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ABSTRACT
Extracting search-landscape features of high-dimensional Black-
Box Optimization (BBO) problems, by minimal number of queries,
is a grand challenge. Knowledge of such features per a given BBO
problem-instance offers valuable information in light of the Al-
gorithm Selection and/or Configuration problems. In practice, by
solving this challenge, the query complexity of BBO may be re-
duced when capitalizing on algorithm portfolios. In this study we
target the automated recognition of BBO benchmark functions. We
propose an identification framework for 𝑑-dimensional continuous
BBO test-suites, provided as input with a set of 𝑁 search-points,
sampled at random, together with their query values. We address it
as a supervised multi-class image recognition problem, by introduc-
ing the concept of Landscape Images, and applying the basic LeNet5
Neural Network to classify them. The solution’s core lies within
the encapsulation of the BBO functions’ data as Landscape Images,
and the application of neural image recognition to learn their fea-
tures. The efficacy of our approach is numerically validated on the
noiseless COCO/BBOB test-functions, which are demonstrated to
be correctly classified at high precision rates (≈90%) when 𝑁 is
in the order of 𝑑 . This successful learning is another step toward
automated feature detection of BBO problems.
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1 BACKGROUND AND CONTRIBUTION
The algorithm selection problem is defined as the task to choose
the ‘fittest’ algorithm, within an available portfolio, per a given
problem-instance. At the same time, the algorithm configuration
problem refers to the task of choosing the ‘fittest’ parameter set-
tings per a given problem-instance. Addressing those problems over
generalized problem features [1] requires informative instance fea-
tures, i.e., the problem of the learning model to choose the ‘fittest’
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algorithm on uninformative instance features remains open. This
open problem provides us with the motivation to obtain the ability
to recognize BBO features and deduce local structure using a small
number of queries. Our concrete contributions are the following:

(1) Encapsulating high-dimensional continuous BBO search-
points within a so-called landscape image as an effective
form of representing local information of the landscape.

(2) Translating the classification problem of such landscape im-
ages per their generating functions into an Image Recogni-
tion problem.

(3) Solving this problem using a convolutional neural network,
and numerically validating it on the noiseless BBOB suite.

2 LANDSCAPE IMAGES’ DEFINITION
Given an objective function, subject to minimization,

𝜑 ( ®𝑥 ( 𝑗) )𝑘,𝑖 : R𝑑 → R, 𝑘 = 1, 2, . . . , 𝐹 , 𝑗 = 1, 2, . . . , 𝑁

let 𝑖 denote a function instance (generated by, e.g., rotation and
translation transformations on a base function), and let 𝑘 denote
the function type. 𝑁 is the number of search-points ®𝑥 ( 𝑗) . A sample
vector is defined as the concatenation of a search-point and its
associated objective function value:

®𝜏 (𝑘,𝑖, 𝑗) ( ®𝑥 ( 𝑗) ) :=
[
®𝑥 ( 𝑗) 𝑇 , 𝜑𝑘,𝑖

(
®𝑥 ( 𝑗)

)]
∈ R𝑑+1 .

𝑀 ×𝑀 is the landscape image size. Each image row is composed of
®𝜏 (𝑘,𝑖, 𝑗) and𝑀 − 𝑑 − 1 replications of 𝜑𝑘,𝑖

(
®𝑥 ( 𝑗)

)
. The first 𝑁 rows

correspond to the search-points.𝑀 − 𝑁 zero vectors and their func-
tion values 𝜑𝑘,𝑖

(
®0
)
are then added to cope with possible underlying

translations of 𝜑𝑘,𝑖 :

®𝜏 (𝑘,𝑖,1)
(
®𝑥 (1)

)
1×𝑑−1

𝜑𝑘,𝑖

(
®𝑥 (1)

)
(𝑀−𝑑−1) replications

. . . . . .

. . . . . .

®𝜏 (𝑘,𝑖,𝑁 )
(
®𝑥 (𝑁 )

)
1×𝑑−1

𝜑𝑘,𝑖

(
®𝑥 (𝑁 )

)
(𝑀−𝑑−1) replications

®𝜏 (𝑘,𝑖,𝑁+1)
(
®0
)
1×𝑑−1

𝜑𝑘,𝑖

(
®0
)
(𝑀−𝑑−1) replications

. . . . . .

. . . . . .

®𝜏 (𝑘,𝑖,𝑀)
(
®0
)
1×𝑑−1

𝜑𝑘,𝑖

(
®0
)
(𝑀−𝑑−1) replications


3 EXPERIMENTAL VALIDATION
We validated the aforementioned Image Recognition approach over
the noiseless BBOB suite. We trained the basic LeNet5 model [2],
over 32 × 32 images, for 24 classes per a spectrum of search-space
dimensions 𝑑 ∈ {2, 3, . . . , 31}. Initially we accomplished learning
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Figure 1: Test-set accuracy rates as a function of 𝑑
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Figure 2: Test-set accuracy rates as a function of 𝑁 per𝑑 = 22,
to reflect the effect of increasing sampling versus padding
with zero vectors.

over all dimensions 𝑑 and explored the effectiveness of 𝑁 . We
trained this model over 3000 epochs with a learning rate of 10−6
and a batch size of 64, with one instance per function; the training
and testing datasets were of sizes 24024 and 11952, respectively.
We observed that the best accuracy rate was achieved for 𝑑 = 22
at epoch 2987 (with accuracy rate 99.322%). Figure 1 depicts the
best attained accuracy rates per each search-space dimension 𝑑 .
Furthermore, we explored the impact of𝑁 for the case of𝑑 = 22, and
tested the model’s performance when the number of sample vectors
is increased, i.e. 𝑁 ∈ {1, 3, . . . , 32}. Following the aforementioned
training setup, the best accuracy rate is observed for 𝑁 = 24 and
at epoch 2859 (accuracy rate 99.573%). Figure 2 depicts the best
attained accuracy rates per each 𝑁 when 𝑑 = 22.
We also conducted experiments of the generalized multi-instance
detection problem. Preliminary results of such experiments indicate

Figure 3: Averaged loss over 20 runs for the multi-instance
detection problem at dimension 𝑑 = 22 using Type-1 im-
ages with 𝑁 = 24. LeNet5 is employed with a learning rate
𝛼 = 10−5, batch size 64 and is run over 800 epochs. The train-
ing and testing datasets include 30120 and 14760 images, re-
spectively. The standard deviation among runs is depicted
as the shaded areas surrounding each curve.

that the generalized problem is learnable as well, but the existing
configurations of LeNet5 obtain lower performance measures. For
example, the learning process on 20 datasets with 5 possible in-
stances per function is presented in Figure 3, depicting the averaged
loss for this preliminary use-case. The averaged testing accuracy
for the best nets trained on each of these 20 datasets was ∼ 85%.

4 DISCUSSION
Evidently, the noiseless BBOB suit is learnable by a basic CNN. The
neural learning model was capable of attaining efficient function
recognition, using a carefully-designed database and a moderate
number of learning iterations. The classification scores deteriorate
only towards the end of the range. This behavior may be explained
by the CNN’s pooling effects, which diminish the influence of the
least repeated data. For example, for 𝑑 = 30, there are only 2 copies
of sample vectors within our setup of 𝑀 = 32, which can be lost
due to pooling.
The preliminary multi-instance results show relatively high and
robust recognition rates. These results can be improved using dif-
ferent landscape image structures and flexible CNN models.
This evident successful learning is another step toward automated
feature detection and local structure deduction of BBO problems.
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