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ABSTRACT
This work proposes to use evolutionary computation as a pathway
to allow a new perspective on the modeling of energy expenditure
and recovery of an individual athlete during exercise.

We revisit a theoretical concept called the “three component
hydraulic model” which is designed to simulate metabolic systems
during exercise and which is able to address recently highlighted
shortcomings of currently applied performance models. This hy-
draulic model has not been entirely validated on individual athletes
because it depends on physiological measures that cannot be ac-
quired in the required precision or quantity.

This paper introduces a generalized interpretation and formal-
ization of the three component hydraulic model that removes its
ties to concrete metabolic measures and allows to use evolutionary
computation to fit its parameters to an athlete.

CCS CONCEPTS
• Computing methodologies→ Modeling methodologies; Model
verification and validation; Simulation by animation.
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Figure 1: A generalized schematic of the three component
hydraulic model. Tanks are renamed as aerobic component
𝐴𝑒, anaerobic fast component 𝐴𝑛𝐹 and anaerobic slow com-
ponent 𝐴𝑛𝑆 . 𝑝𝐴𝑒 and 𝑝𝐴𝑛 represent flows and −𝑚𝐴𝑛𝐹 , 𝑚𝐴𝑛𝑆 ,
and𝑚𝐴𝑒 maximal flow capacities.

A MODEL GENERALIZATION AND
FORMALIZATION

Our generalized interpretation of the three component hydraulic
model removes its ties to concrete physiological measures. This
section defines this more general view with a robust formalization
of its dynamics. These steps—generalization and formalization—
ultimately allow to see the fitting of the three component hydraulic
model as a two-objective optimization problem with eight parame-
ters that can be approached with evolutionary computation.

A.1 Model Generalization
A schematic of the generalized form of the three component hy-
draulic model is depicted in Figure 1. Ignoring relations to lactate,
carbohydrate or phosphocreatine, this work refers to the middle
tank (𝐴𝑛𝐴 in Morton’s schematic in Figure 5 of his review from
2006 [10]) as the anaerobic fast component 𝐴𝑛𝐹 and the tank on
the right (𝐴𝑛𝐿 in Figure 5 of Morton’s review [10]) as the anaerobic
slow component 𝐴𝑛𝑆 . The left tank originally labeled with 𝑂 for
oxygen is renamed into the aerobic contribution 𝐴𝑒 . This more
general interpretation also allows to fully remove tube 𝐵, which
was included in Morton’s work to account for early lactate levels
in blood [8].

These are just slight adjustments but they represent a new per-
spective on the dynamics of the model. Rather than the originally
intended concrete metabolic energy storages that have to be set
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up according to empirical measures, tanks now represent more
abstract entities that allow to be interpreted as a combination of
sources which can be fitted by optimizing an objective function.

A.2 Configurations
A configuration of our proposed adjusted three component hy-
draulic model entails component positions, sizes and capacities. In
alignment to Figure 1, a configuration 𝑐 for the model is defined as
a collection of the following values,

𝑐 = ⟨𝐴𝑛𝐹,𝐴𝑛𝑆,𝑚𝑂 ,𝑚𝐴𝑛𝑆 ,𝑚𝐴𝑛𝐹 , 𝜙, 𝜃,𝛾⟩ (1)

where {𝐴𝑛𝐹,𝐴𝑛𝑆} are tank capacities, {𝑚𝑂 ,𝑚𝐴𝑛𝑆 ,𝑚𝐴𝑛𝐹 } are max-
imal flow capacities and {𝜙, 𝜃,𝛾} are distances to define tank and
pipe positions.

A.3 Model Formalization
For simulations that allow to find an optimal configuration 𝑐 via
an evolutionary computation approach, the model needs to be
formalized in a robust manner. All equations are detailed in corre-
spondence to the notation depicted in Figure 1 and in accordance
to approaches by Morton [6, 7, 9] and Sundström [13] who build
upon Morton’s work. Our simulations do not include efforts where
the athlete has to work at the maximal intensity they can possibly
sustain and therefore we do not cover Morton’s and Sundström’s
limitations on maximal power output (limitations for a maximal 𝑝).

A simulation starts with the drainage of liquid to match power
demands 𝑝 . The simulation uses discrete time steps and the time
difference between two time steps 𝑡 and 𝑡 + 1 is denoted as Δ𝑡 .
For the estimations of fill levels and flows for time step 𝑡 , first the
previous ℎ𝑡−1 is adapted according to the power demand 𝑝𝑡 . This
results in the intermediate level ℎ𝑝𝑡 .

ℎ
𝑝
𝑡 = ℎ𝑡−1 +

𝑝𝑡

𝐴𝑛𝐹
· Δ𝑡 (2)

Now the liquids in tanks 𝐴𝑒 and 𝐴𝑛𝑆 react to the new fill level of
𝐴𝑛𝐹 and flows are estimated. The contribution 𝑝𝐴𝑒 from the 𝐴𝑒
tank is estimated as follows.

𝑝𝐴𝑒𝑡 =

𝑚
𝐴𝑒 · ℎ

𝑝

𝑡

1−𝜙 , if 0 ≤ ℎ
𝑝
𝑡 ≤ (1 − 𝜙).

𝑚𝐴𝑒 , otherwise.
(3)

The maximal possible contribution𝑚𝐴𝑒 is scaled with the ratio of
the fill level of 𝐴𝑛𝐹 to (1 − 𝜙), which means the maximal flow is
reached as soon as ℎ𝑝𝑡 ≥ (1 − 𝜙). Because the size of 𝐴𝑒 is infinite,
liquid will never flow back into 𝐴𝑒 and thus the interval of 𝑝𝐴𝑒 is
[0,𝑚𝐴𝑒 ].

Estimations of the flow from 𝐴𝑛𝑆 to 𝐴𝑛𝐹 or backwards from
𝐴𝑛𝐹 to 𝐴𝑛𝑆 are more sophisticated. The flow through this pipe is
defined as 𝑝𝐴𝑛 and, because liquid can refill 𝐴𝑛𝑆 or flow out of
it, the interval is [−𝑚𝐴𝑛𝐹 ,𝑚𝐴𝑛𝑆 ]. Let 𝑔𝑚𝑎𝑥 be defined as the total
height of 𝐴𝑛𝑆 :

𝑔𝑚𝑎𝑥 = 1 − 𝜃 − 𝛾 (4)

To introduce possible flowsmore clearly, calculations are introduced
in categories. The full Equation (8) for 𝑝𝐴𝑛𝑡 , is the combination
of Equation (5), Equation (6), and Equation (7) of this Appendix.
Equation (5) describes cases in which no flow between 𝐴𝑛𝑆 and

𝐴𝑛𝐹 happens and thus 𝑝𝐴𝑛𝑡 equals 0.

𝑝𝐴𝑛𝑡 =



0, if ℎ𝑝𝑡 ≤ 𝜃

and 𝑔𝑡−1 = 0.
0, if ℎ𝑝𝑡 ≥ (1 − 𝛾)

and 𝑔𝑡−1 = 𝑔𝑚𝑎𝑥 .

0, if ℎ𝑝𝑡 = (𝑔𝑡−1 + 𝜃 ) .

(5)

In the first case, the tank 𝐴𝑛𝑆 is full and the fill level of 𝐴𝑛𝐹 is
above the top of tank 𝐴𝑛𝑆 . In the second case, the fill level of 𝐴𝑛𝐹
is below the bottom end of 𝐴𝑛𝑆 and 𝐴𝑛𝑆 is empty. Finally, in the
third one, the fill level of 𝐴𝑛𝐹 is exactly at par with the fill level of
𝐴𝑛𝑆 causing an equilibrium between both.

In Equation (6) cases in which liquid flows out of 𝐴𝑛𝑆 into 𝐴𝑛𝐹
are covered.

𝑝𝐴𝑛𝑡 =


𝑚𝐴𝑛𝑆 · ℎ

𝑝

𝑡 −(𝑔𝑡−1+𝜃 )
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 > (𝑔𝑡−1 + 𝜃 )

and ℎ𝑝𝑡 < (1 − 𝛾) .
𝑚𝐴𝑛𝑆 · 𝑔

𝑚𝑎𝑥−𝑔𝑡−1
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 ≥ (1 − 𝛾)

and 𝑔𝑡−1 < 𝑔𝑚𝑎𝑥 .

(6)

If the fill level of 𝐴𝑛𝐹 is below the fill level of 𝐴𝑛𝑆 and above the
bottom end of 𝐴𝑛𝑆 , the maximal possible flow is scaled according
to the ratio of the difference between fill levels and the total height
of 𝐴𝑛𝑆 . Or, if the fill level of 𝐴𝑛𝐹 is below the bottom end of 𝐴𝑛𝑆
and 𝐴𝑛𝑆 is not empty, the maximal flow is scaled according to the
amount of remaining liquid to consider the pressure of remaining
liquid in the tank.

Equation (7) describes the refilling flow—the flow back from𝐴𝑛𝐹

into 𝐴𝑛𝑆 .

𝑝𝐴𝑛𝑡 =

{
𝑚𝐴𝑛𝐹 · ℎ

𝑝

𝑡 −(𝑔𝑡−1+𝜃 )
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 < (𝑔𝑡−1 + 𝜃 )

and 𝑔𝑡−1 > 0.
(7)

Here the fill level of𝐴𝑛𝐹 is above the fill level of𝐴𝑛𝑆 and𝐴𝑛𝑆 is not
full, which causes liquid to flow back into 𝐴𝑛𝑆 . The maximal flow
𝑚𝐴𝑛𝐹 from 𝐴𝑛𝐹 into 𝐴𝑛𝑆 is scaled according to the ratio between
the difference of fill levels and the height of𝐴𝑛𝑆 . Since ℎ𝑝𝑡 is smaller
than 𝑔𝑡−1 + 𝜃 , the result will be negative, indicating that a re-flow
into 𝐴𝑛𝑆 happens.

As the result, the full equation for 𝑝𝐴𝑛𝑡 is the combination of
Equation (5), Equation (6) and Equation (7).

𝑝𝐴𝑛𝑡 =



0, if ℎ𝑝𝑡 ≤ 𝜃

and 𝑔𝑡−1 = 0.
0, if ℎ𝑝𝑡 ≥ (1 − 𝛾)

and 𝑔𝑡−1 = 𝑔𝑚𝑎𝑥 .

0, if ℎ𝑝𝑡 = (𝑔𝑡−1 + 𝜃 ) .
𝑚𝐴𝑛𝑆 · ℎ

𝑝

𝑡 −(𝑔𝑡−1+𝜃 )
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 > (𝑔𝑡−1 + 𝜃 )

and ℎ𝑝𝑡 < (1 − 𝛾).
𝑚𝐴𝑛𝑆 · 𝑔

𝑚𝑎𝑥−𝑔𝑡−1
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 ≥ (1 − 𝛾)

and 𝑔𝑡−1 < 𝑔𝑚𝑎𝑥 .

𝑚𝐴𝑛𝐹 · ℎ
𝑝

𝑡 −(𝑔𝑡−1+𝜃 )
𝑔𝑚𝑎𝑥 , if ℎ𝑝𝑡 < (𝑔𝑡−1 + 𝜃 )

and 𝑔𝑡−1 > 0.

(8)
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Having both flow values 𝑝𝐴𝑒𝑡 and 𝑝𝐴𝑛𝑡 of the current time step 𝑡 ,
the tank fill levels of this time step are derived as:

ℎ𝑡 = ℎ
𝑝
𝑡 +

𝑝𝐴𝑛𝑡 + 𝑝𝐴𝑒𝑡

𝐴𝑛𝐹
· Δ𝑡 (9)

𝑔𝑡 = 𝑔𝑡−1 +
𝑝𝐴𝑛𝑡

𝐴𝑛𝑆
· Δ𝑡 (10)

These equations allow to estimate tank fill levels for each time step
𝑡 throughout a simulation with possibly varying power demands
𝑝𝑡 .

A.4 Handling Extreme Cases
Large values for Δ𝑡 , or combinations of small parameter values for
tanks sizes with large values for maximal flow rates can cause faulty
estimations for 𝑝𝐴𝑛𝑡 . These scenarios are not considered by Sund-
ström [12, 13] or Morton [6–9] because Morton used differential
equations on isolated test scenarios and Sundström’s handcrafted
simulation conditions seem to not cause situations in which such
extreme values come into effect.

In order to make simulations robust in such cases, three limita-
tions to the flow 𝑝𝐴𝑛 are applied: In case Δ𝑡 ,𝑚𝐴𝑛𝐹 , or𝑚𝐴𝑛𝑆 are
large, it can occur that 𝑝𝐴𝑛 becomes larger than the remaining
capacity of 𝐴𝑛𝑆 or the negative 𝑝𝐴𝑛 refills more liquid than 𝐴𝑛𝑆

can store. For the case that not enough is remaining in 𝐴𝑛𝑆 , 𝑝𝐴𝑛 is
capped to the remaining amount.

𝑝𝐴𝑛𝑡 = min(𝑝𝐴𝑛𝑡 , (𝑔𝑚𝑎𝑥 − 𝑔𝑡−1) · 𝐴𝑛𝑆) (11)

Similarly, if 𝑝𝐴𝑛 amounts to more re-flow into 𝐴𝑛𝑆 than the avail-
able capacity, it is set to just fill 𝐴𝑛𝑆 to the top.

𝑝𝐴𝑛𝑡 = max(𝑝𝐴𝑛𝑡 ,−𝑔𝑡−1 · 𝐴𝑛𝑆) (12)

Further, large Δ𝑡 ,𝑚𝐴𝑛𝐹 or𝑚𝐴𝑛𝑆 as well as 𝐴𝑛𝐹 or 𝐴𝑛𝑆 capacities
can cause 𝑝𝐴𝑛 to force a flow that overshoots the targeted equilib-
rium between both tank fill levels. Thus, the maximal flow𝑚𝐴𝑛

𝑡

between both tanks is defined and limits 𝑝𝐴𝑛 .

𝑚𝐴𝑛
𝑡 =

ℎ
𝑝
𝑡 − (𝑔𝑡−1 + 𝜃 )

1
𝐴𝑛𝑆

+ 1
𝐴𝑛𝐹

(13)

Since both 𝑝𝐴𝑛 and𝑚𝐴𝑛
𝑡 may be negative or positive, the limitation

applies in the following manner:

𝑝𝐴𝑛𝑡 =

{
max(𝑚𝐴𝑛

𝑡 , 𝑝𝐴𝑛𝑡 ), if 𝑝𝐴𝑛𝑡 < 0.
min(𝑚𝐴𝑛

𝑡 , 𝑝𝐴𝑛𝑡 ), if 𝑝𝐴𝑛𝑡 > 0.
(14)

Applying these limits, model simulations stay robust even with
extreme values and the model is ready to be fitted by an optimizer.

B OBJECTIVE FUNCTIONS
Two objectives capture how well a configuration 𝑐 for the hydraulic
model makes it recreate measured performances of a tested athlete.
In this context the term fitness then describes how well the model
reproduces the expected responses. Two fitness measures are to
be optimized: energy expenditure and recovery. The ground truth
performance measures are an athlete’s finite energy reserve for
work above critical power (𝑊 ′) and critical power (CP) as well as
the group averaged recovery ratios that Caen et al. [3] observed on
their participants.

B.1 Energy Expenditure
For the energy expenditure objective function, time to exhaustion
estimations of the critical power concept [5] are compared to time
to exhaustion estimations of the hydraulic model. Using the critical
power concept, exercise intensities can be derived that lead to ex-
haustion after a given amount of seconds. A total of 12 intensities
are estimated for the energy expenditure fitness. These intensities
are the ones that are estimated to lead to exhaustion after 120, 130,
140, 150, 170, 190, 210, 250, 310, 400, 600, 1200 seconds. The three
component hydraulic model with configuration 𝑐 simulates con-
stant exercise at these intensities. As soon as liquid flow out of the
hydraulic model’s tap 𝑝 cannot sustain the demand anymore, ex-
haustion is reached and the total time to exhaustion is compared to
the expected one. From these trials, a total of 12 differences between
the expected amount of seconds until exhaustion and the simulated
amount of seconds until exhaustion are derived. The normalized
root mean squared difference of these is the error measurement to
be minimized for the expenditure objective.

B.2 Energy Recovery
For an estimation of energy recovery capabilities of a hydraulic
model, the recovery ratios summarized in Table 1 are used. The
three component hydraulic model with configuration 𝑐 simulates
the same exercise protocol that Caen et al. [3] conducted to obtain
their measurements.

Using the critical power concept [5], work rates that lead to
theoretical exhaustion after 4 min (P4) and 8 min (P8) are derived.
Using these intensities Caen et al. obtained the in Table 1 summa-
rized recovery rates with a test setup that will be referred to as a
work bout 1 (WB1) → recovery bout (RB) → work bout 2 (WB2)
structure. It is conducted as follows: They let an athlete perform
the first work bout (WB1) at a constant exercise intensity (in this
case either P4 or P8) until the athlete cannot maintain this inten-
sity anymore. This then assumes that𝑊 ′ is depleted. Afterwards
immediately the recovery bout (RB) is started in which they switch
to a much lower recovery intensity (in this case either 33% of CP
(CP33) or 66% of CP (CP66)). This recovery phase prolongs for 2,
4 or 6 minutes and is followed by the second work bout (WB2) at
the same intensity level as WB1 was conducted at. This second
work bout also is stopped when the athlete cannot maintain the
intensity anymore and the duration, i.e., time to exhaustion (TTE),
are recorded for both work bouts. Because of the very limited re-
covery bout duration in-between both work bouts, the TTE of WB2
is bound to be shorter than the one of WB1, and the difference
between both is considered to be the amount of𝑊 ′ balance (𝑊 ′

𝑏𝑎𝑙
)

that was reconstituted during the RB.
As an example using Table 1, the first observation of the P4-CP33

line at 2 min represents a WB1→ RB→WB2 trial at the intensities
P4 → CP33 → P4, where the recovery bout prolonged for 2 min.
The duration of WB2 was 55% of the duration of WB1 and thus it
is inferred that the athlete could retain 55% of their energy.

The three component hydraulic model with configuration 𝑐 con-
ducts the same protocol and exhaustion is the point where liquid
flow out of tap 𝑝 cannot meet the demand anymore. The normalized
root mean squared error of these resulting 12 differences between
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Table 1: Recovery ratios derived from [3]

2 min 4 min 6 min
P4 - CP33 55 % 61 % 70.5 %
P4 - CP66 49 % 55 % 58 %
P8 - CP33 42 % 52 % 59.5 %
P8 - CP66 38 % 37.5 % 50 %

Note: Values are not precisely the ones from Caen et al. [3] and do not
consider std errors. They are derived values to be simple for this proof
of concept.

Figure 2: An exemplary Pareto front of an island. The best
configuration on the Pareto front (blue diamond) is the one
with minimal distance to point (0, 0) and marks the best pos-
sible trade-off between energy expenditure and recovery er-
ror.

observed recovery ratios and simulated recovery ratios is used as
the error to be minimized for the recovery objective.

C THE EVOLUTIONARY ALGORITHM
A configuration 𝑐 consists of eight real-valued parameters. A suc-
cessful strategy to approximate an optimal configuration in such a
search space is evolutionary computation [1, 2, 4]. The intention
of this work is to provide a proof of concept that the proposed
hydraulic model can be fitted to an athlete. Since a proof of concept
is enough, the algorithm and parameter choices are not through-
out fine tuned and we want to emphasize that much more room
for parameter optimization and exploration of problem-specific
algorithms is left for future work

The defined objective functions evaluate expenditure and re-
covery as two distinct objectives, we chose the established Multi-
Objective Evolutionary Algorithm with Decomposition (MOEA/D)
approach as implemented in Pygmo [1, 11].

Two objectives are to be minimized: energy expenditure and
recovery. Both objectives return a normalized root mean squared
error of twelve measurements and are directly comparable. That
allows to define the best trade-off between both dynamics to be the
configuration on the Pareto front that has the smallest Euclidean
distance to point (0, 0) (See example in Figure 2).

Table 2: Pygmo [1] default parameters for MOEA/D

parameter value
weight_generation ’grid’
decomposition ’tchebycheff’
neighbors 20
CR 1
F 0.5
eta_m 20
realb 0.9
limit 2
preserve_diversity true
seed random

In initial experiments we obtained solutions in two categories:
One heavily focused on the optimization of expenditure dynamics
and the other one on the recovery dynamics. To improve general-
ization and to consistently find configurations that optimize both
objectives, we couple MOEA/D with the asynchronous islands func-
tionality of Pygmo [1]. That means several instances (one for each
island) of the evolutionary algorithm are run isolated from each
other. After a set number of generations, solutions from each of the
island populations travel in-between islands. Then each algorithm
continues to evolve their population, which now contains a few
migrant solutions from the populations of the other algorithms.
This step of evolving for a set number of generations and then
exchanging solutions will be referred to as a cycle.

Except for the number of generations, population sizes, the num-
ber of islands, and the number of cycles, all parameters are at the
default that Pygmo provides. Default parameters taken from Pygmo
are summarized in Table 2.

Also for the asynchronous island approach we chose the default
parameters of Pygmo in terms of migration types (’p2p’) between
islands and typologies (’fully connected’), but we do investigate
various combinations of cycles (10,40,80), generations (10,20,30),
population sizes (32,64), and numbers of islands (7,14,21). If the
overall best fitness value of all island populations is not improved
for more than 10 cycles, computations are stopped and the best
solution of the last cycle is the returned result. The algorithm is run
for ten times with each of the resulting parameter combinations.
Results of all individual runs are summarized with the best (min),
average (mean), and worst (max) distance result in Table 3. The
configuration of the hydraulic model that resulted in the minimal
distance (best configuration) is also denoted to give an idea of
how sensitive the objectives are to changes in the 8 variables of a
configuration.
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Table 3: Grid search. Each parameter combination was run for 10 times.

resulting best configuration parameters
gens cycles population islands min average max 𝐴𝑛𝐹 𝐴𝑛𝑆 𝑚𝑂 𝑚𝐴𝑛𝑆 𝑚𝐴𝑛𝐹 𝜙 𝜃 𝛾

10 10 32 7 0.0750 0.0896 0.1129 14 887.19 78 441.50 247.88 91.73 10.02 0.64 0.21 0.32
10 10 32 14 0.0732 0.0807 0.1020 16 731.79 48 023.39 246.03 113.48 9.60 0.70 0.01 0.29
10 10 32 21 0.0698 0.0766 0.0826 19 526.85 78 133.12 247.88 96.16 8.06 0.79 0.05 0.19
10 10 64 7 0.0707 0.0795 0.1028 18 628.31 56 881.67 247.51 108.59 8.15 0.76 0.02 0.22
10 10 64 14 0.0710 0.0730 0.0806 18 325.37 53 462.06 248.24 96.52 8.12 0.72 0.06 0.22
10 10 64 21 0.0704 0.0720 0.0756 18 496.46 86 583.43 248.30 91.07 8.91 0.78 0.09 0.20
10 40 32 7 0.0703 0.0745 0.0822 19 074.54 255 788.43 248.38 84.80 8.86 0.83 0.13 0.18
10 40 32 14 0.0705 0.0734 0.0894 18 985.98 138 678.84 248.24 85.07 8.09 0.80 0.12 0.19
10 40 32 21 0.0697 0.0707 0.0721 18 664.83 94 435.01 247.49 92.78 8.97 0.79 0.08 0.20
10 40 64 7 0.0695 0.0708 0.0749 19 035.04 78 738.60 248.04 94.84 8.08 0.78 0.07 0.20
10 40 64 14 0.0697 0.0704 0.0716 18 082.63 47 905.06 247.52 108.79 9.07 0.72 0.01 0.22
10 40 64 21 0.0694 0.0699 0.0703 19 324.12 222 108.58 247.90 81.11 9.01 0.81 0.14 0.18
10 80 32 7 0.0706 0.0737 0.0846 19 061.94 98 334.88 247.75 94.97 8.72 0.82 0.05 0.19
10 80 32 14 0.0698 0.0723 0.0769 17 861.85 86 634.11 247.95 90.63 9.53 0.75 0.11 0.22
10 80 32 21 0.0699 0.0713 0.0769 18 917.47 144 408.28 247.90 86.06 8.52 0.80 0.12 0.20
10 80 64 7 0.0698 0.0707 0.0751 19 031.40 119 081.83 248.05 85.09 8.81 0.79 0.11 0.19
10 80 64 14 0.0696 0.0706 0.0750 17 958.82 67 994.85 247.73 95.95 9.01 0.74 0.08 0.23
10 80 64 21 0.0697 0.0699 0.0704 17 725.86 50 325.31 247.26 107.09 9.27 0.72 0.02 0.23
20 10 32 7 0.0702 0.0775 0.1011 18 922.50 69 263.96 248.17 94.35 8.45 0.76 0.06 0.19
20 10 32 14 0.0709 0.0742 0.0805 17 021.40 46 888.56 247.03 106.46 9.81 0.68 0.04 0.26
20 10 32 21 0.0707 0.0731 0.0754 20 195.32 101 888.06 248.22 91.04 7.81 0.82 0.06 0.17
20 10 64 7 0.0700 0.0728 0.0768 18 925.49 178 845.77 248.02 85.65 9.63 0.80 0.13 0.19
20 10 64 14 0.0699 0.0703 0.0707 17 642.03 79 591.96 247.83 95.06 9.30 0.75 0.10 0.23
20 10 64 21 0.0695 0.0706 0.0725 18 063.94 89 567.17 247.71 91.83 9.48 0.75 0.11 0.22
20 40 32 7 0.0704 0.0745 0.0966 18 240.97 62 161.99 248.48 95.40 8.83 0.74 0.06 0.20
20 40 32 14 0.0701 0.0717 0.0742 20 993.06 98 680.10 248.57 86.20 7.18 0.82 0.07 0.15
20 40 32 21 0.0704 0.0713 0.0721 19 882.77 132 015.35 248.53 85.79 8.22 0.81 0.10 0.17
20 40 64 7 0.0695 0.0702 0.0734 17 553.77 75 082.95 247.60 91.18 9.70 0.73 0.11 0.23
20 40 64 14 0.0694 0.0698 0.0704 18 287.25 50 128.61 247.41 103.44 9.04 0.72 0.02 0.22
20 40 64 21 0.0691 0.0696 0.0698 18 217.42 175 251.33 248.05 85.18 9.26 0.78 0.15 0.21
20 80 32 7 0.0697 0.0713 0.0737 19 431.50 160 339.17 248.28 83.54 8.76 0.80 0.13 0.19
20 80 32 14 0.0700 0.0706 0.0740 18 631.83 61 995.02 247.59 99.87 8.95 0.76 0.04 0.21
20 80 32 21 0.0700 0.0705 0.0718 17 613.36 56 808.61 247.58 96.82 9.45 0.71 0.07 0.23
20 80 64 7 0.0695 0.0699 0.0704 19 706.74 83 704.90 248.09 93.96 8.12 0.80 0.06 0.18
20 80 64 14 0.0694 0.0698 0.0701 19 214.76 65 330.19 247.50 100.84 8.43 0.78 0.03 0.20
20 80 64 21 0.0695 0.0697 0.0701 18 708.34 98 318.64 247.66 90.08 9.14 0.78 0.10 0.20
30 10 32 7 0.0720 0.0782 0.0903 17 042.00 185 592.26 247.77 84.21 9.24 0.74 0.19 0.25
30 10 32 14 0.0701 0.0723 0.0753 18 033.01 161 795.47 247.53 85.22 9.75 0.78 0.14 0.21
30 10 32 21 0.0702 0.0715 0.0729 19 264.53 77 426.94 248.31 92.80 8.44 0.78 0.07 0.19
30 10 64 7 0.0694 0.0707 0.0733 19 155.61 58 966.01 248.05 101.65 7.88 0.77 0.03 0.20
30 10 64 14 0.0693 0.0700 0.0706 19 544.79 70 406.66 248.04 94.11 8.36 0.78 0.05 0.18
30 10 64 21 0.0693 0.0700 0.0711 18 348.18 120 883.19 247.66 85.21 9.11 0.77 0.13 0.21
30 40 32 7 0.0701 0.0720 0.0768 19 898.17 136 898.73 248.51 83.87 8.23 0.81 0.10 0.17
30 40 32 14 0.0700 0.0707 0.0715 18 143.07 47 370.24 247.84 105.76 9.07 0.71 0.02 0.21
30 40 32 21 0.0698 0.0702 0.0706 19 269.44 57 468.40 247.76 106.11 8.14 0.77 0.01 0.20
30 40 64 7 0.0691 0.0699 0.0716 18 299.38 159 976.90 247.83 84.20 9.24 0.78 0.15 0.21
30 40 64 14 0.0692 0.0695 0.0701 18 581.79 109 451.44 247.75 88.95 9.24 0.78 0.11 0.20
30 40 64 21 0.0692 0.0696 0.0702 19 164.84 155 545.77 248.26 83.53 8.15 0.79 0.14 0.20
30 80 32 7 0.0693 0.0715 0.0776 18 397.78 48 646.16 247.98 103.95 8.62 0.72 0.02 0.22
30 80 32 14 0.0701 0.0702 0.0704 17 629.46 51 157.57 247.16 106.93 9.23 0.72 0.03 0.24
30 80 32 21 0.0694 0.0702 0.0716 19 211.40 75 566.60 247.95 96.18 8.26 0.79 0.05 0.19
30 80 64 7 0.0695 0.0698 0.0702 18 858.54 56 032.86 247.37 103.52 8.99 0.75 0.02 0.20
30 80 64 14 0.0693 0.0696 0.0699 18 295.58 115 731.00 247.62 86.74 9.15 0.77 0.12 0.21
30 80 64 21 0.0692 0.0696 0.0699 18 645.05 260 070.20 248.17 81.43 8.96 0.79 0.16 0.20
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