evaluation times);
naturally, all individuals are fairly evaluated by the same means (e.g.
using the same dataset). This race to completion means that the less
complex individuals (that take less time to evaluate) can potentially
get into the population and breed before the more complex (and
slow) counterparts.

The initialisation of the APGP algorithm includes the setting of
the number of allowed concurrent breeding/evaluations operations
and other standard GP parameters like the population size and the
total number of offspring to produce (APGP is not generational).
Next, the initial population is created and evaluated. Then, the
parallel breeding begins that trigger the evaluations; the paralleli-
sation is enable up to the set limit. Immediately after completing
evaluation, it is engaged in a tournament. If it is more accurate than
the worst of 5 randomly selected individuals in the current popu-
lation, it replaces that individual and then releases the computing
resources. Once the resource is free, a new breed operation begins.
As several of these parallel operations are likely to be updating the
same population at the same time, a temporary lock is set on an in-
dividual that is being replaced to avoid having multiple operations
attempting to replace it at the same time.

Speed becomes an advantage only when it is accompanied by
high accuracy because only accuracy is considered in the replace-
ment tournament. When the more complex candidates are more
accurate than their simpler counterparts, they will succeed and
propagate in due course. Thus, APGP does not penalise or exclude
complex models. The possibilities within the specific problem deter-
mines the simplicity of accurate models; APGP simply increase the
changes of gaining accuracy and simplicity where this is possible.
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4 EXPERIMENTS
4.1 Other Contending GP Methods
Besides the two time control GP methods detailed in Section 3,
other GP methods we also used as follows:

4.1.1 Standard MLRGP (STD). The MLRGP with no complexity
control (no bloat control nor time control) is run on the problems
for comparison.

4.1.2 MLRGP with Bloat Control (BC). Our choice of bloat con-
trol technique is Double Tournament [23, 25]. This has proven
to be a success bloat control technique [25][23][35] that balances
accuracy and bloat control. The technique has been discussed in
Section 3.1; while in this case the technique is to control the size of
GP individuals, it will be also be used to control evaluation times
in a separate GP methods.

4.1.3 MLRGPwith Adjusted𝑅2 for Fitness. Unlike thewell known
𝑅2, the adjusted 𝑅2 [27] is a performance measure used in MLR that
balances out the accuracy of a model with the number of features
it uses. The original 𝑅2 (also known as the coefficient of determi-
nation) is a measure of how well a model explains the response
variable. It takes a value between 0 and 1, where 1 is indicates
the higher accuracy. Without the Adjusted 𝑅2 MLRGP allows the
addition of features that contribute very little or nothing to the
fitness of a model. Using the Adjusted 𝑅2 addresses this drawback
by taking into account the contribution of additional features. The
Adjusted 𝑅2 increases only when the additional features signifi-
cantly enhances the accuracy of the model and decreases otherwise.
Thus, using the adjusted 𝑅2 in the fitness function of MLRGP dis-
courages unnecessary growth in the number of features unless they
the features offer a significant improvement. In effect, this offers
some bloat control.

For our experiments we used the Wherry/McNemar version [47]
of the adjusted 𝑅2 formula, as follows:

1 − (1 − 𝑅2) (𝑛 − 1)
(𝑛 − 𝑘 − 1) ,

where 𝑘 denotes the number of features and 𝑛 denotes the number
of instances in the data. To compare different methods, however, we
also record the normalised mean square error (NMSE) even where
adjusted 𝑅2 is employed in fitness functions.

4.2 Test Problems
Ten widely used and publicly available datasets were selected as
test problems. While selecting the test problems, We considered the
recommendations in [46] and we checked for overfitting when the
enhanced GP is used. The data for Problem 1 – 7 are available at
the Penn machine learning benchmark (PMLB) [28]; and the data
for Problem 8 – 10 are available at [10]. They are summarised in in
Table 1.

4.3 Configurations and Settings
Table 2 summarises the key parameters. Other considerations and
settings include the following.

Population Initialisation: We used a Fixed Length Initialisa-
tion (FLI) in all the experiment. The motivation is to create a diverse

Figure 5: The training and test fitness values of MLRGP and
standard GP are compared. MLRGP has improved training
to the point of overfitting the data.

ID Data-Set Name Variables Instances
1 027 ESL 3 488
2 207 AutoPrice 14 159
3 522 pm10 6 500
4 547 NO2 6 500
5 560 bodyfat 13 252
6 666 rmftsa ladata 9 508
7 690 Visualizing galaxy 3 323
8 Boston Housing 13 506
9 Concrete Strength 8 1030
10 Diabetes 10 442

Table 1: Overview of Test Problems

populations in terms of the makeup of the individuals ; therefore,
as discussed in 1, time control may discriminates between their
functional complexities. This initialisation scheme improves the
performance of a variety of GP methods [35].

Zero Division error: When zero division errors are encountered
during evaluation, the individual with the error is assigned the
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Parameter Setting
No. of runs 30
Size of population 500
Generations 30 (15,000 evaluations)
Random tree/
subtree production

Ramped half-and-half
depth = (𝑚𝑖𝑛 = 1,𝑚𝑎𝑥 = 4)

Tree depth max = 17
Operator types crossover = One point; Point mutation
Operator settings crossover = 0.9 ; mutation = 0.1
Function set +,−, ∗, /, sin, cos, neg
Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)
Terminal set {Input variables} U ERC
Selection tournament (size = 3)
Replacement steady state; inverse tournament (size = 5)

Table 2: Summary of Parameters

worst fitness score to make it uncompetitive. Previous studies [19]
have shown that the popular practice of using protected operators
can lead to poor generalisation.

Data Sets Splitting: 80% of the data-sets was allocated for train-
ing and 20% for testing. The splitting was done using random selec-
tion without replacement.

APGPConcurrency:We used threads (number of parallel threads)
100, 250, 500 which represents 20%, 50% and 100% of the population
size. Although, threads 250 produced the most competitive results
generally, we can explore how this can be improved in the future
studies.

Replacement Scheme: As APGP uses a steady-state replacement
scheme, we set up all the contending methods to use same.

Fitness function: We used a maximisation fitness functions that
used used a fitness score that ranges between 0 and 1. The nor-
malised mean squared error was used as follows: 1

1+
√

1
𝑛
Σ𝑛
𝑖=1 (𝑦𝑖−𝑦𝑖 )2

.

5 RESULTS AND DISCUSSION
First, we examine how the two evaluation time control methods
fared against the other methods before examining how they fared
against each other. Later, we examine how MLRGP with Adjusted
𝑅2 fared against the other methods.

TheMann-Whitney U test was used to determine the significance
of the difference in the final populations. While, the result of the
tests are are summarised in Table 3, the details (including mean
values and p-values) are captured in the colour coded tables in
Figure 6 and Figure 7. For fitness, we compare both test fitness
and training fitness; and for complexity, we compare the evaluation
times, the sizes, and the number of features. The green coloured cells
represent results that are favourable to the time control method and
where the difference is significant. Contrary, the brown coloured
cells are results that are not favourable to the time control method
and the difference is significant. The yellow cells are results where
the difference was found not to be significant. Figure 6 compares the
explicit time control methods against other methods and Figure 7
details the result of comparing the APGP with the other methods.

In terms of test-fitness accuracy, both methods that use evalua-
tion times (TC and APGP) prevailed over the MLRGP with bloat

Method Test
Fitness

Train.
Fitness

Size Evaluat.
Times

No of
Features

Time-Control Success
STD 9/10 0/10 10/10 10/10 10/10
BC 7/10 0/10 9/10 10/10 10/10
APGP 6/10 0/10 10/10 10/10 10/10
AR2 6/10 6/10 1/10 3/10 1/10
APGP Success
STD 9/10 0/10 10/10 10/10 10/10
BC 7/10 6/10 0/10 0/10 0/10
TC 4/10 9/10 0/10 0/10 0/10
AR2 6/10 8/10 0/10 0/10 0/10

Table 3: Summary of the test for significance in difference.
The figures show where TC and APGP produced signifi-
cantly better results, respectively.

control (BC) and without bloat control (STD). The time control
methods had matching results in terms of the number of tests they
prevailed; they produced significantly higher test scores in 9 out
of 10 tests against STD and 7 out of 10 against BC. However, the
two time control methods differ in how they handle complexity;
we consider the evaluation times, size and the number of features
as measures of complexity. TC produced significantly simpler solu-
tions against BC and STD with only one exception out of the the
60 tests. APGP produced significantly simpler solutions in all tests
against STD but more complex solutions than BC in all test.

When the two time control techniques are compared, the re-
sults are divided. As seen earlier, they are close in terms of test
fitness but differ in terms of complexity. TC won 6 out of 10 for test
problems but all for complexity. APGP trained better than all but
unconstrained MLRGP it prevailed in 9, 6 and 8 instances (out of
the 10 each) against TC, BC and AR2, respectively.

MLRGPwithAdjusted𝑅2 (AR2) shows effectiveness at containing
the number of features. This in turn is reflecting in containing the
size and the evaluation times of the individuals. It has produced
simpler solutions against the other methods in most of the tests.
Also, it is competitive in terms of test fitness accuracy, against the
time-control methods; it prevailed in 6 out of 10 against both time
control methods.

6 CONCLUSION
To facilitate our study on generalisation in GP, we implemented a
version of MLRGP that lead to improvement in fitness to a point of
overfitting our data easily. This implementation discovers features;
we used the number of features as as another way of comparing the
complexity of the solutions produced by the contending methods.

We showed that the evaluation time behaves differently from
size. We demonstrated that it can discriminate between the size,
the complex of the components, and the number of features of the
MLRGP individual.
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Figure 6: The result of the test for significance in difference
in the fitness fitness values of the final population of Time-
Control (TC) against the other GP Methods are detailed.

The results reasserts that using the evaluation time leads to
better generalisation. Time control methods (both TC and BC) are
producing better test score than bloat control (BC) and standard
MLRGP. This is despite that fact that TC and BC used the same
techniques to control time and size, respectively. Also, individually,
the time control techniques produced similar results against BC
and STD. This indicates that the evaluation time is the determining
factor in the improvement. Further as anticipated, the APGP showed
a less aggressive complexity control than TC while showing better
training.

The MLRGP with Adjusted 𝑅2 (AR2) effectively controls bloat
by simply suppressing the unnecessary growth in the number of
features in an MLRGP tree. This made it competitive against the
time control techniques (TC and APGP) and it prevailed against BC
and STD. However, AR2 is only applicable where GP is working
with features.

Overall, this study highlights the feasibility and merits of us-
ing the evaluation time to improve generalisation and as a broad
applicable complexity control measure.

Figure 7: The result of the test for significance in difference
in the fitness values of the final population of APGP against
the other GP Methods are detailed.
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