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A DETAILS FOR GENERATING MIXED BASIS
FUNCTIONS

In this section we show how to choose p,, and pj, from Definition 2
in such a way that the mixed z-functions are never completely
outside the domain X, X X;. We recommend to choose p,, to be
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a uniform distribution over [ aady dor dd] c*dd This way, the
T T

i Xc + W, x4 will not take on large values, which might cause
numerical problems.
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After sampling wy = [ w ] from p,,, we look for two corner-
k

points qy, q2 of the space X, X Xj. For every dimension i, the i-th
element of corner points q1, q2 is determined by

I, Wg; = 0,
.= 1
q1; { w, <0, (1)
Ui, Wk = 0,
.= 2
q2i { I;, Wk < 0. @

Here, I; and u; are the lower and upper bounds of the i-th variable
respectively, so this gives

wqu < vzxC + wzxd < wzqz Vxc € Xe,Xq € Xy. 3)

Now we calculate the distance from the hyperplane generated by wj
to these corner points, which can be done with the inner product:

pr= w;{‘ll, p2= w;{‘l& 4
By the way f; and S, are constructed and because I; < u;, we now
have 1 < f2. We choose pp, equal to the uniform distribution over
[=P2, =p1].
Next we prove that this choice of pj;, prevents the hyperplane
zk (Xc, Xg) = 0 from being completely outside the set X x X;.
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THEOREM 1. Let wy = [ w be sampled from any continuous
k

probability distribution p,, and let by be sampled from the uniform
distribution over [—fa, —f1], with 1, B2 as in (4). Let z. (X¢, Xg) =
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Algorithm 1 Determining 4

*

Input Domain Xy, current solution x g

Output 8, € 2%
fori=1,...,d;do
r1 ~ Uniform|[o0, 1]
ry ~ Uniform|[0, 1] » Whether to increase or decrease x;, the
i-th element of x*
p=1/(de +dy)
while r; < p do
if xj =[; then x; «— x; +1
else if x; = u; then x; «— x; — 1
else
if rp <05thenx; « x;+1
else x; «— x;— 1

ry < 2r
szc + WZxd + by. Then, there exists a (x¢,Xg) € Xc X Xy such that

zp (X¢, xg) = 0.

PROOF. Suppose that (x¢, x7) ¢ X %Xy for all (x¢, x4) for which
2 (X¢, Xg) = 0. Then from (3), at least one of the following inequal-
ities holds:

VZXC + szd > w,{qg, (5)

T T T
ViXe + Wi Xg < @pq1. (6)

Because zj. (x¢, xg) = 0, we have by = —vzxc —wzxd. Because by, is
sampled from py,, from (4) we also have —quz < b < —a),];ql. This
gives w,{ql < vzxC + wzxd < wzqg, which is in conflict with (5)-
(6). By contradiction, there has to exist a (x¢,x4) € X¢ X Xg with
Zp (Xc, Xg) = 0. O

B DETAILS ON THE EXPLORATION STEP FOR
INTEGER VARIABLES

This section gives more details on the last step of the MVRSM
algorithm, the exploration step. For the integer variables x:;, the
exploration step consists of determining a random perturbation
d4 € 744 that is added to the solution. Our approach is similar to
the one in [3, Sec. 3.4], except that we allow perturbations that are
larger than 1. We determine 8, according to Algorithm 1.

For the continuous variables, we use the procedure from [2],
adding a random variable 5, € R% to x;. For each continuous
variable x.[i], dc is zero-mean normally distributed with a standard
deviation of 0.1|X.[i]|/+/dc + dg. The exploration step for both
integer and continuous variables is done in such a way that the
solution stays within the bounds X, X;.
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Figure 1: Results on the func3C [5, Sec. 5.1] benchmark
(3 categorical, 2 continuous), averaged over 100 runs. The
compared methods are random search (RS), HyperOpt (HO),
SMAC, Bayesian optimisation (BO), CoCaBO and MVRSM.

C DETAILS ON THE INITIALISATION OF
COEFFICIENTS

In this section we would like to provide a short motivation for the
choice of initial weights of the surrogate model used by MVRSM
(Sec. 4.2). By initializing the coefficients corresponding to the in-
teger z-functions as 1, the surrogate model has a convex shape
with a global minimum around the center of the discrete part of
the search space, making it easier for the optimiser. For the mixed
z-functions we cannot guarantee this particular shape due to the
randomness involved, hence we initialise those coefficients as 0.
All of this can also be interpreted as putting a convex prior on the
surrogate model.

D ADDITIONAL EXPERIMENTS ON
SYNTHETIC BENCHMARK FUNCTIONS

In this section we show the results on some additional synthetic
benchmarks, ordered by problem dimension.

Func3C. This benchmark was taken from [5, Sec. 5.1]. It has 3
categorical and 2 continuous variables.

Figure 1 shows the results of 200 iterations averaged over 100
runs. We have managed to reproduce the results from [5, Fig. 6(b)]
for both HO (also called TPE) and CoCaBO. Our result of SMAC is
better here due to not using the default setting. As this benchmark
has categorical variables and was one of CoCaBO’s benchmarks,
we expect CoCaBO to perform best, which it does, though it uses
more computation time than the other methods.

Rosenbrock10. The Rosenbrock function! is a standard benchmark
in continuous optimisation that can be scaled to any dimension. For
any dimension, the function has its global minimum in the point
(1,1,1,...,1), where it achieves the value 0. This benchmark has
a dimension of 10, but 3 of the variables were adapted to integers
inXy; = {-2,-1,0,1, 2}3. The 7 remaining continuous variables
were limited to X, = [—2,2]”. The function was scaled with a factor
1/300, and uniform noise in [0, 107°] was added to every function
evaluation. This problem is of the same scale as the problem of
gradient boosting hyperparameter tuning [4, Sec. 4(a)].

Details available at https://www.sfu.ca/~ssurjano/optimization.html
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Figure 2: Results on the Rosenbrock10 benchmark (3 integer,
7 continuous), averaged over 100 runs. This problem is of a
similar scale as gradient boosting hyperparameter tuning [4,
Sec. 4(a)].
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Figure 3: Results on 8 randomly generated MiVaBO syn-
thetic benchmarks [4, Appendix C.1, Gaussian weights vari-
ant] (8 integer, 8 continuous), averaged over 16 runs and over
the 8 different benchmarks.

Figure 2 shows the results of 100 iterations averaged over 100
runs. Surprisingly, BO has the best performance, though it is much
slower than MVRSM. This method is typically used on continuous
problems and widely assumed to be inadequate for discrete or mixed
problems. Here, we have experimentally shown that this is a false
assumption. MVRSM and CoCaBO get similar results as BO on this
problem, with MVRSM being the most efficient.

MiVaBO synthetic function. We also compare with one of the ran-
domly generated synthetic test functions from [4, Appendix C.1,
Gaussian weights variant] . This problem has 16 variables of which
8 integer and 8 continuous. No bounds were reported so we set them
to Xy = {0, 1,2, 3} for the integer variables and X, = [0, 3] for the
continuous variables. We generated 8 of these random functions
and ran all algorithms 16 times on each of them for 100 iterations.

Figure 3 shows the average over all 128 runs. Again, the stan-
dard BO algorithm performs best, which is a result that was not
concluded in [4]. However, as will be seen in the remainder of this
appendix and as is often mentioned in literature, when the number
of variables becomes larger than 20, the performance of BO quickly
deteriorates.
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Figure 4: Results on the cvxnonsep_psig20 benchmark (10
integer, 10 continuous), averaged over 7 runs. The distance to
the known global optimum is shown on a logarithmic scale.
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Figure 5: Results on the cvxnonsep_psig30 benchmark (15
integer, 15 continuous), averaged over 7 runs. The distance to
the known global optimum is shown on a logarithmic scale.

Cvxnonsep_psig20 synthetic function. We also investigated a pub-
licly available mixed-variable benchmark function, namely cvxnon-
sep_psig20 from the MINLP library?. This problem contains 10
integer and 10 continuous variables.

Figure 4 shows the distance to the known global optimum, aver-
aged over 7 runs with 1000 iterations each. Not only does MVRSM
get closest to the global optimum, it does so in a much faster time
than the other surrogate-based methods. BO is the second-best in
terms of accuracy, but has a significantly larger computation time.

Cvxnonsep_psig30 synthetic function. This problem is similar to
the previous example, but contains 15 integer and 15 continuous
variables®. Again, MVRSM outperforms the other methods, while
BO’s performance is further decreased.

Rosenbrock238 synthetic function. We scaled the Rosenbrock func-
tion up to a dimension of 239, with the first 119 variables adapted to
integers in Xy = {-2,-1,0,1, 2}119, and 119 continuous variables
limited to X, = [—2,2]!'°. The function was scaled with a factor
1/50000. This problem is of the same scale as the problem of feed-
forward classification model hyperparameter tuning [1], except
that the ratio between continuous and integer variables is chosen
to be 1 : 1. Uniform noise in [0, 107¢] was added to each function
evaluation.

https://www.minlplib.org/cvxnonsep_psig20.html
3https://www.minlplib.org/cvxnonsep_psig30.html
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Figure 6: Results on the Rosenbrock238 benchmark (119 in-
teger, 119 continuous), averaged over 7 runs. BO and CoCaBO
were not evaluated for this benchmark due to the large com-
putation time. This problem is of a similar scale as feed-
forward classification model hyperparameter tuning [1].

Figure 6 shows the average over 7 runs with 2000 iterations each.
The BO and CoCaBO methods were not tried due to their prohib-
itively large computation time. MVRSM performs especially well
on this application, possibly due to the structure of this synthetic
benchmark: it contains many interactions between subsequent vari-
ables, just like the discrete basis function of MVRSM’s surrogate
model.

REFERENCES

[1] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In ICML
- Volume 28, pages 1-115, 2013.

[2] L. Bliek, H. R. Verstraete, M. Verhaegen, and S. Wahls. Online optimization
with costly and noisy measurements using random Fourier expansions. IEEE
Transactions on Neural Networks and Learning Systems, 29(1):167-182, Jan 2018.

[3] L. Bliek, S. Verwer, and M. de Weerdt. Black-box combinatorial optimization
using models with integer-valued minima. Annals of Mathematics and Artificial
Intelligence, pages 1-15, 2020.

[4] E.Daxberger, A. Makarova, M. Turchetta, and A. Krause. Mixed-variable Bayesian
optimization. In IJCAL pages 2633-2639, 2020.

[5] B.Ru, A. Alvi, V. Nguyen, M. A. Osborne, and S. Roberts. Bayesian optimisation
over multiple continuous and categorical inputs. In ICML, pages 8276-8285, 2020.


https://www.minlplib.org/cvxnonsep_psig20.html
https://www.minlplib.org/cvxnonsep_psig30.html

	A Details for generating mixed basis functions
	B Details on the exploration step for integer variables
	C Details on the initialisation of coefficients
	D  Additional experiments on synthetic benchmark functions
	References

