
Technical Appendix for: Black-box Mixed-Variable Optimisation
using a Surrogate Model that Satisfies Integer Constraints

Anonymous Authors
ACM Reference Format:
AnonymousAuthors. 2021. Technical Appendix for: Black-boxMixed-Variable
Optimisation using a Surrogate Model that Satisfies Integer Constraints. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

A DETAILS FOR GENERATING MIXED BASIS
FUNCTIONS

In this section we show how to choose 𝑝𝜔 and 𝑝𝑏 from Definition 2
in such a way that the mixed 𝑧-functions are never completely
outside the domain 𝑋𝑐 × 𝑋𝑑 . We recommend to choose 𝑝𝜔 to be
a uniform distribution over [− 1

𝑑𝑐+𝑑𝑑 ,
1

𝑑𝑐+𝑑𝑑]
𝑑𝑐+𝑑𝑑 . This way, the

term v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 will not take on large values, which might cause

numerical problems.

After sampling 𝜔𝑘 =

[
v𝑘
w𝑘

]
from 𝑝𝜔 , we look for two corner-

points q1, q2 of the space 𝑋𝑐 × 𝑋𝑑 . For every dimension 𝑖 , the 𝑖-th
element of corner points q1, q2 is determined by

𝑞1𝑖 =

{
𝑙𝑖 , 𝜔𝑘𝑖 ≥ 0,
𝑢𝑖 , 𝜔𝑘𝑖 < 0, (1)

𝑞2𝑖 =

{
𝑢𝑖 , 𝜔𝑘𝑖 ≥ 0,
𝑙𝑖 , 𝜔𝑘𝑖 < 0. (2)

Here, 𝑙𝑖 and 𝑢𝑖 are the lower and upper bounds of the 𝑖-th variable
respectively, so this gives

𝜔𝑇
𝑘
q1 ≤ v𝑇

𝑘
x𝑐 +w𝑇

𝑘
x𝑑 ≤ 𝜔𝑇

𝑘
q2 ∀ x𝑐 ∈ 𝑋𝑐 , x𝑑 ∈ 𝑋𝑑 . (3)

Nowwe calculate the distance from the hyperplane generated by𝜔𝑘

to these corner points, which can be done with the inner product:

𝛽1 = 𝜔𝑇
𝑘
q1, 𝛽2 = 𝜔𝑇

𝑘
q2 . (4)

By the way 𝛽1 and 𝛽2 are constructed and because 𝑙𝑖 < 𝑢𝑖 , we now
have 𝛽1 < 𝛽2. We choose 𝑝𝑏 equal to the uniform distribution over
[−𝛽2,−𝛽1].

Next we prove that this choice of 𝑝𝑏 prevents the hyperplane
𝑧𝑘 (x𝑐 , x𝑑) = 0 from being completely outside the set 𝑋𝑐 × 𝑋𝑑 .

Theorem 1. Let 𝜔𝑘 =

[
v𝑘
w𝑘

]
be sampled from any continuous

probability distribution 𝑝𝜔 and let 𝑏𝑘 be sampled from the uniform
distribution over [−𝛽2,−𝛽1], with 𝛽1, 𝛽2 as in (4). Let 𝑧𝑘 (x𝑐 , x𝑑) =

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Algorithm 1 Determining 𝛿𝑑
Input Domain 𝑋𝑑 , current solution x∗

𝑑

Output 𝛿𝑑 ∈ Z𝑑𝑑
for 𝑖 = 1, . . . , 𝑑𝑑 do

𝑟1 ∼ Uniform[0, 1]
𝑟2 ∼ Uniform[0, 1] ⊲ Whether to increase or decrease 𝑥𝑖 , the

𝑖-th element of x∗
𝑑

𝑝 = 1/(𝑑𝑐 + 𝑑𝑑)
while 𝑟1 < 𝑝 do

if 𝑥𝑖 = 𝑙𝑖 then 𝑥𝑖 ← 𝑥𝑖 + 1
else if 𝑥𝑖 = 𝑢𝑖 then 𝑥𝑖 ← 𝑥𝑖 − 1
else

if 𝑟2 < 0.5 then 𝑥𝑖 ← 𝑥𝑖 + 1
else 𝑥𝑖 ← 𝑥𝑖 − 1

𝑟1 ← 2𝑟1

v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 + 𝑏𝑘 . Then, there exists a (x𝑐 , x𝑑) ∈ 𝑋𝑐 ×𝑋𝑑 such that

𝑧𝑘 (x𝑐 , x𝑑) = 0.

Proof. Suppose that (x𝑐 , x𝑑) ∉ 𝑋𝑐×𝑋𝑑 for all (x𝑐 , x𝑑) for which
𝑧𝑘 (x𝑐 , x𝑑) = 0. Then from (3), at least one of the following inequal-
ities holds:

v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 > 𝜔𝑇

𝑘
q2, (5)

v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 < 𝜔𝑇

𝑘
q1 . (6)

Because 𝑧𝑘 (x𝑐 , x𝑑) = 0, we have 𝑏𝑘 = −v𝑇
𝑘
x𝑐 −w𝑇

𝑘
x𝑑 . Because 𝑏𝑘 is

sampled from 𝑝𝑏 , from (4) we also have−𝜔𝑇
𝑘
q2 ≤ 𝑏𝑘 ≤ −𝜔𝑇

𝑘
q1. This

gives 𝜔𝑇
𝑘
q1 ≤ v𝑇

𝑘
x𝑐 +w𝑇

𝑘
x𝑑 ≤ 𝜔𝑇

𝑘
q2, which is in conflict with (5)-

(6). By contradiction, there has to exist a (x𝑐 , x𝑑) ∈ 𝑋𝑐 × 𝑋𝑑 with
𝑧𝑘 (x𝑐 , x𝑑) = 0. □

B DETAILS ON THE EXPLORATION STEP FOR
INTEGER VARIABLES

This section gives more details on the last step of the MVRSM
algorithm, the exploration step. For the integer variables x∗

𝑑
, the

exploration step consists of determining a random perturbation
𝛿𝑑 ∈ Z𝑑𝑑 that is added to the solution. Our approach is similar to
the one in [3, Sec. 3.4], except that we allow perturbations that are
larger than 1. We determine 𝛿𝑑 according to Algorithm 1.

For the continuous variables, we use the procedure from [2],
adding a random variable 𝛿𝑐 ∈ R𝑑𝑐 to x∗𝑐 . For each continuous
variable x𝑐 [𝑖], 𝛿𝑐 is zero-mean normally distributed with a standard
deviation of 0.1|𝑋𝑐 [𝑖] |/

√
𝑑𝑐 + 𝑑𝑑 . The exploration step for both

integer and continuous variables is done in such a way that the
solution stays within the bounds 𝑋𝑐 , 𝑋𝑑 .

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

Figure 1: Results on the func3C [5, Sec. 5.1] benchmark
(3 categorical, 2 continuous), averaged over 100 runs. The
compared methods are random search (RS), HyperOpt (HO),
SMAC, Bayesian optimisation (BO), CoCaBO and MVRSM.

C DETAILS ON THE INITIALISATION OF
COEFFICIENTS

In this section we would like to provide a short motivation for the
choice of initial weights of the surrogate model used by MVRSM
(Sec. 4.2). By initializing the coefficients corresponding to the in-
teger z-functions as 1, the surrogate model has a convex shape
with a global minimum around the center of the discrete part of
the search space, making it easier for the optimiser. For the mixed
z-functions we cannot guarantee this particular shape due to the
randomness involved, hence we initialise those coefficients as 0.
All of this can also be interpreted as putting a convex prior on the
surrogate model.

D ADDITIONAL EXPERIMENTS ON
SYNTHETIC BENCHMARK FUNCTIONS

In this section we show the results on some additional synthetic
benchmarks, ordered by problem dimension.

Func3C. This benchmark was taken from [5, Sec. 5.1]. It has 3
categorical and 2 continuous variables.

Figure 1 shows the results of 200 iterations averaged over 100
runs. We have managed to reproduce the results from [5, Fig. 6(b)]
for both HO (also called TPE) and CoCaBO. Our result of SMAC is
better here due to not using the default setting. As this benchmark
has categorical variables and was one of CoCaBO’s benchmarks,
we expect CoCaBO to perform best, which it does, though it uses
more computation time than the other methods.

Rosenbrock10. The Rosenbrock function1 is a standard benchmark
in continuous optimisation that can be scaled to any dimension. For
any dimension, the function has its global minimum in the point
(1, 1, 1, . . . , 1), where it achieves the value 0. This benchmark has
a dimension of 10, but 3 of the variables were adapted to integers
in 𝑋𝑑 = {−2,−1, 0, 1, 2}3. The 7 remaining continuous variables
were limited to𝑋𝑐 = [−2, 2]7. The function was scaled with a factor
1/300, and uniform noise in [0, 10−6] was added to every function
evaluation. This problem is of the same scale as the problem of
gradient boosting hyperparameter tuning [4, Sec. 4(a)].

1Details available at https://www.sfu.ca/~ssurjano/optimization.html

Figure 2: Results on the Rosenbrock10 benchmark (3 integer,
7 continuous), averaged over 100 runs. This problem is of a
similar scale as gradient boosting hyperparameter tuning [4,
Sec. 4(a)].

Figure 3: Results on 8 randomly generated MiVaBO syn-
thetic benchmarks [4, Appendix C.1, Gaussian weights vari-
ant] (8 integer, 8 continuous), averaged over 16 runs and over
the 8 different benchmarks.

Figure 2 shows the results of 100 iterations averaged over 100
runs. Surprisingly, BO has the best performance, though it is much
slower than MVRSM. This method is typically used on continuous
problems andwidely assumed to be inadequate for discrete ormixed
problems. Here, we have experimentally shown that this is a false
assumption. MVRSM and CoCaBO get similar results as BO on this
problem, with MVRSM being the most efficient.

MiVaBO synthetic function. We also compare with one of the ran-
domly generated synthetic test functions from [4, Appendix C.1,
Gaussian weights variant] . This problem has 16 variables of which
8 integer and 8 continuous. No bounds were reported so we set them
to𝑋𝑑 = {0, 1, 2, 3}8 for the integer variables and𝑋𝑐 = [0, 3]8 for the
continuous variables. We generated 8 of these random functions
and ran all algorithms 16 times on each of them for 100 iterations.

Figure 3 shows the average over all 128 runs. Again, the stan-
dard BO algorithm performs best, which is a result that was not
concluded in [4]. However, as will be seen in the remainder of this
appendix and as is often mentioned in literature, when the number
of variables becomes larger than 20, the performance of BO quickly
deteriorates.

https://www.sfu.ca/~ssurjano/optimization.html

Technical Appendix for: Black-box Mixed-Variable Optimisation using a Surrogate Model that Satisfies Integer Constraints Conference’17, July 2017, Washington, DC, USA

Figure 4: Results on the cvxnonsep_psig20 benchmark (10
integer, 10 continuous), averaged over 7 runs. The distance to
the known global optimum is shown on a logarithmic scale.

Figure 5: Results on the cvxnonsep_psig30 benchmark (15
integer, 15 continuous), averaged over 7 runs. The distance to
the known global optimum is shown on a logarithmic scale.

Cvxnonsep_psig20 synthetic function. We also investigated a pub-
licly available mixed-variable benchmark function, namely cvxnon-
sep_psig20 from the MINLP library2. This problem contains 10
integer and 10 continuous variables.

Figure 4 shows the distance to the known global optimum, aver-
aged over 7 runs with 1000 iterations each. Not only does MVRSM
get closest to the global optimum, it does so in a much faster time
than the other surrogate-based methods. BO is the second-best in
terms of accuracy, but has a significantly larger computation time.

Cvxnonsep_psig30 synthetic function. This problem is similar to
the previous example, but contains 15 integer and 15 continuous
variables3. Again, MVRSM outperforms the other methods, while
BO’s performance is further decreased.

Rosenbrock238 synthetic function. We scaled the Rosenbrock func-
tion up to a dimension of 239, with the first 119 variables adapted to
integers in 𝑋𝑑 = {−2,−1, 0, 1, 2}119, and 119 continuous variables
limited to 𝑋𝑐 = [−2, 2]119. The function was scaled with a factor
1/50000. This problem is of the same scale as the problem of feed-
forward classification model hyperparameter tuning [1], except
that the ratio between continuous and integer variables is chosen
to be 1 : 1. Uniform noise in [0, 10−6] was added to each function
evaluation.

2https://www.minlplib.org/cvxnonsep_psig20.html
3https://www.minlplib.org/cvxnonsep_psig30.html

Figure 6: Results on the Rosenbrock238 benchmark (119 in-
teger, 119 continuous), averaged over 7 runs. BO andCoCaBO
were not evaluated for this benchmark due to the large com-
putation time. This problem is of a similar scale as feed-
forward classification model hyperparameter tuning [1].

Figure 6 shows the average over 7 runs with 2000 iterations each.
The BO and CoCaBO methods were not tried due to their prohib-
itively large computation time. MVRSM performs especially well
on this application, possibly due to the structure of this synthetic
benchmark: it contains many interactions between subsequent vari-
ables, just like the discrete basis function of MVRSM’s surrogate
model.

REFERENCES
[1] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: hyperpa-

rameter optimization in hundreds of dimensions for vision architectures. In ICML
- Volume 28, pages I–115, 2013.

[2] L. Bliek, H. R. Verstraete, M. Verhaegen, and S. Wahls. Online optimization
with costly and noisy measurements using random Fourier expansions. IEEE
Transactions on Neural Networks and Learning Systems, 29(1):167–182, Jan 2018.

[3] L. Bliek, S. Verwer, and M. de Weerdt. Black-box combinatorial optimization
using models with integer-valued minima. Annals of Mathematics and Artificial
Intelligence, pages 1–15, 2020.

[4] E. Daxberger, A. Makarova, M. Turchetta, and A. Krause. Mixed-variable Bayesian
optimization. In IJCAI, pages 2633–2639, 2020.

[5] B. Ru, A. Alvi, V. Nguyen, M. A. Osborne, and S. Roberts. Bayesian optimisation
over multiple continuous and categorical inputs. In ICML, pages 8276–8285, 2020.

https://www.minlplib.org/cvxnonsep_psig20.html
https://www.minlplib.org/cvxnonsep_psig30.html

	A Details for generating mixed basis functions
	B Details on the exploration step for integer variables
	C Details on the initialisation of coefficients
	D Additional experiments on synthetic benchmark functions
	References

