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A BACKGROUND ON THE SKEW-NORMAL
DISTRIBUTION

In this section we provide more details on the skew-normal dis-

tribution. See, e.g. [2] for a complete reference on skew-normal

distributions and their parametrizations.

A.1 Additive representations
The role of the latent dimension 𝑠 can be briefly explained as follows.

Consider a random vector

[
x0

x1

]
∼ 𝑁𝑠+𝑝 (0, 𝑀) with𝑀 as in (2) and

define y as the vector with distribution (x1 | x0 + 𝜸 > 0). The
density of 𝑦 can be written as

𝑓 (y) =

∫
x0+𝜸>0

𝜑𝑠+𝑝 ((t0, y);𝑀)𝑑t0∫
x0+𝜸>0

𝜑𝑠 (t; Γ)𝑑t
= 𝜑𝑝 (y; Ω̄)

𝑃 (x0 +𝜸 > 0 | x1 = y)
Φ𝑠 (𝜸 ; Γ)

= 𝜑𝑝 (y; Ω̄)
Φ𝑠

(
𝜸 + Δ𝑇 Ω̄−1y; Γ − Δ𝑇 Ω̄−1Δ

)
Φ𝑠 (𝜸 ; Γ) ,

where the first equality comes from a basic property of conditional

distributions, see, e.g.[2, Ch. 1.3], and the second equality is a con-

sequence of the multivariate normal conditioning properties. Then

we have that z = 𝝃 + 𝐷Ωy ∼ SUN𝑝,𝑠 (𝝃 ,Ω,Δ,𝜸 , Γ).
The previous representation provides an interesting point of

view on the skew-Gaussian random vector, however the following

representation turns out to be more practical for sampling from

this distribution. Consider the independent random vectors u0 ∼
𝑁𝑝 (0, Ω̄ − ΔΓ−1Δ𝑇 ) and u1,−𝜸 , the truncation below 𝜸 of u1 ∼
𝑁𝑠 (0, Γ). Then the random variable

z𝑢 = 𝝃 + 𝐷Ω (u0 + ΔΓ−1u1,−𝜸 ),

is distributed as (1).

Proof. We can show that the representation x0, x1 is equiva-

lent to u0, u1. Define u1 = x0 and u0 = x1 − E[x1 | x0], where[
x0

x1

]
∼ 𝑁𝑠+𝑝 (0, 𝑀). Note that E[x1 | x0] = ΔΓ−1x0 and u0 = x1 −

ΔΓ−1x0 ∼ 𝑁 (0, Ω̄−ΔΓ−1Δ𝑇 ). Thenwe have that u0 and u1 are inde-

pendent. This can be verified by the fact that u0 and u1 are normally

distributed with covariance Cov(u0, u1) = 0 which can be verified

with algebraic computations. Finally note that (u0 + ΔΓ−1u1,−𝜸 ) is
distributed as (x1 | x0𝜸 > 0). □

The additive representation introduced above is used in Sec-

tion 2.4 to draw samples from the distribution.

A.2 Closure properties
The Skew-Normal family has several interesting properties, see Az-

zalini [2, Ch.7] for details. Most notably, it is close under marginal-

ization and affine transformations. Specifically, if we partition 𝑧 =

[𝑧1, 𝑧2]𝑇 , where 𝑧1 ∈ R𝑝1
and 𝑧2 ∈ R𝑝2

with 𝑝1 + 𝑝2 = 𝑝 , then

𝑧1 ∼ 𝑆𝑈𝑁𝑝1,𝑠 (𝝃 1
,Ω11,Δ1,𝜸 , Γ),

with 𝝃 =

[
𝝃

1

𝝃
2

]
, Δ =

[
Δ1

Δ2

]
, Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

(11)

Moreover, [2, Ch.7] the conditional distribution is a unified skew-

Normal, i.e.,

(𝑍2 |𝑍1 = 𝑧1) ∼ 𝑆𝑈𝑁𝑝2,𝑠 (𝝃 2 |1,Ω2 |1,Δ2 |1,𝜸2 |1, Γ2 |1),

where

𝝃
2 |1 := 𝝃

2
+ Ω21Ω

−1

11
(𝑧1 − 𝝃

1
), Ω

2 |1 := Ω22 − Ω21Ω
−1

11
Ω12,

Δ
2 |1 := Δ2 − Ω̄21Ω̄

−1

11
Δ1,

𝜸
2 |1 := 𝜸 + Δ𝑇

1
Ω−1

11
(𝑧1 − 𝝃

1
), Γ

2 |1 := Γ − Δ𝑇
1
Ω̄−1

11
Δ1,

and Ω̄−1

11
:= (Ω̄11)−1

.

In section 2.4 we exploit this property to obtain samples from the

predictive posterior distribution at a new input x∗ given samples

of the posterior at the training inputs.

A.3 Sampling from the posterior predictive
distribution

Consider a test point x∗ and assume we have a sample from the pos-

terior distribution 𝑓 (𝑋 ) | D. Consider the vector f̂ = [𝑓 (𝑋 ) 𝑓 (x∗)]𝑇 ,
which is distributed as SUN𝑛+1,𝑠 ( ˆ𝝃 , Ω̂, Δ̂,𝜸 , Γ), where

ˆ𝝃 =

[
𝜉 (𝑋 )
𝜉 (x∗)

]
, Δ̂ =

[
Δ(𝑋 )
Δ(x∗)

]
, Ω̂ =

[
Ω(𝑋,𝑋 ) Ω(𝑋, x∗)
Ω(x∗, 𝑋 ) Ω(x∗, x∗)

]
Then by using the marginalization property introduced above we

obtain the formula in (5).

B PROOFS OF THE RESULTS IN THE PAPER
Theorem 3.1. This proof is based on the proofs in [9, Th.1 and

Co.4]. We aim to derive the posterior of 𝑓 (𝑋 ). The joint distribution
of 𝑓 (𝑋 ),D is

𝑝 (D|𝑓 (𝑋 ))𝑝 (𝑓 (𝑋 )) = Φ𝑚 (𝑊 𝑓 ) 𝜙𝑛 (𝑓 − 𝜉 ; Ω) (12)

where we have omitted the dependence on 𝑋 for easier notation.

We note that

Φ𝑚 (𝑊 𝑓 ) = Φ𝑚
(
𝑊𝜉 + (Ω̄𝐷Ω𝑊

𝑇 )𝑇 Ω̄−1𝐷−1

Ω (𝑓 − 𝜉 ) ; (𝑊 Ω𝑊𝑇 + 𝐼𝑚 ) − (𝑊 Ω𝑊𝑇 )
)

Therefore, we can write

Φ𝑚 (𝑊 𝑓 ) 𝜙𝑛 (𝑓 − 𝜉 ; Ω) = Φ𝑚
(
𝑊𝜉 + (Ω̄𝐷Ω𝑊

𝑇 )𝑇 Ω̄−1𝐷−1

Ω (𝑓 − 𝜉 ) ; (𝑊 Ω𝑊𝑇 + 𝐼𝑚 ) − (𝑊 Ω𝑊𝑇 )
)

·𝜙𝑛 (𝑓 − 𝜉 ; Ω)

= Φ𝑚 (𝑚;𝑀 )𝜙𝑛 (𝑓 − 𝜉 ; Ω) (13)

with

𝑚 =𝑊𝜉 + (Ω̄𝐷Ω𝑊
𝑇 )𝑇 Ω̄−1𝐷−1

Ω (𝑓 − 𝜉)

and

𝑀 = (𝑊 Ω𝑊𝑇 + 𝐼𝑚) −𝑊𝐷Ω Ω̄𝐷Ω𝑊
𝑇

From (12)–(13) and the definition of the PDF of the SUN dis-

tribution, we can easily show that we can rewrite (12) as a SUN

distribution with updated parameters:

˜𝜉 = 𝜉, Ω̃ = Ω,

Δ̃ = Ω̄𝐷Ω𝑊
𝑇 ,

𝛾 =𝑊𝜉, Γ̃ = (𝑊 Ω𝑊𝑇 + 𝐼𝑚) .
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Theorem 3.2. Consider the test point x ∈ R𝑑 and the vector

ˆ𝑓 =

[
𝑓 (𝑋 )
𝑓 (x)

]
:= [f 𝑓∗] we have

𝑝 (f, 𝑓∗) = 𝑁

((
𝜉 (𝑋 )
𝜉 (x)

)
,

(
Ω(𝑋,𝑋 ) Ω(𝑋, x)
Ω(x, 𝑋 ) Ω(x, x)

))
and the predictive distribution is by definition

𝑝 (𝑓∗ |𝑊 ) =
∫

𝑝 (𝑓∗ | f)𝑝 (f |𝑊 )𝑑f

=

∫
𝑝 (𝑓∗ | f) 𝑝 (𝑊 | f)𝑝 (f)

𝑝 (𝑊 ) 𝑑f

∝
∫

𝑝 (𝑓∗, f)𝑝 (𝑊 | f)𝑑f

We can then apply Lemma 3.1 with
ˆ𝑓 and the likelihood 𝑝 ( [𝑊 |

0] | ˆ𝑓 ) = Φ𝑚+1 ( [𝑊 | 0]
[
𝑓 (𝑋 )
𝑓 (x)

]
; 𝐼𝑚) which results in a posterior

distribution

𝑝

( [
𝑓 (𝑋 )
𝑓 (x)

]
| [𝑊 | 0]

)
= SUN𝑛+1,𝑚 ( ˆ𝝃 , Ω̂, Δ̂, 𝛾, Γ̂)

with

ˆ𝝃 = [𝜉 (𝑋 ) 𝜉 (x)]𝑇

Ω̂ =

[
Ω(𝑋,𝑋 ) Ω(𝑋, x)
Ω(x, 𝑋 ) Ω(x, x)

]
Δ̂ =

[
Ω(𝑋,𝑋 ) Ω(𝑋, x)
Ω(x, 𝑋 ) Ω(x, x)

]
[𝑊 | 0]𝑇 =

[
Ω(𝑋,𝑋 )𝑊𝑇

Ω(x, 𝑋 )𝑊𝑇

]
𝛾 = [𝜉 (𝑋 )𝑇 𝜉 (x)]

[
𝑊𝑇

0

]
= 𝜉 (𝑋 )𝑇𝑊𝑇

Γ̂ = [𝑊 | 0]
[
Ω(𝑋,𝑋 ) Ω(𝑋, x)
Ω(x, 𝑋 ) Ω(x, x)

] [
𝑊𝑇

0

]
+ 𝐼𝑚

=𝑊 Ω(𝑋,𝑋 )𝑊𝑇 + 𝐼𝑚

By exploiting the marginalization properties of the SUN distri-

bution, see Section A.2, we obtain

𝑝 (𝑓 (x) |𝑊, 𝑓 (𝑋 ))

= 𝑆𝑈𝑁1,𝑚

(
𝜉 (x),Ω(x, x),Ω(x, 𝑋 )𝑊𝑇 , 𝜉 (𝑋 )𝑇𝑊𝑇 ,𝑊 Ω(𝑋,𝑋 )𝑊𝑇 + 𝐼𝑚

)
.

(14)

Corollary 3.3. We can write the likelihood function as

𝑝 (D | 𝑓 (X)) = Φ𝑚 (𝑈 𝑓 (X) −𝑉 𝑓 (X); 𝐼𝑚),

where 𝑉 ∈ R𝑚×𝑛
with 𝑉𝑖, 𝑗 = 1 if 𝑣𝑖 = 𝑥 𝑗 and 0 otherwise and

𝑈 ∈ R𝑚×𝑛
with 𝑈𝑖, 𝑗 = 1 if 𝑢𝑖 = 𝑥 𝑗 and 0 otherwise. Then we

can apply Lemma 3.1 for the posterior distribution of 𝑓 (𝑋 ) and
Theorem 3.2 for the posterior distribution of 𝑓 at an unobserved

point.

Proposition 3.4. As described in Section A.1, if we consider a

random vector

[
x0

x1

]
∼ 𝑁𝑠+𝑝 (0, 𝑀) with 𝑀 =

[
Γ Δ
Δ𝑇 Ω

]
and define

y as the vector with distribution (x1 | x0 + 𝜸 > 0), then it can be

shown [2, Ch. 7] that z = 𝝃 + 𝐷Ωy ∼ SUN𝑝,𝑠 (𝝃 ,Ω,Δ,𝜸 , Γ). This

allows one to derive the following sampling scheme:

𝑓 ∼ 𝝃 + 𝐷Ω

(
𝑈0 + ΔΓ−1𝑈1

)
, (15)

𝑈0 ∼ N(0; Ω̄ − ΔΓ−1Δ𝑇 ), 𝑈1 ∼ T𝜸 (0; Γ),
where T𝜸 (0; Γ) is the pdf of a multivariate Gaussian distribution

truncated component-wise below −𝜸 . Then from the marginal (14)

and the above sampling scheme (see Section A.3), we obtain the

formulae in (15), main text.

Corollary 3.5. This follows from the Theorem 3.2: Φ𝑚 (�̃� , Γ̃) is the
normalization constant of the posterior and, therefore, the marginal

likelihood is Φ𝑚 (�̃� , Γ̃). The lower bound was proven in [4, Prop.2]

C IMPLEMENTATION
C.1 Laplace’s approximation
The Laplace’s approximation for preference learning was imple-

mented as described in [8]. We use standard Bayesian optimisation

to optimise the hyper-parameters of the kernel by maximising the

Laplace’s approximation of the marginal likelihood.

C.2 Skew Gaussian Process
To compute Φ |𝐵𝑖 | (·) in (9), we use the routine proposed in [23],

that computes multivariate normal probabilities using bivariate

conditioning. This is very fast. We optimise the hyper-parameters

of the kernel by maximising the lower bound in (9) and we use

simulated annealing.

C.3 Acquisition function optimisation
In sequential BO, our objective is to seek a new data point x which

will allow us to get closer to the maximum of the target function

𝑔. Since 𝑔 can only be queried via preferences, this is obtained by

optimizing w.r.t. x a dueling acquisition function 𝛼 (x, x𝑟 ), where x𝑟
is the best point found so far, that is the point that has the highest

probability of winning most of the duels (given the observed data

D) and, therefore, it is the most likely point maximizing 𝑔.

For both themodels (Laplace’s approximation (GPL) and SkewGP)

we compute the acquisition functions 𝛼 (x, x𝑟 ) via Monte Carlo

sampling from the posterior. In fact, although for GPL some an-

alytical formulas are available (for instance for UCB), by using

random sampling (2000 samples with fixed seed) for both GPL and

SkewGP removes any advantage of SkewGP over GPL due to
the additional exploration effect of Monte Carlo sampling.
Computing 𝛼 (x, x𝑟 ) in this way is very fast for both the models

(for SkewGP this is due to lin-ess). We then optimize 𝛼 (x, x𝑟 ): (i)
by computing 𝛼 (x, x𝑟 ) for 5000 random generated value of x (every

time we use the same random points for both SkewGP and GPL); (ii)

the best random instance is then used as initial guess for L-BFGS-B.
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