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ABSTRACT

This work proposes to use evolutionary computation as a pathway
to allow a new perspective on the modeling of energy expenditure
and recovery of an individual athlete during exercise.

We revisit a theoretical concept called the “three component
hydraulic model” which is designed to simulate metabolic systems
during exercise and which is able to address recently highlighted
shortcomings of currently applied performance models. This hy-
draulic model has not been entirely validated on individual athletes
because it depends on physiological measures that cannot be ac-
quired in the required precision or quantity.

This paper introduces a generalized interpretation and formal-
ization of the three component hydraulic model that removes its
ties to concrete metabolic measures and allows to use evolutionary
computation to fit its parameters to an athlete.

CCS CONCEPTS

« Computing methodologies — Modeling methodologies; Model
verification and validation; Simulation by animation.
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APPENDIX

The main poster paper provides a concise description of our ap-
proach. We add this appendix to substantiate proposed theory and
to ensure replicability. The implemented hydraulic model, an inter-
active simulation, and the outlined evolutionary fitting approach
are available at https://github.com/faweigend/three_comp_hyd.
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Figure 1: A generalized schematic of the three component
hydraulic model. Tanks are renamed as aerobic component
Ae, anaerobic fast component AnF and anaerobic slow com-
ponent AnS. pA€ and pA" represent flows and —mA4™F, mAS,
and m*¢ maximal flow capacities.

A MODEL GENERALIZATION AND
FORMALIZATION

Our generalized interpretation of the three component hydraulic
model removes its ties to concrete physiological measures. This
section defines this more general view with a robust formalization
of its dynamics. These steps—generalization and formalization—
ultimately allow to see the fitting of the three component hydraulic
model as a two-objective optimization problem with eight parame-
ters that can be approached with evolutionary computation.

A.1 Model Generalization

A schematic of the generalized form of the three component hy-
draulic model is depicted in Figure 1. Ignoring relations to lactate,
carbohydrate or phosphocreatine, this work refers to the middle
tank (A,A in Morton’s schematic in Figure 5 of his review from
2006 [10]) as the anaerobic fast component AnF and the tank on
the right (A, L in Figure 5 of Morton’s review [10]) as the anaerobic
slow component AnS. The left tank originally labeled with O for
oxygen is renamed into the aerobic contribution Ae. This more
general interpretation also allows to fully remove tube B, which
was included in Morton’s work to account for early lactate levels
in blood [8].

These are just slight adjustments but they represent a new per-
spective on the dynamics of the model. Rather than the originally
intended concrete metabolic energy storages that have to be set
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up according to empirical measures, tanks now represent more
abstract entities that allow to be interpreted as a combination of
sources which can be fitted by optimizing an objective function.

A.2 Configurations

A configuration of our proposed adjusted three component hy-
draulic model entails component positions, sizes and capacities. In
alignment to Figure 1, a configuration c for the model is defined as
a collection of the following values,

¢ = (AnF, AnS, mO, mAnS mAnF $,0,y) (1)

where {AnF, AnS} are tank capacities, {mO, mAnS mAnF } are max-
imal flow capacities and {¢, 0, y} are distances to define tank and

pipe positions.

A.3 Model Formalization

For simulations that allow to find an optimal configuration ¢ via
an evolutionary computation approach, the model needs to be
formalized in a robust manner. All equations are detailed in corre-
spondence to the notation depicted in Figure 1 and in accordance
to approaches by Morton [6, 7, 9] and Sundstréom [13] who build
upon Morton’s work. Our simulations do not include efforts where
the athlete has to work at the maximal intensity they can possibly
sustain and therefore we do not cover Morton’s and Sundstrom’s
limitations on maximal power output (limitations for a maximal p).

A simulation starts with the drainage of liquid to match power
demands p. The simulation uses discrete time steps and the time
difference between two time steps ¢t and ¢ + 1 is denoted as At.
For the estimations of fill levels and flows for time step t, first the
previous h;_1 is adapted according to the power demand p;. This
results in the intermediate level hf .

B =y + ﬁ At @)

Now the liquids in tanks Ae and AnS react to the new fill level of
AnF and flows are estimated. The contribution pA¢ from the Ae
tank is estimated as follows.
Ae . MY : p
m?. L if0<h <(1-¢).
pie = { i r <=9 ®

mAe, otherwise.

The maximal possible contribution mA€ is scaled with the ratio of

the fill level of AnF to (1 — ¢), which means the maximal flow is
reached as soon as h‘f > (1 - ¢). Because the size of Ae is infinite,
liquid will never flow back into Ae and thus the interval of p4€ is
[0, mA€].

Estimations of the flow from AnS to AnF or backwards from
AnF to AnS are more sophisticated. The flow through this pipe is
defined as pA™ and, because liquid can refill AnS or flow out of
it, the interval is [—mA"F ,mAnS ]. Let g™%* be defined as the total
height of AnS:

g =1-0-y )
To introduce possible flows more clearly, calculations are introduced
in categories. The full Equation (8) for p’;‘", is the combination
of Equation (5), Equation (6), and Equation (7) of this Appendix.
Equation (5) describes cases in which no flow between AnS and
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AnF happens and thus p/A” equals 0.
0, ifhf <0
and g;—1 = 0.
Pt =0 WK 2 (1-y) (5)

and g;—1 = g™,
0, ifh? = (gi—1+0).

In the first case, the tank AnS is full and the fill level of AnF is
above the top of tank AnS. In the second case, the fill level of AnF
is below the bottom end of AnS and AnS is empty. Finally, in the
third one, the fill level of AnF is exactly at par with the fill level of
AnS causing an equilibrium between both.

In Equation (6) cases in which liquid flows out of AnS into AnF
are covered.

KW —(gi_1+0 .
mAnS . %, 1fh1; > (gr-1+0)
pAn ~ and hf <(1-y). (6)
r = max_, .
mAnS . L2 iR > (1-y)
and g;_; < gmax_

If the fill level of AnF is below the fill level of AnS and above the

bottom end of AnS, the maximal possible flow is scaled according

to the ratio of the difference between fill levels and the total height

of AnS. Or, if the fill level of AnF is below the bottom end of AnS

and AnS is not empty, the maximal flow is scaled according to the

amount of remaining liquid to consider the pressure of remaining
liquid in the tank.

Equation (7) describes the refilling flow—the flow back from AnF
into AnS.

P
i {mAnF ‘ % ifhY < (gr-1 +6) o
and g;—1 > 0.

Here the fill level of AnF is above the fill level of AnS and AnS is not
full, which causes liquid to flow back into AnS. The maximal flow
mA™F from AnF into AnS is scaled according to the ratio between
the difference of fill levels and the height of AnS. Since hf is smaller
than g;—1 + 0, the result will be negative, indicating that a re-flow
into AnS happens.

As the result, the full equation for p?” is the combination of
Equation (5), Equation (6) and Equation (7).

0, ifthl <0
and g;—1 = 0.
0, ifhf > (1-y)
and gy = g™,
0, it b = (g1 +6).
P
pin = {mAnS . %,{;Jre), if h? > (gr—1 +0) ®)
and hf <(1-y).
mAnS . gm;)g([_l’ if hf 2 (1 - Y)
and gr1 < gmax.
Y —(gi1+0) .
mAnE . %, lfh‘f <(gt-1+0)
and g;—1 > 0.
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Having both flow values p‘;‘e and p?” of the current time step ¢,
the tank fill levels of this time step are derived as:

An Ae
Pyt Py
hp=hl + Lt Ay )
t 0t AnF
p;‘ln (10)
=g, At 10
gt =91 % s

These equations allow to estimate tank fill levels for each time step
t throughout a simulation with possibly varying power demands

pt-

A.4 Handling Extreme Cases

Large values for At, or combinations of small parameter values for
tanks sizes with large values for maximal flow rates can cause faulty
estimations for p’;‘”. These scenarios are not considered by Sund-
strom [12, 13] or Morton [6-9] because Morton used differential
equations on isolated test scenarios and Sundstrém’s handcrafted
simulation conditions seem to not cause situations in which such
extreme values come into effect.

In order to make simulations robust in such cases, three limita-
tions to the flow pA™ are applied: In case At, m*"F, or mA™ are
large, it can occur that pA" becomes larger than the remaining
capacity of AnS or the negative p" refills more liquid than AnS
can store. For the case that not enough is remaining in AnS, pA” is
capped to the remaining amount.

P = min(p”, (g™ — g¢—1) - AnS) (11)

Similarly, if pA” amounts to more re-flow into AnS than the avail-
able capacity, it is set to just fill AnS to the top.

P = max(pf", —g;-1 - AnS) (12)

Further, large At, mA"F or mAnS a5 well as AnF or AnS capacities

can cause p2" to force a flow that overshoots the targeted equilib-
rium between both tank fill levels. Thus, the maximal flow m‘;‘”
between both tanks is defined and limits p”.
W = (ge-1+6)
A t
mpt = ————— (13)
AnS * AnF

Since both pA4™ and m’;‘” may be negative or positive, the limitation
applies in the following manner:

An _ max(mi", pAn), - if pAn < 0.
min(m’;‘”,p’;‘”), ifp’t“” > 0.

r = (14)
Applying these limits, model simulations stay robust even with

extreme values and the model is ready to be fitted by an optimizer.

B OBJECTIVE FUNCTIONS

Two objectives capture how well a configuration c for the hydraulic
model makes it recreate measured performances of a tested athlete.
In this context the term fitness then describes how well the model
reproduces the expected responses. Two fitness measures are to
be optimized: energy expenditure and recovery. The ground truth
performance measures are an athlete’s finite energy reserve for
work above critical power (W’) and critical power (CP) as well as
the group averaged recovery ratios that Caen et al. [3] observed on
their participants.

GECCO 21 Companion, July 10-14, 2021, Lille, France

B.1 Energy Expenditure

For the energy expenditure objective function, time to exhaustion
estimations of the critical power concept [5] are compared to time
to exhaustion estimations of the hydraulic model. Using the critical
power concept, exercise intensities can be derived that lead to ex-
haustion after a given amount of seconds. A total of 12 intensities
are estimated for the energy expenditure fitness. These intensities
are the ones that are estimated to lead to exhaustion after 120, 130,
140, 150, 170, 190, 210, 250, 310, 400, 600, 1200 seconds. The three
component hydraulic model with configuration ¢ simulates con-
stant exercise at these intensities. As soon as liquid flow out of the
hydraulic model’s tap p cannot sustain the demand anymore, ex-
haustion is reached and the total time to exhaustion is compared to
the expected one. From these trials, a total of 12 differences between
the expected amount of seconds until exhaustion and the simulated
amount of seconds until exhaustion are derived. The normalized
root mean squared difference of these is the error measurement to
be minimized for the expenditure objective.

B.2 Energy Recovery

For an estimation of energy recovery capabilities of a hydraulic
model, the recovery ratios summarized in Table 1 are used. The
three component hydraulic model with configuration ¢ simulates
the same exercise protocol that Caen et al. [3] conducted to obtain
their measurements.

Using the critical power concept [5], work rates that lead to
theoretical exhaustion after 4 min (P4) and 8 min (P8) are derived.
Using these intensities Caen et al. obtained the in Table 1 summa-
rized recovery rates with a test setup that will be referred to as a
work bout 1 (WB1) — recovery bout (RB) — work bout 2 (WB2)
structure. It is conducted as follows: They let an athlete perform
the first work bout (WB1) at a constant exercise intensity (in this
case either P4 or P8) until the athlete cannot maintain this inten-
sity anymore. This then assumes that W’ is depleted. Afterwards
immediately the recovery bout (RB) is started in which they switch
to a much lower recovery intensity (in this case either 33% of CP
(CP33) or 66% of CP (CP66)). This recovery phase prolongs for 2,
4 or 6 minutes and is followed by the second work bout (WB2) at
the same intensity level as WB1 was conducted at. This second
work bout also is stopped when the athlete cannot maintain the
intensity anymore and the duration, i.e., time to exhaustion (TTE),
are recorded for both work bouts. Because of the very limited re-
covery bout duration in-between both work bouts, the TTE of WB2
is bound to be shorter than the one of WB1, and the difference
between both is considered to be the amount of W’ balance (Wb’al)
that was reconstituted during the RB.

As an example using Table 1, the first observation of the P4-CP33
line at 2 min represents a WB1 — RB — WB2 trial at the intensities
P4 — CP33 — P4, where the recovery bout prolonged for 2 min.
The duration of WB2 was 55% of the duration of WB1 and thus it
is inferred that the athlete could retain 55% of their energy.

The three component hydraulic model with configuration ¢ con-
ducts the same protocol and exhaustion is the point where liquid
flow out of tap p cannot meet the demand anymore. The normalized
root mean squared error of these resulting 12 differences between
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Table 1: Recovery ratios derived from [3]

‘ 2 min ‘ 4 min ‘ 6 min
P4-CP33 | 55% 61% | 70.5%
P4-CP66 | 49% 55 % 58 %
P8-CP33 | 42% 52% | 59.5%
P8-CP66 | 38% | 37.5% | 50%

Note: Values are not precisely the ones from Caen et al. [3] and do not
consider std errors. They are derived values to be simple for this proof
of concept.
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Figure 2: An exemplary Pareto front of an island. The best
configuration on the Pareto front (blue diamond) is the one
with minimal distance to point (0, 0) and marks the best pos-
sible trade-off between energy expenditure and recovery er-
ror.

observed recovery ratios and simulated recovery ratios is used as
the error to be minimized for the recovery objective.

C THE EVOLUTIONARY ALGORITHM

A configuration c consists of eight real-valued parameters. A suc-
cessful strategy to approximate an optimal configuration in such a
search space is evolutionary computation [1, 2, 4]. The intention
of this work is to provide a proof of concept that the proposed
hydraulic model can be fitted to an athlete. Since a proof of concept
is enough, the algorithm and parameter choices are not through-
out fine tuned and we want to emphasize that much more room
for parameter optimization and exploration of problem-specific
algorithms is left for future work

The defined objective functions evaluate expenditure and re-
covery as two distinct objectives, we chose the established Multi-
Objective Evolutionary Algorithm with Decomposition (MOEA/D)
approach as implemented in Pygmo [1, 11].

Two objectives are to be minimized: energy expenditure and
recovery. Both objectives return a normalized root mean squared
error of twelve measurements and are directly comparable. That
allows to define the best trade-off between both dynamics to be the
configuration on the Pareto front that has the smallest Euclidean
distance to point (0, 0) (See example in Figure 2).

Weigend et al.

Table 2: Pygmo [1] default parameters for MOEA/D

parameter value
weight_generation ‘grid’
decomposition "tchebycheff’
neighbors 20

CR 1

F 0.5
eta_m 20
realb 0.9
limit 2
preserve_diversity | true
seed random

In initial experiments we obtained solutions in two categories:
One heavily focused on the optimization of expenditure dynamics
and the other one on the recovery dynamics. To improve general-
ization and to consistently find configurations that optimize both
objectives, we couple MOEA/D with the asynchronous islands func-
tionality of Pygmo [1]. That means several instances (one for each
island) of the evolutionary algorithm are run isolated from each
other. After a set number of generations, solutions from each of the
island populations travel in-between islands. Then each algorithm
continues to evolve their population, which now contains a few
migrant solutions from the populations of the other algorithms.
This step of evolving for a set number of generations and then
exchanging solutions will be referred to as a cycle.

Except for the number of generations, population sizes, the num-
ber of islands, and the number of cycles, all parameters are at the
default that Pygmo provides. Default parameters taken from Pygmo
are summarized in Table 2.

Also for the asynchronous island approach we chose the default
parameters of Pygmo in terms of migration types ('p2p’) between
islands and typologies (fully connected’), but we do investigate
various combinations of cycles (10,40,80), generations (10,20,30),
population sizes (32,64), and numbers of islands (7,14,21). If the
overall best fitness value of all island populations is not improved
for more than 10 cycles, computations are stopped and the best
solution of the last cycle is the returned result. The algorithm is run
for ten times with each of the resulting parameter combinations.
Results of all individual runs are summarized with the best (min),
average (mean), and worst (max) distance result in Table 3. The
configuration of the hydraulic model that resulted in the minimal
distance (best configuration) is also denoted to give an idea of
how sensitive the objectives are to changes in the 8 variables of a
configuration.
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Table 3: Grid search. Each parameter combination was run for 10 times.

resulting best configuration parameters

gens cycles population islands min average max AnF AnS m® mAnS At g 0 Y
10 10 32 7 0.0750  0.0896 0.1129  14887.19 78441.50  247.88 91.73 10.02 0.64 0.21 0.32
10 10 32 14 0.0732  0.0807 0.1020 16 731.79 48023.39 246.03 113.48 9.60 0.70 0.01 0.29
10 10 32 21 0.0698  0.0766 0.0826  19526.85 78133.12  247.88 96.16 8.06 0.79 0.05 0.19
10 10 64 7 0.0707  0.0795 0.1028 18628.31 56881.67 247.51 108.59 8.15 0.76 0.02 0.22
10 10 64 14 0.0710  0.0730 0.0806  18325.37 53462.06 248.24 96.52 8.12 0.72 0.06 0.22
10 10 64 21 0.0704  0.0720 0.0756  18496.46 86583.43  248.30 91.07 891 0.78 0.09 0.20
10 40 32 7 0.0703  0.0745 0.0822 19074.54 255788.43  248.38 84.80 8.86 0.83 0.13 0.18
10 40 32 14 0.0705 0.0734 0.0894 18985.98 138678.84 248.24 85.07 8.09 0.80 0.12 0.19
10 40 32 21 0.0697  0.0707 0.0721 18664.83 94435.01  247.49 92.78 8.97 0.79 0.08 0.20
10 40 64 7 0.0695 0.0708 0.0749  19035.04 78738.60  248.04 94.84 8.08 0.78 0.07 0.20
10 40 64 14 0.0697  0.0704 0.0716  18082.63 47905.06  247.52  108.79 9.07 0.72 0.01 0.22
10 40 64 21 0.0694 0.0699 0.0703  19324.12  222108.58  247.90 81.11 9.01 0.81 0.14 0.18
10 80 32 7 0.0706  0.0737 0.0846  19061.94 98334.88  247.75 94.97 8.72 0.82 0.05 0.19
10 80 32 14 0.0698 0.0723 0.0769 17 861.85 86634.11  247.95 90.63 9.53 0.75 0.11 0.22
10 80 32 21 0.0699 0.0713 0.0769 18917.47 144408.28  247.90 86.06 8.52 0.80 0.12 0.20
10 80 64 7 0.0698  0.0707 0.0751 19031.40 119081.83  248.05 85.09 8.81 0.79 0.11 0.19
10 80 64 14 0.0696  0.0706 0.0750 17 958.82 67994.85 247.73 95.95 9.01 0.74 0.08 0.23
10 80 64 21 0.0697  0.0699 0.0704 17725.86 50325.31 247.26  107.09 9.27 072 0.02 0.23
20 10 32 7 0.0702  0.0775 0.1011  18922.50 69263.96 248.17 94.35 8.45 0.76 0.06 0.19
20 10 32 14 0.0709  0.0742 0.0805 17 021.40 46 888.56  247.03  106.46 9.81 0.68 0.04 0.26
20 10 32 21 0.0707  0.0731 0.0754 20195.32 101888.06 248.22 91.04 7.81 0.82 0.06 0.17
20 10 64 7 0.0700  0.0728 0.0768 18925.49 178845.77 248.02 85.65 9.63 080 0.13 0.19
20 10 64 14 0.0699  0.0703 0.0707 17 642.03 79591.96  247.83 95.06 9.30 0.75 0.10 0.23
20 10 64 21 0.0695 0.0706 0.0725 18063.94 89567.17 247.71 91.83 9.48 0.75 0.11 0.22
20 40 32 7 0.0704  0.0745 0.0966 18 240.97 62161.99  248.48 95.40 8.83 0.74 0.06 0.20
20 40 32 14 0.0701  0.0717 0.0742  20993.06 98 680.10  248.57 86.20 7.18 0.82 0.07 0.15
20 40 32 21 0.0704  0.0713 0.0721 19882.77 132015.35 248.53 85.79 8.22 0.81 0.10 0.17
20 40 64 7 0.0695 0.0702 0.0734 17 553.77 75082.95  247.60 91.18 9.70 0.73 0.11 0.23
20 40 64 14 0.0694  0.0698 0.0704 18287.25 50128.61 247.41 103.44 9.04 0.72 0.02 0.22
20 40 64 21 0.0691  0.0696 0.0698 18217.42 175251.33  248.05 85.18 9.26 0.78 0.15 0.21
20 80 32 7 0.0697  0.0713 0.0737 19431.50 160339.17  248.28 83.54 8.76  0.80 0.13 0.19
20 80 32 14 0.0700  0.0706 0.0740 18631.83 61995.02  247.59 99.87 8.95 0.76 0.04 0.21
20 80 32 21 0.0700  0.0705 0.0718 17613.36 56808.61  247.58 96.82 9.45 0.71 0.07 0.23
20 80 64 7 0.0695  0.0699 0.0704 19706.74 83704.90 248.09 93.96 8.12 0.80 0.06 0.18
20 80 64 14 0.0694  0.0698 0.0701  19214.76 65330.19  247.50 100.84 8.43 0.78 0.03 0.20
20 80 64 21 0.0695  0.0697 0.0701  18708.34 98318.64  247.66 90.08 9.14 0.78 0.10 0.20
30 10 32 7 0.0720  0.0782 0.0903  17042.00 185592.26 247.77 84.21 9.24 074 0.19 0.25
30 10 32 14 0.0701  0.0723 0.0753  18033.01 161795.47 247.53 85.22 9.75 0.78 0.14 0.21
30 10 32 21 0.0702  0.0715 0.0729  19264.53 77426.94 248.31 92.80 8.44 0.78 0.07 0.19
30 10 64 7 0.0694  0.0707 0.0733  19155.61 58966.01 248.05 101.65 7.88 0.77 0.03 0.20
30 10 64 14 0.0693  0.0700 0.0706 19 544.79 70406.66  248.04 94.11 8.36 0.78 0.05 0.18
30 10 64 21 0.0693  0.0700 0.0711  18348.18 120883.19  247.66 85.21 9.11 0.77 0.13 0.21
30 40 32 7 0.0701  0.0720 0.0768 19898.17 136898.73  248.51 83.87 8.23 0.81 0.10 0.17
30 40 32 14 0.0700  0.0707 0.0715 18143.07 47370.24  247.84 105.76 9.07 0.71 0.02 0.21
30 40 32 21 0.0698  0.0702 0.0706  19269.44 57468.40 247.76  106.11 8.14 0.77 0.01 0.20
30 40 64 7 0.0691  0.0699 0.0716  18299.38 159976.90  247.83 84.20 9.24 078 0.15 0.21
30 40 64 14 0.0692  0.0695 0.0701  18581.79 109451.44 247.75 88.95 9.24 0.78 0.11 0.20
30 40 64 21 0.0692  0.0696 0.0702 19164.84 155545.77 248.26 83.53 8.15 0.79 0.14 0.20
30 80 32 7 0.0693  0.0715 0.0776  18397.78 48 646.16  247.98  103.95 8.62 0.72 0.02 0.22
30 80 32 14 0.0701  0.0702 0.0704 17 629.46 51157.57 247.16 106.93 9.23 0.72 0.03 0.24
30 80 32 21 0.0694  0.0702 0.0716  19211.40 75566.60  247.95 96.18 8.26 0.79 0.05 0.19
30 80 64 7 0.0695  0.0698 0.0702  18858.54 56032.86 247.37 103.52 8.99 0.75 0.02 0.20
30 80 64 14 0.0693  0.0696 0.0699 18295.58 115731.00 247.62 86.74 9.15 0.77 0.12 0.21

30 80 64 21 0.0692  0.0696 0.0699 18645.05 260070.20 248.17 81.43 8.96 0.79 0.16 0.20



GECCO 21 Companion, July 10-14, 2021, Lille, France

REFERENCES

[1] Francesco Biscani and Dario Izzo. 2020. A parallel global multiobjective frame-

[2

[

work for optimization: pagmo. Journal of Open Source Software 5, 53 (Sept. 2020),
2338. https://doi.org/10.21105/joss.02338

Thomas Béack and Hans-Paul Schwefel. 1993. An overview of evolutionary
algorithms for parameter optimization. Evolutionary Computation 1, 1 (March
1993), 1-23. https://doi.org/10.1162/evco.1993.1.1.1

Kevin Caen, Jan G. Bourgois, Gil Bourgois, Thibaux Van Der Stede, Kobe Vermeire,
and Jan Boone. 2019. The reconstitution of W’ depends on both work and recovery
characteristics. Medicine & Science in Sports & Exercise 51, 8 (Aug. 2019), 1745—
1751. https://doi.org/10.1249/MSS.0000000000001968

AE. Eiben and J.E. Smith. 2015. Introduction to evolutionary computing. Springer
Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44874-8
David W. Hill. 1993. The critical power concept: a review. Sports Medicine 16, 4
(Oct. 1993), 237-254. https://doi.org/10.2165/00007256-199316040-00003

R. Hugh Morton. 1985. On a model of human bioenergetics. European Journal
of Applied Physiology and Occupational Physiology 54, 3 (Sept. 1985), 285-290.
https://doi.org/10.1007/BF00426146

7

]

Weigend et al.

R. Hugh Morton. 1986. On a model of human bioenergetics II: maximal power and
endurance. European Journal of Applied Physiology and Occupational Physiology
55, 4 (Aug. 1986), 413-418. https://doi.org/10.1007/BF00422743

[8] R. Hugh Morton. 1986. A three component model of human bioenergetics.

[o

[10

[11

[12

]
]

Journal of Mathematical Biology 24, 4 (July 1986), 451-466. https://doi.org/10.
1007/BF01236892

R. Hugh Morton. 1990. Modelling human power and endurance. Journal of
Mathematical Biology 28, 1 (Jan. 1990), 49-64. https://doi.org/10.1007/BF00171518
R. Hugh Morton. 2006. The critical power and related whole-body bioenergetic
models. European Journal of Applied Physiology 96, 4 (March 2006), 339-354.
https://doi.org/10.1007/s00421-005-0088-2

Qingfu Zhang and Hui Li. 2007. MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition. IEEE Transactions on Evolutionary Computation
11, 6 (Dec. 2007), 712-731. https://doi.org/10.1109/TEVC.2007.892759

David Sundstrom, Peter Carlsson, and Mats Tinnsten. 2013. On optimization
of pacing strategy in road cycling. Procedia Engineering 60 (2013), 118-123.
https://doi.org/10.1016/j.proeng.2013.07.062

David Sundstrém, Peter Carlsson, and Mats Tinnsten. 2014. Comparing bioener-
getic models for the optimisation of pacing strategy in road cycling. Sports Engi-
neering 17, 4 (Dec. 2014), 207-215. https://doi.org/10.1007/s12283-014-0156-0


https://doi.org/10.21105/joss.02338
https://doi.org/10.1162/evco.1993.1.1.1
https://doi.org/10.1249/MSS.0000000000001968
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.2165/00007256-199316040-00003
https://doi.org/10.1007/BF00426146
https://doi.org/10.1007/BF00422743
https://doi.org/10.1007/BF01236892
https://doi.org/10.1007/BF01236892
https://doi.org/10.1007/BF00171518
https://doi.org/10.1007/s00421-005-0088-2
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1016/j.proeng.2013.07.062
https://doi.org/10.1007/s12283-014-0156-0

	Abstract
	A Model Generalization and Formalization
	A.1 Model Generalization
	A.2 Configurations
	A.3 Model Formalization
	A.4 Handling Extreme Cases

	B Objective Functions
	B.1 Energy Expenditure
	B.2 Energy Recovery

	C The Evolutionary Algorithm
	References

